1
|
Liu M, Sun Y, Zhang Y, Liu Y, Liang Z, Liu J, Xin H, Zeng X, Mei Q. Near-Infrared Nanothermometer Reveals Temperature Discrepancy between Organs and Body Surface for Heatstroke Prevention. NANO LETTERS 2025. [PMID: 40017437 DOI: 10.1021/acs.nanolett.4c06532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Organ temperatures often vary significantly from body surface temperatures during heatstroke, leading to acute organ failure, although body temperature is continuously controlled. However, the exact temperature discrepancy between them remains unclear due to a lack of noninvasive techniques for real-time monitoring of organ temperature fluctuations. Herein, we developed a near-infrared emissive nanothermometer by codoping Nd3+ and Yb3+ to produce two distinct emissions at 980 and 1330 nm under 808 nm excitation. These emissions demonstrated differential responses to temperature variations, enabling the construction of a ratiometric nanoprobe for accurate temperature detection. Notably, the nanoprobe rapidly accumulated in mouse liver after intravenous injection, revealing that liver showed consistently higher temperature than rectum by approximately 1.5 °C. Moreover, liver injury was found to begin at a rectal temperature of 42 °C, rather than the 43 °C conventionally used in heatstroke models. These findings introduce a robust nanothermometer for accurately understanding the pathological progression of heat-related illnesses.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yufu Liu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhengbing Liang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junhao Liu
- Department of Hepatobiliary-Pancreatic & Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong 510317, China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 511443, China
| | - Xiancheng Zeng
- Department of Hepatobiliary-Pancreatic & Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong 510317, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Hepatobiliary-Pancreatic & Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong 510317, China
| |
Collapse
|
2
|
Zhang LY, Chen XT, Li RT, Meng W, Huang GQ, Chen YJ, Ge FJ, Zhang Q, Quan YJ, Zhang CT, Liu YF, Chen M, Chen JX. Overcoming hypoxia-induced breast cancer drug resistance: a novel strategy using hollow gold-platinum bimetallic nanoshells. J Nanobiotechnology 2025; 23:85. [PMID: 39910569 PMCID: PMC11800444 DOI: 10.1186/s12951-025-03132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant cause of cancer-related deaths among women worldwide. Hypoxia, a common feature of solid tumor, is associated with drug resistance and a poor prognosis in BC. In this study, we present a strategy to overcome hypoxia-induced chemotherapy tolerance in BC. Specifically, we synthesized a hollow gold (Au)-platinum (Pt) bimetallic nanoshell for the first time, which acted as a drug delivery system (DDS) for doxorubicin (DOX). The photothermal effect, induced by the surface plasmon resonance (SPR) from the Au-Pt shell under near infrared-II (NIR-II) laser irradiation, not only directly causes tumor cell death through photothermal therapy (PTT), but also significantly enhances the catalase-like activity between Pt nanoparticles and endogenous H2O2. This, subsequently, results in a heightened yield of O2, which further facilitates the release of DOX. This process alleviates tumor hypoxia and down-regulating hypoxia-inducible factor-1α (HIF-1α), multidrug resistance gene 1 (MDR1), and P-glycoprotein (P-gp), which can reverse drug resistance and achieve more effective DOX chemotherapy effects. Significantly, the increased availability of oxygen further re-polarizes immunosuppressive M2 macrophages into antitumor M1 macrophages. This study presents a novel strategy to tackle tumor proliferation and enhance tumor response to chemotherapy, offering hope for reversing in drug resistance in cancerous lesions.
Collapse
Affiliation(s)
- Lian-Ying Zhang
- The People's Hospital of Gaozhou, Maoming, Guangdong, 525200, China
| | - Xiao-Tong Chen
- The People's Hospital of Gaozhou, Maoming, Guangdong, 525200, China
| | - Rong-Tian Li
- Department of Clinical Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guo-Qin Huang
- The People's Hospital of Gaozhou, Maoming, Guangdong, 525200, China
| | - Yong-Jian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Feng-Jun Ge
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qun Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Yu-Jun Quan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Cai-Tao Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yi-Fei Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming, Guangdong, 525200, China.
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Wang XJ, Ji YZ, Luo J, Sun Y, Zhou TJ, Wang Y, Xing L, Jiang HL. An Advanced Multivalent Ligand-Decorated Microsphere Enrichment System Efficiently Captures Circulating Tumor Cells In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409036. [PMID: 39778022 DOI: 10.1002/smll.202409036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Capturing circulating tumor cells (CTCs) in vivo from the bloodstream lessens tumor metastasis and recurrence risks. However, the absence of CTC receptors due to epithelial-mesenchymal transition (EMT), the limited binding capacity of a single ligand, and the complexity of the blood flow environment significantly reduce the efficiency of CTC capture in vivo. Herein, a multivalent ligand-decorated microsphere enrichment system (MLMES) is crafted that incorporates a capture column replete with an immunosorbent that precisely recognizes and binds the stably expressed cluster of differentiation 44 (CD44) and glucose transporter protein 1 (GLUT1) receptors present on the exterior of CTCs. As peripheral blood flows through the column, CTCs are efficiently captured, achieving an in vivo capture rate of up to 64.2%, the highest reported to date. Moreover, the MLMES demonstrates excellent biocompatibility, broad-spectrum tumor cells capture, and storage stability. Importantly, it significantly eliminates a substantial quantity of CTCs from peripheral blood, reducing the risk of metastasis. This breakthrough method has broad clinical application potential in preventing tumor metastasis and recurrence, bringing new possibilities for improving cancer treatment.
Collapse
Affiliation(s)
- Xiao-Jie Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang-Ze Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- College of Pharmacy, Yanbian University, Yanji, 133002, China
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
4
|
Hao X, Song W, Wang Y, Qin J, Jiang Z. Recent Advancements in Electrochemical Sensors Based on MOFs and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408624. [PMID: 39676419 DOI: 10.1002/smll.202408624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Metal-organic frameworks (MOFs) are composed of metal nodes and organic linkers that can self-assemble into an infinite network. The high porosity and large surface area of MOFs facilitate the effective enrichment and mass transfer of analytes, which can enhance the signal response and improve the sensitivity of electrochemical sensors. Additionally, MOFs and their derivatives possess the properties of unsaturated metal sites and tunable structures, collectively demonstrating their potential for electrochemical sensing. This paper summarizes the preparation methods, structural properties, and applications of MOFs and their derivatives in electrochemical sensing, emphasizing sensors' selectivity and sensitivity from the perspectives of direct and indirect detection. Additionally, it also explores future directions and prospects for MOFs in electrochemical sensing, with the aim of overcoming current limitations through innovative approaches.
Collapse
Affiliation(s)
- Xi Hao
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Yinghui Wang
- The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462005, China
| | - Jieling Qin
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
5
|
Li Q, Wang R, Han S, Shi N, Yang J, Ping C, Chai L, Wang R, Zheng B, Ren G, Zhang S. Design and Antimalarial Evaluation of Polydopamine-Modified Methyl Artelinate Nanoparticles. Mol Pharm 2024; 21:5551-5564. [PMID: 39378411 DOI: 10.1021/acs.molpharmaceut.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Targeted nanodrug delivery systems are highly anticipated for the treatment of malaria. It is known that Plasmodium can induce new permeability pathways (NPPs) on the membrane of infected red blood cells (iRBCs) for their nutrient uptake. The NPPs also enable the uptake of nanoparticles (NPs) smaller than 80 nm. Additionally, Plasmodium maintains a stable, slightly acidic, and reductive internal environment with higher glutathione (GSH) levels. Based on this knowledge, methyl artelinate (MA, a prodrug-like derivative of dihydroartemisinin) nanoparticles (MA-PCL-NPs) were developed using poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) by a thin-film dispersion method and were further coated with polydopamine (PDA) to obtain MA-PCL@PDA-NPs with a particle size of ∼30 nm. The biomaterial PDA can be degraded in slightly acidic and reductive environments, thereby serving as triggers for drug release. MA could generate reactive oxygen species and decrease GSH levels, consequently causing parasite damage. The in vitro release experiment results indicated that the cumulative release percentage of MA from MA-PCL@PDA-NPs was considerably higher in phosphate buffer with 10 mM GSH at pH 5.5 (88.10%) than in phosphate buffer without GSH at pH 7.4 (16.98%). The green fluorescence within iRBCs of coumarin 6, the probe of NPs (C6-PCL@PDA-NPs), could be reduced significantly after adding the NPP inhibitor furosemide (p < 0.001), which demonstrated that MA-PCL@PDA-NPs could be ingested into iRBCs through NPPs. In vivo antimalarial pharmacodynamics in Plasmodium berghei K173-bearing mice showed that the inhibition ratio of MA-PCL@PDA-NPs (93.96%) was significantly higher than that of commercial artesunate injection (AS-Inj, 63.33%). The above results showed that the developed MA-PCL@PDA-NPs possessed pH-GSH dual-responsive drug release characteristics and targeting efficacy for iRBCs, leading to higher antimalarial efficacy against Plasmodium.
Collapse
Affiliation(s)
- Qingxia Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqi Han
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Nan Shi
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jiaqi Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Canqi Ping
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liqing Chai
- Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Zheng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
6
|
Wu S, Gao M, Chen L, Wang Y, Zheng X, Zhang B, Li J, Zhang XD, Dai R, Zheng Z, Zhang R. A Multifunctional Nanoreactor-Induced Dual Inhibition of HSP70 Strategy for Enhancing Mild Photothermal/Chemodynamic Synergistic Tumor Therapy. Adv Healthc Mater 2024; 13:e2400819. [PMID: 38722289 DOI: 10.1002/adhm.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impede the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO2-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT). The Ag-Cu cores can convert endogenous H2O2 to hydroxyl radical (•OH), which can induce lipid peroxidation (LPO) and further degrade HSP70. The polydopamine (PDA)/glucose oxidase (GOx) shells are utilized as the NIR-II photothermal agent to generate low temperature, and the GOx can reduce the energy supplies and inhibit energy-dependent HSP70 expression. Furthermore, both the generation of •OH and GOx-mediated energy shortage can reduce HSP70 expression to sensitize mild PTT under 1064 nm laser, and in turn, GOx and laser self-amplify the catalytic reactions of APG NRs for more production of •OH. The multifunctional nanoreactors will provide more potential possibilities for the clinical employment of mild PTT and the advancement of tumor combination therapies.
Collapse
Affiliation(s)
- Shutong Wu
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Mengting Gao
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lin Chen
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Yuhang Wang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaochun Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Binyue Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Juan Li
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Rong Dai
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| |
Collapse
|
7
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
8
|
Chen M, Guo B, Cheng H, Wang W, Jin J, Zhang Y, Deng X, Yang W, Wu C, Gao X, Yu D, Feng W, Chen Y. Genetic Engineering Bacillus thuringiensis Enable Melanin Biosynthesis for Anti-Tumor and Anti-Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308506. [PMID: 38943265 PMCID: PMC11423088 DOI: 10.1002/advs.202308506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Indexed: 07/01/2024]
Abstract
Collaboration between cancer treatment and inflammation management has emerged as an integral facet of comprehensive cancer care. Nevertheless, the development of interventions concurrently targeting both inflammation and cancer has encountered significant challenges stemming from various external factors. Herein, a bioactive agent synthesized by genetically engineering melanin-producing Bacillus thuringiensis (B. thuringiensis) bacteria, simultaneously achieves eco-friendly photothermal agent and efficient reactive oxygen/nitrogen species (RONS) scavenger benefits, perfectly tackling present toughies from inflammation to cancer therapies. The biologically derived melanin exhibits exceptional photothermal-conversion performance, facilitating potent photonic hyperthermia that effectively eradicates tumor cells and tissues, thereby impeding tumor growth. Additionally, the RONS-scavenging properties of melanin produced by B. thuringiensis bacteria contribute to inflammation reduction, augmenting the efficacy of photothermal tumor repression. This study presents a representative paradigm of genetic engineering in B. thuringiensis bacteria to produce functional agents tailored for diverse biomedical applications, encompassing inflammation and cancer therapy.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Bingbing Guo
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Hui Cheng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Weiyi Wang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Junyi Jin
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yingyi Zhang
- School of MedicineShenzhen Campus of SunYat‐Sen UniversityShenzhen518107P. R. China
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Xiaolian Deng
- School of MedicineShenzhen Campus of SunYat‐Sen UniversityShenzhen518107P. R. China
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Wenjun Yang
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Chenyao Wu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiang Gao
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Dehong Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wei Feng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health) Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health) Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| |
Collapse
|
9
|
Kang Y, Chen Z, Song Z, Wu Y, Huang Z, Jin Y, Zhang T, Wang M, Hu Z, Yu Y. Accurate brain pharmacokinetic parametric imaging using the blood input function extracted from the cavernous sinus. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:272-281. [PMID: 39309416 PMCID: PMC11411194 DOI: 10.62347/lsyg1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Brain pharmacokinetic parametric imaging based on dynamic positron emission tomography (PET) scan is valuable in the diagnosis of brain tumor and neurodegenerative diseases. For short-axis PET system, standard blood input function (BIF) of the descending aorta is not acquirable during the dynamic brain scan. BIF extracted from the intracerebral vascular is inaccurate, making the brain parametric imaging task challenging. This study introduces a novel technique tailored for brain pharmacokinetic parameter imaging in short-axis PET in which the head BIF (hBIF) is acquired from the cavernous sinus. The proposed method optimizes the hBIF within the Patlak model via data fitting, curve correction and Patlak graphical model rewriting. The proposed method was built and evaluated using dynamic PET datasets of 67 patients acquired by uEXPLORER PET/CT, among which 64 datasets were used for data fitting and model construction, and 3 were used for method testing; using cross-validation, a total of 15 patient datasets were finally used to test the model. The performance of the new method was evaluated via visual inspection, root-mean-square error (RMSE) measurements and VOI-based accuracy analysis using linear regression and Person's correlation coefficients (PCC). Compared to directly using the cavernous sinus BIF directly for parameter imaging, the new method achieves higher accuracy in parametric analysis, including the generation of Patlak plots closer to the standard plots, better visual effects and lower RMSE values in the Ki (P = 0.0012) and V (P = 0.0042) images. VOI-based analysis shows regression lines with slopes closer to 1 (P = 0.0019 for Ki ) and smaller intercepts (P = 0.0085 for V). The proposed method is capable of achieving accurate brain pharmacokinetic parametric imaging using cavernous sinus BIF with short-axis PET scan. This may facilitate the application of this imaging technology in the clinical diagnosis of brain diseases.
Collapse
Affiliation(s)
- Yafen Kang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, China
| | - Zixiang Chen
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of ScienceShenzhen 518055, Guangdong, China
| | - Zhuoyue Song
- Bioengineering Laboratory, Institute of Biological and Medical Engineering, Guangdong Academy of SciencesGuangzhou 510006, Guangdong, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of SciencesZhengzhou 450000, Henan, China
| | - Zhenxing Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of ScienceShenzhen 518055, Guangdong, China
| | - Yuxi Jin
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of ScienceShenzhen 518055, Guangdong, China
| | - Ting Zhang
- Shenzhen Talent InstituteShenzhen 518071, Guangdong, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of SciencesZhengzhou 450000, Henan, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of ScienceShenzhen 518055, Guangdong, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, China
| |
Collapse
|
10
|
Liu P, Zhao X, Cao J, Tian M, Li Y, Ma C, Yang T, Liu Y. Potentiating light-harvesting tactics through an A-D-A structure: repolarization of tumor-associated macrophages through phototherapy. J Mater Chem B 2024; 12:7870-7878. [PMID: 39011592 DOI: 10.1039/d4tb00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Aiming to decrease the recurrence of tumors and achieve patient satisfaction, the elicitation of immunotherapy and its integrated synergistic employment is a bright new direction in oncotherapy, yet an emergently challenging task. In particular, tumor-associated macrophage (TAM) regulation though light-induced photodynamic and photothermal therapy (PDT and PTT) is regarded as a powerful approach, which focuses on the systemic immune system instead of the tumor itself. Herein, this study reports an acceptor-donor-acceptor (A-D-A) aggregation-induced emission luminogen (AIEgen), named TPA-2CN, which was applied as a photosensitizer (PS) and photothermal agent (PTA). Attributed to its A-D-A structure and AIE properties, TPA-2CN exhibits a high molar absorption coefficient and acts as a perfect template in regulating radiative and nonradiative transitions, which mainly utilize excited energy. The generation of type I reactive oxygen promoted its application in hypoxic tumor sites and the combination of hyperpyrexia forcefully induces macrophages to polarize towards the immune response M1 phenotype. In in vitro and in vivo, the successful reversion and reprogramming of the immune microenvironment was impressively proved. This method optimally concentrated immune therapy, PDT and PTT as one and exhibited excellent synergistic therapeutic effects with good biosafety.
Collapse
Affiliation(s)
- Pai Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
- Cangzhou Institute of Tiangong University, Cangzhou 061000, P. R. China
| | - Xinyue Zhao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Jiayu Cao
- School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
| | - Mengyan Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Yaning Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Chunyan Ma
- School of Life Science, Tiangong University, Tianjin 300387, P. R. China
| | - Tianyue Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Yi Liu
- School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- Cangzhou Institute of Tiangong University, Cangzhou 061000, P. R. China
| |
Collapse
|
11
|
Shang R, Yang F, Gao G, Luo Y, You H, Dong L. Bioimaging and prospects of night pearls-based persistence phosphors in cancer diagnostics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230124. [PMID: 39175886 PMCID: PMC11335470 DOI: 10.1002/exp.20230124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 08/24/2024]
Abstract
Inorganic persistent phosphors feature great potential for cancer diagnosis due to the long luminescence lifetime, low background scattering, and minimal autofluorescence. With the prominent advantages of near-infrared light, such as deep penetration, high resolution, low autofluorescence, and tissue absorption, persistent phosphors can be used for deep bioimaging. We focus on highlighting inorganic persistent phosphors, emphasizing the synthesis methods and applications in cancer diagnostics. Typical synthetic methods such as the high-temperature solid state, thermal decomposition, hydrothermal/solvothermal, and template methods are proposed to obtain small-size phosphors for biological organisms. The luminescence mechanisms of inorganic persistent phosphors with different excitation are discussed and effective matrixes including galliumate, germanium, aluminate, and fluoride are explored. Finally, the current directions where inorganic persistent phosphors can continue to be optimized and how to further overcome the challenges in cancer diagnosis are summarized.
Collapse
Affiliation(s)
- Ruipu Shang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Feifei Yang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
| | - Ge Gao
- Division of Physical Science and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA Institute for Frontier Medical TechnologyCollege of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiChina
| | - Hongpeng You
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Lile Dong
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
12
|
Yang F, Yang Y, Yan X, He C, Peng H, Wu A. Zinc Doping Engineering in Zn xFe 3-xO 4 Heterostructures for Enhancing Photodynamic Therapy in the Near-Infrared-II Region. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31489-31499. [PMID: 38833169 DOI: 10.1021/acsami.4c05717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Currently, photodynamic therapy (PDT) is restricted by the laser penetration depth. Except for PDT at 1064 nm wavelength excitation, the development of other NIR-II-activated nanomaterials with a higher response depth is still hindered and rarely reported in the literature. To overcome these problems, we fabricated a nanoplatform with heterostructures that generate reactive oxygen species (ROS) and ferrite nanoparticles under a high concentration of zinc doping (ZnxFe3-xO4 NPs), which can achieve oxidative damage of tumor cells under near-infrared (NIR) illumination. The recombination of photoelectrons and holes has been markedly inhibited due to the formation of heterostructures in the interfaces, thus greatly enhancing the capability for ROS and oxygen production by modulating the single-component doping content. The efficiency of PDT was verified by in vivo and in vitro assays under NIR light. Our results revealed that NIR-II (1208 nm) light irradiation of ZnxFe3-xO4 NPs exerted a remarkable antitumor activity, superior to NIR-I light (808 nm). More importantly, the reported ZnxFe3-xO4 NPs strategy provides an opportunity for the success of comparison with light in the first and second near-infrared regions.
Collapse
Affiliation(s)
- Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Yan
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Chenglong He
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
13
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
14
|
Rizwan M, Roy VAL, Abbasi R, Irfan S, Khalid W, Atif M, Ali Z. Novel 2D MXene Cobalt Ferrite (CoF@Ti 3C 2) Composite: A Promising Photothermal Anticancer In Vitro Study. ACS Biomater Sci Eng 2024; 10:2074-2087. [PMID: 38111288 DOI: 10.1021/acsbiomaterials.3c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In search of materials with superior capability of light-to-heat (photothermal) conversion, biocompatibility, and confinement of active photothermal materials within the cells, novel magnetic MXene-based nanocomposites are found to possess all of these criteria. The CoF@Ti3C2 composite is fabricated by a simple two-step method, including an exfoliation strategy followed by sonochemical method. MXene composite has been modified with polyvinylpyrrolidone (PVP) to improve the stability in physiological conditions. The synthesized composite was characterized with multiple analytical tools. In vitro photothermal conversion efficiency of composite was determined by the time constant method and achieved η = 34.2% with an NIR 808 nm laser. In vitro, cytotoxicity studies conducted on human malignant melanoma (Ht144) and cells validated the photothermal property of the CoF@Ti3C2-PVP composite in the presence of an NIR laser (808 nm, 1.0 W cm-2), with significantly increased cytotoxicity. Calculated IC50 values were 86 μg/mL with laser, compared to 226 μg/mL without the presence of NIR laser. Microscopic results demonstrated increased apoptosis in the presence of NIR laser. Additionally, hemolysis assay confirmed biocompatibility of CoF@Ti3C2-PVP composite for intravenous applications at the IC50 concentration. The research described in this work expands the potential applications of MXene-based nanoplatforms in the biomedical field, particularly in photothermal therapy (PTT). Furthermore, the addition of cobalt ferrite serves as a magnetic nanocomposite, which eventually helps to confine therapeutic photothermal materials inside the cells, provides enhanced photothermal conversion efficiency, and creates externally controlled theranostic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering, 24 Mauve Area, Sector G-9/1, Islamabad 44000, Pakistan
| | - Sumaira Irfan
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Waqas Khalid
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Muhammad Atif
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Zulqurnain Ali
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| |
Collapse
|
15
|
Ma Y, Zhao X, Tian P, Xu K, Luo J, Li H, Yuan M, Liu X, Zhong Y, Wei P, Song J, Wen L, Lu C. Laser-Ignited Lipid Peroxidation Nanoamplifiers for Strengthening Tumor Photodynamic Therapy Through Aggravating Ferroptotic Propagation and Sustainable High Immunogenicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306402. [PMID: 37992239 DOI: 10.1002/smll.202306402] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Photodynamic therapy (PDT) is extensively investigated for tumor therapy in the clinic. However, the efficacy of PDT is severely limited by the tissue penetrability of light, short effective half-life and radius of reactive oxygen species (ROS), and the weak immunostimulatory effect. In this study, a glutathione (GSH)-activatable nano-photosensitizer is developed to load with arachidonic acid (AA) and camouflage by erythrocyte membrane, which serves as a laser-ignited lipid peroxidation nanoamplifier (MAR). The photosensitive effect of MAR is recovered accompanied by the degradation in the tumor microenvironment and triggers the peroxidation of AA upon laser excitation. Interestingly, it aggravates the propagation of ferroptosis among cancer cells by driving the continuous lipid peroxidation chain reactions with the participation of the degradation products, ferrous ions (Fe2+), and AA. Consequently, even the deep-seated tumor cells without illumination also undergo ferroptosis owing to the propagation of ferroptotic signal. Moreover, the residual tumor cells undergoing ferroptosis still maintain high immunogenicity after PDT, thus continuously triggering sufficient tumor-associated antigens (TAAs) release to remarkably promote the anti-tumor immune response. Therefore, this study will provide a novel "all-in-one" nano-photosensitizer that not only amplifies the damaging effect and expands the effective range of PDT but also improves the immunostimulatory effect after PDT.
Collapse
Affiliation(s)
- Yunong Ma
- Medical College, Guangxi University, Nanning, 530004, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Xi Zhao
- Medical College, Guangxi University, Nanning, 530004, China
| | - Peilin Tian
- Medical College, Guangxi University, Nanning, 530004, China
| | - Kexin Xu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical College, Guangxi University, Nanning, 530004, China
| | - Honghui Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Mingqing Yuan
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xu Liu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Yanping Zhong
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Pingzhen Wei
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| |
Collapse
|
16
|
He J, Ouyang X, Xiao F, Liu N, Wen L. Imaging-Guided Photoacoustic Immunotherapy Based on the Polydopamine-Functionalized Black Phosphorus Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54322-54334. [PMID: 37967339 DOI: 10.1021/acsami.3c13998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Phototherapy has great application prospects in superficial tumors, such as melanoma, esophageal cancer, and breast carcinoma, owing to the advantages of noninvasiveness, high spatiotemporal selectivity, and less side effects. However, classical phototherapies including photodynamic and photothermal therapy still need to settle the bottleneck problems of poor efficacy, inevitable thermal damage, and a high rate of postoperative recurrence. In this study, we developed a nanocomposite with excellent optical properties and immune-stimulating properties, termed PBP@CpG, which was obtained by functionalizing black phosphorus (BP) with polydopamine and further adsorbing CpG. Benefiting from the protection of polydopamine against BP, ideal light absorption, and photoacoustic conversion properties, PBP@CpG not only enables precisely delineation of the tumor region with photoacoustic imaging but also powerfully disrupts the plasma membrane and cytoskeleton of tumor cells with a photoacoustic cavitation effect. In addition, we found that the photoacoustic cavitation effect was also capable of inducing immunogenic cell death and remarkably strengthening the antitumor immune response upon cooperating with immune adjuvant CpG. Therefore, PBP@CpG was expected to provide a promising nanoplatform for optical theranostics and herald a new strategy of photoimmunotherapy based on the photoacoustic cavitation effects and immunostimulatory effect.
Collapse
Affiliation(s)
- Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Xumei Ouyang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Ning Liu
- School of Clinical Medicine, Jining Medical University, 272067 Jining, Shandong, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| |
Collapse
|
17
|
Zhan M, Wang D, Zhao L, Chen L, Ouyang Z, Mignani S, Majoral JP, Zhao J, Zhang G, Shi X, Shen M. Phosphorus core-shell tecto dendrimers for enhanced tumor imaging: the rigidity of the backbone matters. Biomater Sci 2023; 11:7387-7396. [PMID: 37791576 DOI: 10.1039/d3bm01198d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Nanoplatforms with amplified passive tumor targeting and enhanced protein resistance can evade unnecessary uptake by the reticuloendothelial system and achieve high tumor retention for accurate tumor theranostics. To achieve this goal, we here constructed phosphorus core-shell tecto dendrimers (CSTDs) with a rigid aromatic backbone core as a nanoplatform for enhanced fluorescence and single-photon emission computed tomography (SPECT) dual-mode imaging of tumors. In this study, the phosphorus P-G2.5/G3 CSTDs (G denotes generation) were partially conjugated with tetraazacyclododecane tetraacetic acid (DOTA), cyanine5.5 (Cy5.5) and 1,3-propane sulfonate (1,3-PS) and then labeled with 99mTc. The formed P-G2.5/G3-DOTA-Cy5.5-PS CSTDs possess good monodispersity with a particle size of 10.1 nm and desired protein resistance and cytocompatibility. Strikingly, compared to the counterpart material G3/G3-DOTA-Cy5.5-PS with both the core and shell components being soft poly(amidoamine) dendrimers, the developed P-G2.5/G3-DOTA-Cy5.5-PS complexes allow for more efficient cellular uptake and more significant penetration in 3-dimensional tumor spheroids in vitro, as well as more significant tumor retention and accumulation for enhanced dual-mode fluorescence and SPECT (after labelling with 99mTc) tumor imaging in vivo. Our studies suggest that the rigidity of the core for the constructed CSTDs matters in the amplification of the tumor enhanced permeability retention (EPR) effect for improved cancer nanomedicine development.
Collapse
Affiliation(s)
- Mengsi Zhan
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Dayuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Serge Mignani
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- Université Toulouse, 118 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
18
|
Ruan D, Wang J, Ding T, Chen L, Du Y, Ruan Y, Cui W, Feng W. Targeting Adhesive Tumor Adventitia via Injectable Electrospun Short Fibers in Perfusion of Intraperitoneal Sporadic Tumors. SMALL METHODS 2023; 7:e2300681. [PMID: 37670530 DOI: 10.1002/smtd.202300681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Indexed: 09/07/2023]
Abstract
Intraperitoneal sporadic tumor is a common and complicated syndrome in cancers, causing a high rate of death, and people find that intraperitoneal chemotherapy (IPC) can treat intraperitoneal sporadic tumors better than intravenous chemotherapy and surgery. However, the effectiveness and side effects of IPC are controversial, and the operation process of IPC is complicated. Herein, the injectable paclitaxel-loaded (PTX-loaded) electrospun short fibers are constructed through a series process of electrospinning, homogenizing, crosslinking, and subsequent polydopamine coating and folate acid (FA) modification. The evenly dispersed short fibers exhibited effective tumor cell killing and good injectable ability, which is convenient to use and greatly improved the complex operation procedure. Mussel-like protein poly-dopamine coating and FA modification endowed short fibers with the ability of targeted adhesion to tumors, and therefore the short fibers further acted as a kind of micro membrane that could release drugs to tumors at close range, maintaining local high drug concentration and prevent paclitaxel killing normal tissues. Thus, the target-adhesive injectable electrospun short fibers are expected to be the potential candidate for cancer treatment, especially the intraperitoneal sporadic tumors, which are hard to treat by surgery or intravenous chemotherapy.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Tao Ding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yiyin Ruan
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Weiwei Feng
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
19
|
Wang J, Shangguan P, Lin M, Fu L, Liu Y, Han L, Chen S, Wang X, Lu M, Luo Z, Zhong Y, Shi B, Bai F. Dual-Site Förster Resonance Energy Transfer Route of Upconversion Nanoparticles-Based Brain-Targeted Nanotheranostic Boosts the Near-Infrared Phototherapy of Glioma. ACS NANO 2023; 17:16840-16853. [PMID: 37605553 DOI: 10.1021/acsnano.3c03724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor with low survival, primarily due to the blood-brain barrier (BBB) and high infiltration. Upconversion nanoparticles (UCNPs)-based near-infrared (NIR) phototherapy with deep penetration is a promising therapy method against glioma but faces low photoenergy utilization that is induced by spectral mismatch and single-site Förster resonance energy transfer (FRET). Herein, we designed a brain-targeting NIR theranostic system with a dual-site FRET route and superior spectral matching to maximize energy utilization for synergistic photodynamic and photothermal therapy of glioma. The system was fabricated by Tm-doped UCNPs, zinc tetraphenylporphyrin (ZnTPP), and copper sulfide (CuS) nanoparticles under multioptimized modulation. First, the Tm-doping ratio was precisely adjusted to improve the relative emission intensity at 475 nm of UCNPs (11.5-fold). Moreover, the J-aggregate of ZnTPP increased the absorption at 475 nm (163.5-fold) of monomer; both together optimize the FRET matching between UCNPs and porphyrin for effective NIR photodynamic therapy. Simultaneously, the emission at 800 nm was utilized to magnify the photothermal effect of CuS nanoparticles for photothermal therapy via the second FRET route. After being modified by a brain-targeted peptide, the system efficiently triggers the synergistic phototherapy ablation of glioma cells and significantly prolongs the survival of orthotopic glioma-bearing mice after traversing the BBB and targeting glioma. This success of advanced spectral modulation and dual-site FRET strategy may inspire more strategies to maximize the photoenergy utilization of UCNPs for brain diseases.
Collapse
Affiliation(s)
- Jiefei Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ping Shangguan
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ming Lin
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Libing Fu
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yisheng Liu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Han
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mengya Lu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhengqun Luo
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, China
| | - Bingyang Shi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
20
|
Chen L, Zhao D, Ren X, Ren J, Meng X, Fu C, Li X. Shikonin-Loaded Hollow Fe-MOF Nanoparticles for Enhanced Microwave Thermal Therapy. ACS Biomater Sci Eng 2023; 9:5405-5417. [PMID: 37638660 PMCID: PMC10498989 DOI: 10.1021/acsbiomaterials.3c00644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Microwave (MW) thermal therapy has been widely used for the treatment of cancer in clinics, but it still shows limited efficacy and a high recurrence rate owing to non-selective heat delivery and thermo-resistance. Regulating glycolysis shows great promise to improve MW thermal therapy since glycolysis plays an important role in thermo-resistance, progression, metabolism, and recurrence. Herein, we developed a delivery nanosystem of shikonin (SK)-loaded and hyaluronic acid (HA)-modified hollow Fe-MOF (HFM), HFM@SK@HA, as an efficient glycolysis-meditated agent to improve the efficacy of MW thermal therapy. The HFM@SK@HA nanosystem shows a high SK loading capacity of 31.7 wt %. The loaded SK can be effectively released from the HFM@SK@HA under the stimulation of an acidic tumor microenvironment and MW irradiation, overcoming the intrinsically low solubility and severe toxicity of SK. We also find that the HFM@SK@HA can not only greatly improve the heating effect of MW in the tumor site but also mediate MW-enhancing dynamic therapy efficiency by catalyzing the endogenous H2O2 to generate reactive oxygen species (ROS). As such, the MW irradiation treatment in the presence of HFM@SK@HA in vitro enables a highly improved anti-tumor efficacy due to the combined effect of released SK and generated ROS on inhibiting glycolysis in cancer cells. Our in vivo experiments show that the tumor inhibition rate is up to 94.75% ± 3.63% with no obvious recurrence during the 2 weeks after treatment. This work provides a new strategy for improving the efficacy of MW thermal therapy.
Collapse
Affiliation(s)
- Lufeng Chen
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
| | - Dongming Zhao
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| | - Xiangling Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianwei Meng
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianfeng Li
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| |
Collapse
|
21
|
Jiang X, Yang M, Fang Y, Yang Z, Dai X, Gu P, Feng W, Chen Y. A Photo-Activated Thermoelectric Catalyst for Ferroptosis-/Pyroptosis-Boosted Tumor Nanotherapy. Adv Healthc Mater 2023; 12:e2300699. [PMID: 37086391 DOI: 10.1002/adhm.202300699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) has gradually come into the limelight for oncological treatment due to its noninvasiveness, high specificity, and low side effects. However, upregulated heat-shock proteins (HSPs) and reactive oxygen species (ROS)-defensing system such as glutathione (GSH) or MutT homolog 1 (MTH1) protein in tumor microenvironment counteract the efficiency of single-modality therapy either PTT or PDT. Herein, the well-defined bismuth telluride nanoplates (Bi2 Te3 NPs) are engineered with a high-performance photo-thermo-electro-catalytic effect for tumor-synergistic treatment. Upon near-infrared light illumination, Bi2 Te3 NPs induce a significant temperature elevation for PTT, which effectively inhibits MTH1 expression. Especially, heating and cooling alteration caused temperature variations result in electron-hole separation for ROS generation, which not only damages HSPs to reduce the thermotolerance for enhance PTT, but also arouses tumor cell pyroptosis. Additionally, Bi2 Te3 NPs conspicuously reduce GSH, further improving ROS level and leading to decrease glutathione peroxidase 4 (GPX4) activity, which triggers tumor cell ferroptosis. Due to the photo-thermo-electro-catalytic synergistic therapy, Bi2 Te3 NPs are gifted with impressive tumor suppression on both ectopic and orthotopic ocular tumor models. This work highlights a high-performance multifunctional energy-conversion nanoplatform for reshaping tumor microenvironment to boost the tumor-therapeutic efficacy of phototherapy.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Muyue Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ying Fang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhenyu Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
22
|
Chen X, Ma X, Yang G, Huang G, Dai H, Liu N, Yu J. Squaraine nanoparticles for optoacoustic imaging-guided synergistic cancer phototherapy. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3645-3652. [PMID: 39635347 PMCID: PMC11501745 DOI: 10.1515/nanoph-2023-0358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2024]
Abstract
The unique optical properties of squaraine dyes make them promising for cancer phototheranostics, but the reported squaraines for in vivo treatments mainly rely on their photothermal effect, where monotherapy cannot achieve the desired therapeutic effect. Here we generated a type of squaraine capable of killing tumors through both photothermal and photodynamic effects. We optimized squaraine structure with selenium modulation and formulated it into nanoparticles that showed strong absorption of infrared light, negligible fluorescence, good photothermal conversion (66.6 %), and strong photodynamic effects even after several irradiation cycles. In addition, the nanoparticles could be tracked through their strong optoacoustic signal. In mice, the nanoparticles effectively accumulated in tumors and eliminated them upon irradiation, without causing adverse effects. Our work demonstrates the potential of selenium modulation of squaraine for precise cancer diagnosis and treatment through synergistic photothermal and photodynamic effects.
Collapse
Affiliation(s)
- Xiao Chen
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan250061, China
| | - Gui Yang
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| | - Guan Huang
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| | - Haibing Dai
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| | - Nian Liu
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Jianbo Yu
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| |
Collapse
|
23
|
Jiang L, Chi J, Wang J, Fang S, Peng T, Quan G, Liu D, Huang Z, Lu C. Superparamagnetic Nanocrystals Clustered Using Poly(ethylene glycol)-Crosslinked Amphiphilic Copolymers for the Diagnosis of Liver Cancer. Pharmaceutics 2023; 15:2205. [PMID: 37765174 PMCID: PMC10535018 DOI: 10.3390/pharmaceutics15092205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Superparamagnetic iron oxide (SPIO) nanocrystals have been extensively studied as theranostic nanoparticles to increase transverse (T2) relaxivity and enhance contrast in magnetic resonance imaging (MRI). To improve the blood circulation time and enhance the diagnostic sensitivity of MRI contrast agents, we developed an amphiphilic copolymer, PCPZL, to effectively encapsulate SPIO nanocrystals. PCPZL was synthesized by crosslinking a polyethylene glycol (PEG)-based homobifunctional linker with a hydrophobic star-like poly(ε-benzyloxycarbonyl-L-lysine) segment. Consequently, it could self-assemble into shell-crosslinked micelles with enhanced colloidal stability in bloodstream circulation. Notably, PCPZL could effectively load SPIO nanocrystals with a high loading capacity of 66.0 ± 0.9%, forming SPIO nanoclusters with a diameter of approximately 100 nm, a high cluster density, and an impressive T2 relaxivity value 5.5 times higher than that of Resovist®. In vivo MRI measurements highlighted the rapid accumulation and contrast effects of SPIO-loaded PCPZL micelles in the livers of both healthy mice and nude mice with an orthotopic hepatocellular carcinoma tumor model. Moreover, the magnetic micelles remarkably enhanced the relative MRI signal difference between the tumor and normal liver tissues. Overall, our findings demonstrate that PCPZL significantly improves the stability and magnetic properties of SPIO nanocrystals, making SPIO-loaded PCPZL micelles promising MRI contrast agents for diagnosing liver diseases and cancers.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiahui Wang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Shaobin Fang
- The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Zhongjie Huang
- Department of Radiology, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518109, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| |
Collapse
|
24
|
Zou YM, Li RT, Yu L, Huang T, Peng J, Meng W, Sun B, Zhang WH, Jiang ZH, Chen J, Chen JX. Reprogramming of the tumor microenvironment using a PCN-224@IrNCs/D-Arg nanoplatform for the synergistic PDT, NO, and radiosensitization therapy of breast cancer and improving anti-tumor immunity. NANOSCALE 2023. [PMID: 37318099 DOI: 10.1039/d3nr01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low X-ray attenuation coefficient of tumor soft tissue and the hypoxic tumor microenvironment (TME) during radiation therapy (RT) of breast cancer result in RT resistance and thus reduced therapeutic efficacy. In addition, immunosuppression induced by the TME severely limits the antitumor immunity of radiation therapy. In this paper, we propose a PCN-224@IrNCs/D-Arg nanoplatform for the synergistic radiosensitization, photodynamic, and NO therapy of breast cancer that also boosts antitumor immunity (PCN = porous coordination network, IrNCs = iridium nanocrystals, D-Arg = D-arginine). The local tumors can be selectively ablated via reprogramming the tumor microenvironment (TME), photodynamic therapy (PDT) and NO therapy, and the presence of the high-Z element Ir that sensitizes radiotherapy. The synergistic execution of these treatment modalities also resulted in adapted antitumor immune response. The intrinsic immunomodulatory effects of the nanoplatform also repolarize macrophages toward the M1 phenotype and induce dendritic cell maturation, activating antitumor T cells to induce immunogenic cell death as demonstrated in vitro and in vivo. The nanocomposite design reported herein represents a new regimen for the treatment of breast cancer through TME reprogramming to exert a synergistic effect for effective cancer therapy and antitumor immunity.
Collapse
Affiliation(s)
- Yi-Ming Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Rong-Tian Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Lei Yu
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Avenue, Guangzhou 510091, People's Republic of China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jian Peng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Bin Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhi-Hong Jiang
- Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
25
|
Li Y, Su M, Yan T, Wang Z, Zhang J. Near-Infrared Copper Sulfide Hollow Nanostructures with Enhanced Photothermal and Photocatalytic Performance for Effective Bacterial Sterilization. ACS APPLIED BIO MATERIALS 2023. [PMID: 37285509 DOI: 10.1021/acsabm.3c00274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of nonantibiotic strategies to combat bacterial infection is highly needed, owing to the widespread infectious disease and bacterial resistance becoming a significant health threat to the world's population. In recent years, photoactivated antibacterial therapies including photocatalytic and photothermal therapies have attracted increasing attention due to their high efficiency and low side effect. Herein, we introduce a copper sulfide (Cu2-xS) hollow nanostructure-based near-infrared antibacterial platform with synergy photothermal and photocatalytic properties for effective bacterial sterilization. Compared to traditional Cu2-xS nanoparticles, this unique hollow Cu2-xS nanostructure can generate multiple scattered light, which is conducive to light collection. Moreover, its thin shell can shorten the transmission distance of carrier, thus reducing the charge recombination that usually causes the greatest energy loss. As a result, such a Cu2-xS hollow nanostructure enables enhanced photothermal and photocatalytic bacterial killing activities against both Escherichia coli and Staphylococcus aureus, showing promise for antibiotic-free infection treatment and other bacterial sterilization applications.
Collapse
Affiliation(s)
- You Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Mengyao Su
- Institute of Engineering Medicine, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Tingjun Yan
- Institute of Engineering Medicine, Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
26
|
Wei Z, Yu X, Huang M, Wen L, Lu C. Nanoplatforms Potentiated Ablation-Immune Synergistic Therapy through Improving Local Control and Suppressing Recurrent Metastasis. Pharmaceutics 2023; 15:1456. [PMID: 37242696 PMCID: PMC10224284 DOI: 10.3390/pharmaceutics15051456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Minimally invasive ablation has been widely applied for treatment of various solid tumors, including hepatocellular carcinoma, renal cell carcinoma, breast carcinomas, etc. In addition to removing the primary tumor lesion, ablative techniques are also capable of improving the anti-tumor immune response by inducing immunogenic tumor cell death and modulating the tumor immune microenvironment, which may be of great benefit to inhibit the recurrent metastasis of residual tumor. However, the short-acting activated anti-tumor immunity of post-ablation will rapidly reverse into an immunosuppressive state, and the recurrent metastasis owing to incomplete ablation is closely associated with a dismal prognosis for the patients. In recent years, numerous nanoplatforms have been developed to improve the local ablative effect through enhancing the targeting delivery and combining it with chemotherapy. Particularly, amplifying the anti-tumor immune stimulus signal, modulating the immunosuppressive microenvironment, and improving the anti-tumor immune response with the versatile nanoplatforms have heralded great application prospects for improving the local control and preventing tumor recurrence and distant metastasis. This review discusses recent advances in nanoplatform-potentiated ablation-immune synergistic tumor therapy, focusing on common ablation techniques including radiofrequency, microwave, laser, and high-intensity focused ultrasound ablation, cryoablation, and magnetic hyperthermia ablation, etc. We discuss the advantages and challenges of the corresponding therapies and propose possible directions for future research, which is expected to provide references for improving the traditional ablation efficacy.
Collapse
Affiliation(s)
- Zixuan Wei
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Xiaoya Yu
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
| | - Mao Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
| |
Collapse
|
27
|
Liu G, Wang S, Wang S, Wu R, Li H, Zha M, Song J, Yin Y, Li K, Mu J, Shi Y. Carbon dots-mediated synthesis of gold nanodendrites with extended absorption into NIR-II window for in vivo photothermal therapy. J Nanobiotechnology 2023; 21:151. [PMID: 37161467 PMCID: PMC10170720 DOI: 10.1186/s12951-023-01887-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) in the second near-infrared (NIR-II) window has attracted extensive attention due to the benefits in high maximum permissible exposure and penetration depth. Current photothermal agents generally show a broadband absorption accompanied by a gradual attenuation of absorption in the NIR-II window, leading to poor effect of PTT. It remains a great challenge to gain photothermal agents with strong and characteristic absorption in NIR-II regions. To overcome this problem, based on carbon dots (CDs)-mediated growth strategy, we proposed a simple and feasible approach to prepare plasmonic gold nanodendrites (AuNDs) with NIR-II absorption to enhance the therapeutic effect of PTT. RESULTS By rationally regulating the size and branch length of AuNDs, the AuNDs exhibited a broadband absorption from 300 to 1350 nm, with two characteristic absorption peaks located at 1077 and 1265 nm. The AuNDs demonstrated desired optical photothermal conversion efficiency (38.0%), which was further applied in NIR-II photoacoustic imaging (PAI) and PTT in human colon cancer cells (HCT 116)-tumor-bearing mice model. The tumor cells could be effectively eliminated in vivo under 1064 nm laser irradiation by the guidance of PAI. CONCLUSIONS We reported a simple but powerful synthetic method to obtain the unique AuNDs with strong and characteristic absorption peaks in the NIR-II window. This study provides a promising solution to tuning the growth of nanoparticles for bioimaging and phototherapy in the NIR-II window.
Collapse
Affiliation(s)
- Guoyong Liu
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 China
- Department of Ultrasound, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036 China
| | - Shuxian Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Shumin Wang
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 China
| | - Rongrong Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Hui Li
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 China
| | - Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Yuxin Yin
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Jing Mu
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036 China
| |
Collapse
|
28
|
Ning S, Mo J, Huang R, Liu B, Fu B, Ding S, Yang H, Cui Y, Yao L. Injectable thermo-sensitive hydrogel loaded hollow copper sulfide nanoparticles for ROS burst in TME and effective tumor treatment. Front Bioeng Biotechnol 2023; 11:1191014. [PMID: 37200848 PMCID: PMC10185793 DOI: 10.3389/fbioe.2023.1191014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: Lung cancer the most prevalent cause of cancer-related deaths, and current therapies lack sufficient specificity and efficacy. This study developed an injectable thermosensitive hydrogel harboring hollow copper sulfide nanoparticles and β-lapachone (Lap) (CLH) for lung tumor treatment. Methods: The hydrogel-encapsulated CLH system can remotely control the release of copper ions (Cu2+) and drugs using photothermal effects for non-invasive controlled-release drug delivery in tumor therapy. The released Cu2+ consumes the overexpressed GSH in TME and the generated Cu+ further exploits the TME characteristics to initiate nanocatalytic reactions for generating highly toxic hydroxyl radicals. In addition, in cancer cells overexpressing Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase 1 (NQO1), Lap can catalyze the generation of hydrogen peroxide (H2O2) through futile redox cycles. H2O2 is further converted into highly toxic hydroxyl radicals via the Fenton-like reaction, leading to a burst of reactive oxygen species in TME, which further enhances the therapeutic effect of chemokines. Results: Analysis of the antitumor efficacy in a subcutaneous A549 lung tumor model mice showed a significant delay in tumor growth and no systemic toxicity was detected. Discussion: In conclusion, we have established a CLH nanodrug platform that enables efficient lung tumor therapy through combined photothermal/chemodynamic therapy (CDT) treatment and self-supplying H2O2 to achieve cascade catalysis, leading to explosive amplification of oxidative stress.
Collapse
Affiliation(s)
- Shipeng Ning
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianlan Mo
- Department of Anesthesiology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rong Huang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Benkun Liu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bicheng Fu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuaijie Ding
- Department of Gastrointestinal Surgery and Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Huawei Yang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ying Cui
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Yao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
29
|
Liu F, Lin J, Luo Y, Xie D, Bian J, Liu X, Yue J. Sialic acid-targeting multi-functionalized silicon quantum dots for synergistic photodynamic and photothermal cancer therapy. Biomater Sci 2023; 11:4009-4021. [PMID: 37129163 DOI: 10.1039/d3bm00339f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To explore the potential of silicon quantum dots (SiQDs) in combined photodynamic therapy (PDT) and photothermal therapy (PTT), we engineered the surface of SiQDs with the photosensitizer Ce6 and the tumor-cell-targeting ligand phenylboronic acid (PBA) via polydopamine-mediated chemistry. Upon irradiation with light of specific wavelengths, SiQDs@Ce6/PBA could generate high levels of reactive oxygen species (ROS) and trigger effective photo-to-thermal conversion. PBA-conjugation could not only increase the cellular uptake and transcellular transport capability of nanoparticles, but also enhance their tumor accumulation. In the presence of a 635 nm laser, SiQDs@Ce6/PBA was able to trigger intracellular ROS production, which further altered the mitochondrial membrane potential and promoted apoptosis of tumor cells. Finally, combined PDT/PTT treatments led to synergistically enhanced cancer cell killing and tumor-growth inhibition effects. This study demonstrates the surface engineering of silicon quantum dots for synergistic PDT/PTT cancer therapy.
Collapse
Affiliation(s)
- Fei Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiayi Lin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Yao Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Donglin Xie
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiang Bian
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Xiaobo Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
30
|
Liu S, Zhang T, Li S, Wu Q, Wang K, Xu X, Lu M, Shao R, Zhao W, Liu H. Biomimetic Nanobomb for Synergistic Therapy with Inhibition of Cancer Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206503. [PMID: 36587973 DOI: 10.1002/smll.202206503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Cancer stem cells (CSCs), a type of cell with self-renewal, unlimited proliferation, and insensitivity to common physical and chemical factors, are the key to cancer metastasis, recurrence, and chemo-resistance. Available CSCs inhibition strategies are mainly based on small molecule drugs, yet are limited by their off-target toxicity. The link between CSCs and non-CSCs interconversion is difficult to sever. In this work, a nanotherapeutic strategy based on MnOx -loaded polydopamine (MnOx /PDA) nanobombs with chemodynamic, photodynamic, photothermal and biodegradation properties to inhibit CSCs and non-CSCs concurrently is reported. The MnOx /PDA nanobombs can directly disrupt the microenvironment and tumorigenic capacity of CSCs by generating hyperthermia, oxidative stress and alleviating hypoxia. The markers of CSCs are subsequently downregulated, leading to the clearance of CSCs. Meanwhile, the synergistic therapy mediated by MnOx /PDA nanobombs can directly ablate the bulk tumor cells, thus cutting off the supply of CSCs transformation. For tumor targeting, MnOx /PDA is coated with macrophage membrane. The final tumor inhibition rate of the synergistic therapy is 70.8% in colorectal cancer (CRC) model. Taken together, the present work may open up the exploration of nanomaterial-based synergistic therapy for the simultaneous elimination of therapeutically resistant CSCs and non-CSCs.
Collapse
Affiliation(s)
- Shuang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kexin Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xican Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - MingZhu Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
31
|
Zhu H, Zhang X, Wang Q, Deng J, Zhang Z, Zhang X, Cao J, He B. In situ assembled titanium carbide-based heterojunctions for the synergistic enhancement of NIR-II photothermal/photodynamic therapy against breast cancer. J Mater Chem B 2022; 10:10083-10096. [PMID: 36458579 DOI: 10.1039/d2tb01783k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The combined use of photothermal therapy (PTT) and photodynamic therapy (PDT) could circumvent the drawbacks of each individual therapeutic strategy, resulting in an enhanced antitumor effect. However, the lack of highly effective photo-agents that are irradiation-safe in the biologically transparent window hinder the advancement of phototherapy clinically. Hence, in this study, a charge separation engineering strategy was adopted to fabricate a nanoplatform with heterojunctions, namely, in situ TiO2-loaded MXene (Ti3C2/TiO2 heterojunctions). This nanoplatform exhibited reduced bandgap (1.68 eV), enhanced NIR-II photothermal conversion efficiency (44.98%), and extended absorption edge compared to pristine TiO2 for enhanced photodynamic effect. More importantly, the proliferation of tumor cells could be efficiently inhibited at a 5 mm chicken breast depth after 1064 nm laser irradiation, and the intracellular ROS production significantly increased under 660 nm or even 1064 nm laser irradiation with heterojunctions (HJs) compared with that of TiO2. Moreover, the in vivo data further confirmed that the as-prepared heterojunctions could efficiently eradicate tumors efficiently via improved photothermal effect with NIR-II laser irradiation and upregulated ROS production. Collectively, the reported HJs strategy provides an opportunity for the success of combinational PTT and PDT therapy in tumor treatment.
Collapse
Affiliation(s)
- Hai Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xuequan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qiusheng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jin Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiaoxian Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
32
|
Huang Z, Liu Z, He P, Ren Y, Li S, Lei Y, Luo D, Liang D, Shao D, Hu Z, Zhang N. Segmentation-guided Denoising Network for Low-dose CT Imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 227:107199. [PMID: 36334524 DOI: 10.1016/j.cmpb.2022.107199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND To reduce radiation exposure and improve diagnosis in low-dose computed tomography, several deep learning (DL)-based image denoising methods have been proposed to suppress noise and artifacts over the past few years. However, most of them seek an objective data distribution approximating the gold standard and neglect structural semantic preservation. Moreover, the numerical response in CT images presents substantial regional anatomical differences among tissues in terms of X-ray absorbency. METHODS In this paper, we introduce structural semantic information for low-dose CT imaging. First, the regional segmentation prior to low-dose CT can guide the denoising process. Second the structural semantical results can be considered as evaluation metrics on the estimated normal-dose CT images. Then, a semantic feature transform is engaged to combine the semantic and image features on a semantic fusion module. In addition, the structural semantic loss function is introduced to measure the segmentation difference. RESULTS Experiments are conducted on clinical abdomen data obtained from a clinical hospital, and the semantic labels consist of subcutaneous fat, muscle and visceral fat associated with body physical evaluation. Compared with other DL-based methods, the proposed method achieves better performance on quantitative metrics and better semantic evaluation. CONCLUSIONS The quantitative experimental results demonstrate the promising performance of the proposed methods in noise reduction and structural semantic preservation. While, the proposed method may suffer from several limitations on abnormalities, unknown noise and different manufacturers. In the future, the proposed method will be further explored, and wider applications in PET/CT and PET/MR will be sought.
Collapse
Affiliation(s)
- Zhenxing Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Pin He
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Ya Ren
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Shuluan Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yuanyuan Lei
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dan Shao
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
33
|
Yang Z, Yuan M, Liu B, Zhang W, Maleki A, Guo B, Ma P, Cheng Z, Lin J. Conferring BiVO
4
Nanorods with Oxygen Vacancies to Realize Enhanced Sonodynamic Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202209484. [DOI: 10.1002/anie.202209484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
| | - Wenying Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of Pharmacy Zanjan University of Medical Sciences Zanjan 45139-56184 Iran
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs School of Pharmacy Guangdong Medical University Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
34
|
Yang Z, Yuan M, Liu B, Zhang W, Maleki A, Guo B, Ma P, Cheng Z, Lin J. Conferring BiVO4 Nanorods with Oxygen Vacancies to Realize Enhanced Sonodynamic Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuang Yang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Meng Yuan
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Bin Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Wenying Zhang
- Chang Chun Institute of Applied Chemistry: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Aziz Maleki
- Zanjan University of Medical Sciences Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) CHINA
| | - Baolin Guo
- Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Ping’an Ma
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Ziyong Cheng
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jun Lin
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Lab Rare Earth Chem Phys 5625 Remin Street 130022 Changchun CHINA
| |
Collapse
|