1
|
CarolinaVieira-Porto A, Cunha SC, Rosa EC, DePaula J, Cruz AG, Freitas-Silva O, Fernandes JO, Farah A. Chemical composition and sensory profiling of coffees treated with asparaginase to decrease acrylamide formation during roasting. Food Res Int 2024; 186:114333. [PMID: 38729693 DOI: 10.1016/j.foodres.2024.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.
Collapse
Affiliation(s)
- Ana CarolinaVieira-Porto
- Laboratório de Química e Bioatividade de Alimentos e Núcleo de Pesquisa em Café (NUPECAFÉ), Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidadedo Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Elaine C Rosa
- Cerrad Coffee, Av. Faria Pereira, 3076 - sala 201, São Cristóvão - Patrocínio/38742-218, Minas Gerais, Brazil.
| | - Juliana DePaula
- Laboratório de Química e Bioatividade de Alimentos e Núcleo de Pesquisa em Café (NUPECAFÉ), Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil.
| | - Adriano G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil.
| | - Otniel Freitas-Silva
- Embrapa Agroindústria de Alimentos: Av. das Américas, n° 29.501, Guaratiba., Rio de Janeiro, RJ 23020-470, Brazil.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidadedo Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Adriana Farah
- Laboratório de Química e Bioatividade de Alimentos e Núcleo de Pesquisa em Café (NUPECAFÉ), Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
2
|
Rungreungthanapol T, Homma C, Akagi KI, Tanaka M, Kikuchi J, Tomizawa H, Sugizaki Y, Isobayashi A, Hayamizu Y, Okochi M. Volatile Organic Compound Detection by Graphene Field-Effect Transistors Functionalized with Fly Olfactory Receptor Mimetic Peptides. Anal Chem 2023; 95:4556-4563. [PMID: 36802525 DOI: 10.1021/acs.analchem.3c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
An olfactory receptor mimetic peptide-modified graphene field-effect transistor (gFET) is a promising solution to overcome the principal challenge of low specificity graphene-based sensors for volatile organic compound (VOC) sensing. Herein, peptides mimicking a fruit fly olfactory receptor, OR19a, were designed by a high-throughput analysis method that combines a peptide array and gas chromatography for the sensitive and selective gFET detection of the signature citrus VOC, limonene. The peptide probe was bifunctionalized via linkage of a graphene-binding peptide to facilitate one-step self-assembly on the sensor surface. The limonene-specific peptide probe successfully achieved highly sensitive and selective detection of limonene by gFET, with a detection range of 8-1000 pM, while achieving facile sensor functionalization. Taken together, our target-specific peptide selection and functionalization strategy of a gFET sensor demonstrates advancement of a precise VOC detection system.
Collapse
Affiliation(s)
- Tharatorn Rungreungthanapol
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ken-Ichi Akagi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan
| | - Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideyuki Tomizawa
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Yoshiaki Sugizaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Atsunobu Isobayashi
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
3
|
Ferrer V, Paymal N, Costantino G, Paoli M, Quinton C, Tomi F, Luro F. Correspondence between the Compositional and Aromatic Diversity of Leaf and Fruit Essential Oils and the Pomological Diversity of 43 Sweet Oranges ( Citrus x aurantium var sinensis L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:990. [PMID: 36903852 PMCID: PMC10005092 DOI: 10.3390/plants12050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Orange (Citrus x aurantium var sinensis) is the most widely consumed citrus fruit, and its essential oil, which is made from the peel, is the most widely used in the food, perfume, and cosmetics industries. This citrus fruit is an interspecific hybrid that would have appeared long before our era and would result from two natural crosses between mandarin and pummelo hybrids. This single initial genotype was multiplied by apomictic reproduction and diversified by mutations to produce hundreds of cultivars selected by men essentially based on phenotypic characteristics of appearance, spread of maturity, and taste. Our study aimed to assess the diversity of essential oil composition and variability in the aroma profile of 43 orange cultivars representing all morphotypes. In agreement with the mutation-based evolution of orange trees, the genetic variability tested with 10 SSR genetic markers was null. The oils from peels and leaves extracted by hydrodistillation were analyzed for composition by GC (FID) and GC/MS and for aroma profile by the CATA (Check All That Apply) method by panelists. Oil yield varied between varieties by a factor of 3 for PEO and a factor of 14 for LEO between maximum and minimum. The composition of the oils was very similar between cultivars and was mainly dominated by limonene (>90%). However, small variations were observed as well as in the aromatic profile, with some varieties clearly distinguishing themselves from the others. This low chemical diversity contrasts with the pomological diversity, suggesting that aromatic variability has never been a selection criterion in orange trees.
Collapse
Affiliation(s)
- Vincent Ferrer
- INRAE, UMR AGAP Institut, INRAE, Institut Agro, Cirad, University Montpellier, 20230 San Giuliano, France
- Rémy Cointreau–Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Noémie Paymal
- Rémy Cointreau–Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Gilles Costantino
- INRAE, UMR AGAP Institut, INRAE, Institut Agro, Cirad, University Montpellier, 20230 San Giuliano, France
| | - Mathieu Paoli
- CNRS, Equipe Chimie et Biomasse, UMR SPE 6134, Université de Corse, 20000 Ajaccio, France
| | - Carole Quinton
- Rémy Cointreau–Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Félix Tomi
- CNRS, Equipe Chimie et Biomasse, UMR SPE 6134, Université de Corse, 20000 Ajaccio, France
| | - François Luro
- INRAE, UMR AGAP Institut, INRAE, Institut Agro, Cirad, University Montpellier, 20230 San Giuliano, France
| |
Collapse
|
4
|
Saikia J, Washmin N, Borah T, Sarmah P, Konwar P, Siga A, Haldar S, Banik D. Physicochemical properties, chemical composition and sensory attributes of Alpinia nigra (Gaertn.) B.L. Burtt rhizome: an underutilized spice source. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Zhao J, Zhang Y, Chen Y, Zheng Y, Peng C, Lin H, Che Z, Ding W. Sensory and Volatile Compounds Characteristics of the Sauce in Bean Paste Fish Treated with Ultra-High-Pressure and Representative Thermal Sterilization. Foods 2022; 12:foods12010109. [PMID: 36613325 PMCID: PMC9818534 DOI: 10.3390/foods12010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study investigated the differences between three sterilized samples to reveal the unique aroma characteristics of the sauce in bean paste fish by multiple analysis methodologies. Samples were subjected to pasteurized (PS), high-temperature sterilization (HTS), and ultra-high-pressure treatment (UHP) tests. The UHP had a higher sensory evaluation and could better maintain the original flavor of the sample. A total of 92, 83, 85, and 76 volatile compounds were detected via comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) techniques in the control (CT), PS, HTS, and UHP groups, respectively. According to the analysis of gas chromatograph-olfactometry and odor activity value, 7 compounds were considered to have an aromatic influence on the sauces, in which four compounds (1,8-Cineole, Linalool, Hexanal, and Dimethyl trisulfide) exhibited a positive contribution to the aroma of the sauces. PLS-DA results showed that the UHP group positively correlated with volatiles (Isoamylol and 1-Octen-3-ol), color, and gloss. In general, the UHP treatment could retain the original state and flavor of the sauce, showing a high similarity to the control group. The HTS significantly altered the flavor and status of the samples.
Collapse
Affiliation(s)
- Jie Zhao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
| | - Yimao Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
| | - Yu Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuhui Zheng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Changbo Peng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hongbin Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
| | - Zhenming Che
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
| | - Wenwu Ding
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
- Correspondence:
| |
Collapse
|
6
|
Ferrer V, Paymal N, Quinton C, Tomi F, Luro F. Investigations of the Chemical Composition and Aromatic Properties of Peel Essential Oils throughout the Complete Phase of Fruit Development for Two Cultivars of Sweet Orange ( Citrus sinensis (L.) Osb.). PLANTS (BASEL, SWITZERLAND) 2022; 11:2747. [PMID: 36297771 PMCID: PMC9610080 DOI: 10.3390/plants11202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The peel essential oil (PEO) of sweet orange is used for flavoring liquors or foods and in the perfumery and cosmetics industry. The fruit maturity stage can modify the essential oil composition and aromatic properties, but little information is available on the evolution of PEO during the entire time set of fruit development. In this study, the yield, chemical composition and aromatic profile over the three phases of orange development were monitored. Four fruit traits (peel color, weight, acidity and sweetness) were recorded to characterize fruit development. Fruits of two sweet orange cultivars were sampled every two weeks from June to May of the next year. PEO was obtained by hydrodistillation and analyzed by gas chromatography coupled with a flame ionization detector (GC-FID). Compounds were identified with GC coupled with mass spectrometry (GC/MS). Ten expert panelists using the descriptor intensity method described the aromatic profile of PEO samples. The PEO composition was richer in oxygenated compounds at early fruit development stages, with an aromatic profile presenting greener notes. During fruit growth (Phases I and II), limonene's proportion increased considerably as a few aliphatic aldehydes brought the characteristic of orange aroma. During fruit maturation (from November to March), the PEO composition and aromatic profile were relatively stable. Later, some modifications were observed. Regardless of the fruit development stage, the two sweet oranges presented distinct PEO compositions and aromatic profiles. These results constitute a temporal reference for the chemical and aromatic evolution of sweet orange PEO in the fruit development process under Mediterranean conditions. During the first two phases of fruit development, many changes occur in the PEO composition and aroma, suggesting that their exploitation could create new products.
Collapse
Affiliation(s)
- Vincent Ferrer
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
- Rémy Cointreau, Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Noémie Paymal
- Rémy Cointreau, Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Carole Quinton
- Rémy Cointreau, Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Félix Tomi
- UMR SPE 6134, Université de Corse, CNRS, Equipe chimie et Biomasse, 20000 Ajaccio, France
| | - François Luro
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| |
Collapse
|
7
|
Volatile Fingerprinting and Sensory Profiles of Coffee Cascara Teas Produced in Latin American Countries. Foods 2022; 11:foods11193144. [PMID: 36230220 PMCID: PMC9563741 DOI: 10.3390/foods11193144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Coffee is one of the most produced and consumed food products worldwide. Its production generates a large amount of byproducts with bioactive potential, like the fruit skin and pulp, popularly called cascara. This study aimed to evaluate the volatile and sensory profiles and the consumption potential of commercial Coffea arabica cascara teas by Rio de Janeiro consumers. Analyses of volatile organic compounds in unfermented (n = 2) and fermented (n = 4) cascara tea infusions were performed by GC-MS. RATA and acceptance sensory tests were performed with untrained assessors (n = 100). Fifty-three volatile organic compounds distributed in 9 classes were identified in different samples. Aldehydes, acids, alcohols, esters, and ketones prevailed in order of abundance. With mild intensity, the most cited aroma and flavor attributes were sweet, herbal, woody, prune, fruity, honey, toasted maté and black tea for unfermented teas. For the fermented teas, sweet, woody, black tea, prune, herbal, citric, fruity, honey, raisin, peach, toasted maté, tamarind, and hibiscus were rated as intense. A good association between the attributes selected by the assessors and the volatile compounds was observed. Unfermented teas, with a mild flavor and traditional characteristics, showed better mean acceptance (6.0−5.9 points) when compared to fermented teas (6.0−5.3 points), with exotic and complex attributes. These were well accepted (>8.0 points) by only about 20% of the assessors, a niche of consumers that appreciate gourmet foods.
Collapse
|
8
|
Kessler JC, Vieira V, Martins IM, Manrique YA, Ferreira P, Calhelha RC, Afonso A, Barros L, Rodrigues AE, Dias MM. Chemical and organoleptic properties of bread enriched with Rosmarinus officinalis L.: The potential of natural extracts obtained through green extraction methodologies as food ingredients. Food Chem 2022; 384:132514. [DOI: 10.1016/j.foodchem.2022.132514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
|
9
|
Kessler JC, Vieira VA, Martins IM, Manrique YA, Afonso A, Ferreira P, Mandim F, Ferreira ICFR, Barros L, Rodrigues AE, Dias MM. Obtaining Aromatic Extracts from Portuguese Thymus mastichina L. by Hydrodistillation and Supercritical Fluid Extraction with CO 2 as Potential Flavouring Additives for Food Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030694. [PMID: 35163959 PMCID: PMC8838556 DOI: 10.3390/molecules27030694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/25/2023]
Abstract
Humans often respond to sensory impulses provided by aromas, and current trends have generated interest in natural sources of fragrances rather than the commonly used synthetic additives. For the first time, the resulting aroma of a selected culture of Thymus mastichina L. was studied as a potential food ingredient. In this context, dried (DR) and fresh (FR) samples were submitted to carbon dioxide (CO2) supercritical extraction (SFE) and hydrodistillation (HD) methods. The extracts were characterised according to their volatile composition by GC-MS, cytotoxicity against a non-tumour cell culture, and sensory attributes (odour threshold and olfactive descriptors). The most abundant aromas were quantified, and the analysis performed by GC-MS revealed an abundance of terpenoids such as thymol chemotype, followed by the precursors α-terpinene and p-cymene. DR and FR extracts (EX) obtained from SFE-CO2 show the highest content of thymol, achieving 52.7% and 72.5% of the isolated volatile fraction. The DR essential oil (EO) contained the highest amount of terpenoids, but it was also the most cytotoxic extract. In contrast, SFE-CO2 products showed the lowest cytotoxic potential. Regarding FR-OE, it had the lowest extraction yield and composition in aroma volatiles. Additionally, all samples were described as having green, fresh and floral sensory notes, with no significant statistical differences regarding the odour detection threshold (ODT) values. Finally, FR-EX of T. mastichina obtained by SFE-CO2 presented the most promising results regarding food application.
Collapse
Affiliation(s)
- Júlia C. Kessler
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (Mountain Research Center) (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (I.C.F.R.F.); (L.B.)
| | - Vanessa A. Vieira
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- DEIFIL-Deifil Technology, Serzedelo, 4839-704 Póvoa de Lanhoso, Portugal; (A.A.); (P.F.)
| | - Isabel M. Martins
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-22-508-1686
| | - Yaidelin A. Manrique
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Andreia Afonso
- DEIFIL-Deifil Technology, Serzedelo, 4839-704 Póvoa de Lanhoso, Portugal; (A.A.); (P.F.)
| | - Patrícia Ferreira
- DEIFIL-Deifil Technology, Serzedelo, 4839-704 Póvoa de Lanhoso, Portugal; (A.A.); (P.F.)
| | - Filipa Mandim
- Centro de Investigação de Montanha (Mountain Research Center) (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (I.C.F.R.F.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (Mountain Research Center) (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (I.C.F.R.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (Mountain Research Center) (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (F.M.); (I.C.F.R.F.); (L.B.)
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Madalena M. Dias
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.K.); (V.A.V.); (Y.A.M.); (A.E.R.); (M.M.D.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Galvan-Lima Â, Cunha SC, Martins ZE, Soares AG, Ferreira IMPLVO, Farah A. Headspace volatolome of peel flours from citrus fruits grown in Brazil. Food Res Int 2021; 150:110801. [PMID: 34863493 DOI: 10.1016/j.foodres.2021.110801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Citrus fruit peel comprises a pleasant mix of volatile compounds together with fibers, nutrients, and bioactive compounds. Therefore, it has great potential for use as a food ingredient. Studies evaluating the volatile composition of citrus peel flours are limited for most citruses. The goal of this study was to characterize, by HS-SPME/GC-MS, the volatile profile of citrus peel flours made from fruits commonly grown in Brazil. Two composite samples of ten types of citrus peel flours from consecutive harvests were evaluated. 69 volatile compounds were assigned, 49 in Tahiti acid lime, 49 in Sicilian lemon, 37 in Persian lime, 34 in Italian tangerine and oval kumquat, 33 in Valencia orange, 32 in Baia orange and round kumquat, 28 in Blood-of-Mombuca orange and 26 in Lima orange. 26 major compounds represented 93-99% of the total chromatogram peak area. Terpenic compounds were predominant in all samples, especially monoterpenes (about 48-97% of the total chromatogram peak area), while lower proportions of aldehydes (0.2-16.1%), monoterpene alcohols (0.4-11.8%) and esters (0.0-7.7%) were observed. Even though a few compounds like limonene, β-myrcene, linalool, α-pinene and valencene were detected in all citrus, volatile compounds followed specific patterns in the different citruses, with a clear distinction among them, especially between lemon flours and the remaining flours. The variety of volatile profiles and singular specific volatolomic signatures in citrus peels can be explored for different applications related to food flavoring and preservation, and promotion of good health. These aspects should be thoroughly investigated in future studies.
Collapse
Affiliation(s)
- Ângela Galvan-Lima
- Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brasil; Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 01, 96010-610, Pelotas, Rio Grande do Sul, Brasil; LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Sara C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Zita E Martins
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Antonio G Soares
- Embrapa Agroindústria de Alimentos: Av. das Américas, n° 29.501, Guaratiba/23020-470 Rio de Janeiro, RJ, Brasil.
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Adriana Farah
- Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brasil.
| |
Collapse
|
11
|
Yang F, Zhang H, Tian G, Ren W, Li J, Xiao H, Zheng J. Effects of Molecular Distillation on the Chemical Components, Cleaning, and Antibacterial Abilities of Four Different Citrus Oils. Front Nutr 2021; 8:731724. [PMID: 34540881 PMCID: PMC8440794 DOI: 10.3389/fnut.2021.731724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Essential oils (EOs) from citrus fruits are excellent aromatic resources that are used in food, cosmetics, perfume, and cleaning products. EOs extracted from four citrus varieties, sweet orange, grapefruit, mandarin, and lemon, were separated into two fractions by molecular distillation. The composition, physicochemical properties, cleaning ability, and antimicrobial activity of each EO were then systematically evaluated. The relationships between each of the aforementioned characteristics are also discussed. In keeping with the principle of “like dissolves like,” most citrus EOs show better cleaning ability than acetone and all tend to dissolve the fat-soluble pigment. The key components of citrus EOs are 1-Decanol, α-terpineol, geraniol, and linalool for the inhibition of Staphylococcus aureus, Escherichia coli, Candida albicans, and Vibrio parahaemolyticus, respectively. The findings of this study will be of significant importance for the effective utilization of citrus peel resources and in the development of future applications for citrus EOs. Chemical Compounds Studied in This Article: (+)-α-Pinene (PubChem CID: 6654); β-Phellandrene (PubChem CID: 11142); 3-Carene (PubChem CID: 26049); β-Myrcene (PubChem CID: 31253); D-Limonene (PubChem CID: 440917); γ-Terpinene (PubChem CID: 7461); Octanal (PubChem CID: 454); Decanal (PubChem CID: 8175); Linalool (PubChem CID: 6549); 1-Octanol (PubChem CID: 957); β-Citral (PubChem CID: 643779); α-Terpineol (PubChem CID: 17100); Hedycaryol (PubChem CID: 5365392); α-Citral (PubChem CID: 638011); 1-Decanol (PubChem CID: 8174); Geraniol (PubChem CID: 637566).
Collapse
Affiliation(s)
- Feilong Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijuan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guifang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Wenbo Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Anaya-Gil J, Cabarcas-Caro A, Leyva-Ricardo M, Parra-Garrido J, Gaitan-Ibarra R, Vivas-Reyes R. Artificial modification of the chemical composition of orange oil ( Citrus sinensis L.) and its effect on larvicidal activity. Saudi J Biol Sci 2021; 28:1913-1918. [PMID: 33732077 PMCID: PMC7938188 DOI: 10.1016/j.sjbs.2020.12.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
The use of synthetic pesticide carries along several disadvantages talking about the preservation of the natural homeostasis of the planet, causing the searching of biopesticide, which one presents advantages as well as biodegradability in minimum possible time, the low toxicity in comparison to synthetic pesticides and their variety of structure, which allows slowing down the appearance of resistance. The aim of this work was to evaluate the effect on the larvicidal action when artificially varying the chemical composition of orange oil (Citrus sinensis L.). As results, we found that the analysis of gas chromatography coupled to mass spectrometry showed the presence of terpenoid and sesquiterpenoid compounds in the different samples. The use of electric pulses on samples modified their chemical composition, so that the percentage of limonene went from 72% in the sample that was not subjected to electric treatment to lower percentages, even in sample three the percentage of limonene was <50%. Only three compounds (limonene, linalool and caryophyllene) were found to be common in all samples. Subsequently, the larvicidal action on Drosophila melanogaster larvae was evaluated. Six concentrations of each oil sample were tested (0, 100, 500, 1000, 5000 and 10000 ppm). We found that there was no linear relationship between concentration and lethality. Additionally, in the sample without electrical treatment most of the concentrations tested had lethality higher than 50%, while in sample 7 the results of the lethality were lower than 30%, so that biological tests showed that in samples where the concentration of limonene was lower, the lethality in the larvae decreased.
Collapse
Affiliation(s)
- Jorge Anaya-Gil
- Natural Products Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Adriana Cabarcas-Caro
- Natural Products Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | | | | | - Ricardo Gaitan-Ibarra
- Natural Products Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Ricardo Vivas-Reyes
- Grupo de Química Cuántica y Teórica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia.,Grupo Ciptec, Facultad de Ingenierıa, Fundación Universitaria Comfenalco, Programa de ´ Ingenierıa Industrial, Cartagena, Colombia.,Grupo Ginumec, Facultad de Salud, Corporación Universitaria Rafael Nuñez, Programa de Medicina, Cartagena, Colombia
| |
Collapse
|
13
|
Insights into the Aroma Profile in Three Kiwifruit Varieties by HS-SPME-GC-MS and GC-IMS Coupled with DSA. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01952-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Chen C, Zhou W, Yu H, Yuan J, Tian H. Characterization of major odor‐active compounds responsible for nutty flavor in Cheddar cheese according to Chinese taste. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Chen
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| | - Wenya Zhou
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| | - Haiyan Yu
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| | - Jiajie Yuan
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| | - Huaixiang Tian
- Department of Food Science and Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
15
|
Zhao Y, Wang P, Zhan P, Tian H, Lu C, Tian P. Aroma characteristics of cloudy kiwifruit juices treated with high hydrostatic pressure and representative thermal processes. Food Res Int 2020; 139:109841. [PMID: 33509465 DOI: 10.1016/j.foodres.2020.109841] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/07/2023]
Abstract
The commercial kiwifruit juice is deficient in a theoretical basis for the control of aroma characteristics during sterilization. To investigate the different sterilization methods on the aroma of kiwifruit juice, three sterilized kiwifruit juice samples, including pasteurization (PS), high temperature short time (HTST) and high hydrostatic pressure (HHP) sterilization, were observed. Results showed that a total of 15 major aroma-active compounds were identified in fresh kiwifruit juice by combination of detection frequency (DF) analysis and odor activity value (OAV); while the changes of these aroma-active compounds during PS, HTST and HHP sterilization were further studied. Quantitative descriptive analysis (QDA) was applied to validate the sensory differences, showing fruity and grassy notes changed a lot after sterilization, and the HHP sample was similar to fresh sample (FS) in comparison of samples treated by other sterilization methods. Further partial least squares regression analysis (PLSR) coincided with the overall note. Among these aroma-active compounds, the decrease of C6 aldehydes and C6 alcohols such as hexanal, (E)-2-hexenal and 1-hexanol might result in the great change of grassy note while the change of fruity note might be well correlated with the decrease of esters such as methyl butyrate and ethyl butyrate during processing.
Collapse
Affiliation(s)
- Yu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710000, China
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710000, China
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710000, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710000, China.
| | - Cong Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710000, China
| | - Peng Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710000, China
| |
Collapse
|
16
|
He C, Li Z, Liu H, Zhang H, Wang L, Chen H. Characterization of the key aroma compounds in Semnostachya menglaensis Tsui by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis. Food Res Int 2020; 131:108948. [DOI: 10.1016/j.foodres.2019.108948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
|
17
|
Zhang W, Chen T, Tang J, Sundararajan B, Zhou Z. Tracing the production area of citrus fruits using aroma-active compounds and their quality evaluation models. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:517-526. [PMID: 31512252 DOI: 10.1002/jsfa.10026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aroma is one of the most important aspects of fruit quality and can reflect the characteristics of different fruits. Aroma-active compounds can usefully be employed to trace the production areas of two citrus cultivars ('Eureka' lemon and 'Huapi' kumquat) and to evaluate their aroma quality. RESULTS 'Huapi' kumquat peel displayed higher monoterpene and sesquiterpene compound content, whereas 'Eureka' lemon peel exhibited higher monoterpene and monoterpene aldehyde compound content. 'Eureka' lemon peel ('Wanzhou' cultivar) had higher nerol acetate and geraniol acetate compound content. Kumquat peel ('Suichuan' and 'Rongan' cultivars) had higher sesquiterpene content. In addition, 30 and 31 aroma-active compounds were observed in kumquat and lemon, respectively, based on their odor activity values. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) results indicated that classification for production areas based on aroma-active compounds was useful. The selected aroma-active compounds have been checked as aroma quality parameters that could be used with multivariate analysis to establish a model of aroma quality evaluation. Higher aroma quality values from kumquat and lemon were collected from Rongan and Wanzhou cultivars, respectively. CONCLUSION Aroma-active compounds can be used to discriminate production areas using multivariate statistics. An objective method was established to evaluate the aroma quality of citrus fruits. 'Huapi' kumquat and 'Eureka' lemon, which had the highest aroma quality, was harvested from the Rongan and Wanzhou production areas. This was the first time that the aroma quality of citrus fruits was evaluated using multivariate analysis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenlin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Tingting Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | | | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- The Southwest Institute of Fruits Nutrition, Chongqing, China
| |
Collapse
|
18
|
Souza HJB, Botrel DA, Barros Fernandes RV, Borges SV, Campelo Felix PH, Viana LC, Lago AMT. Hygroscopic, structural, and thermal properties of essential oil microparticles of sweet orange added with cellulose nanofibrils. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Lívia Cássia Viana
- Department of Forestry Engineering Gurupi University Campus, Federal University of Tocantins Gurupi Brazil
| | | |
Collapse
|
19
|
Farahmandfar R, Tirgarian B, Dehghan B, Nemati A. Changes in chemical composition and biological activity of essential oil from Thomson navel orange ( Citrus sinensis L. Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food Sci Nutr 2020; 8:124-138. [PMID: 31993139 PMCID: PMC6977496 DOI: 10.1002/fsn3.1279] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 11/17/2022] Open
Abstract
Thomson navel orange peel is a by-product of citrus processing, which contains high levels of bioactive compounds advantageous to human health, nevertheless due to its high moisture content it is exceedingly perishable. Drying is among the most common preservation methods, which could prolong the plants shelf-life via reducing their moisture value. Taking this into account, depending on their type and conditions, drying techniques could degrade plant heat-sensitive metabolites and lead to quality decline. Therefore, the goal of this paper was to investigate the influence of seven drying methods named sun, shade, oven, vacuum oven, microwave, and freeze-drying with different drying conditions on the physical properties, for example, bulk density and color (L*, a*, b*, ΔE, and browning index (BI)) and essential oil characteristics such as extraction yield, chemical composition, antioxidant (total phenolic content (TPC), DPPH, and FRAP essays), and antimicrobial (MIC and MBC) activities of Thomson peel and determine the superior drying procedure. Results showed that freeze-dried sample had the highest retention of L* (48.54) and b* (49.00) values, lowest BI (216.11) as well as highest EO extraction yield (6.90%), TPC (60.10 GAE/100 g), FRAP (0.52% at 80 mg/ml), and lowest IC50 (5.00 mg/ml), MIC and MBC compared with other drying treatments. Therefore, it could be inferred that freeze-drying is the most efficient drying approach in respect of preserving both physical and EO attributes of Thomson peel.
Collapse
Affiliation(s)
- Reza Farahmandfar
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Behraad Tirgarian
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Bahare Dehghan
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Azeeta Nemati
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| |
Collapse
|
20
|
Silva ACR, Bizzo HR, Vieira RF, Bringel JBA, Azevedo DA, Uekane TM, Rezende CM. Characterization of volatile and odor‐active compounds of the essential oil from
Bidens graveolens
Mart. (Asteraceae). FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ana C. R. Silva
- Laboratory of Aroma Analysis Federal University of Rio de Janeiro Rio de Janeiro RJ Brazil
| | | | | | | | - Débora A. Azevedo
- Laboratory of Molecular and Environmental Geochemistry Federal University of Rio de Janeiro Rio de Janeiro RJ Brazil
| | | | - Claudia M. Rezende
- Laboratory of Aroma Analysis Federal University of Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
21
|
Feng T, Shui M, Song S, Zhuang H, Sun M, Yao L. Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach. Molecules 2019; 24:molecules24183305. [PMID: 31514370 PMCID: PMC6767217 DOI: 10.3390/molecules24183305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
The volatile compounds of three different fresh-picked truffle varieties (Tuber sinensis, T1, Tuber sinoalbidum, T2 and Tuber sinoexcavatum, T3) were extracted by headspace solid-phase microextraction (HS-SPME). Separation and identification of volatile components and sulfur compounds were investigated by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame photometric detection (GC-FPD). The results showed that 44, 43 and 44 volatile compounds were detected in T1, T2 and T3 samples, respectively. In addition, 9, 10 and 9 sulfur compounds were identified in three samples by GC-FPD, respectively. Combining physicochemical and sensory properties, T1 presented fatty, green and rotten cabbage odor; T2 exhibited mushroom, sulfuric and musty odor notes; T3 had nutty, floral and roasted potato odor. Dimethyl sulfide, 3-methylbutanal, dimethyl disulfide, 3-octanone, bis(methylthio) methane, octanal, 1-octen-3-one, 1-octen-3-ol and benzeneacetaldehyde played indispensable roles in the overall aroma of three truffles. Finally, based on quantitative concentration in T1, odorous compounds (OAV) > 1 were mixed to recombine aroma, demonstrating that these key aroma compounds based on OAV can successfully recombine pretty similar aroma of each variety.
Collapse
Affiliation(s)
- Tao Feng
- School of perfume and aroma technology, Shanghai Institute of Technology, No.100 Hai Quan Road, Shanghai 201418, China.
| | - Mengzhu Shui
- School of perfume and aroma technology, Shanghai Institute of Technology, No.100 Hai Quan Road, Shanghai 201418, China.
| | - Shiqing Song
- School of perfume and aroma technology, Shanghai Institute of Technology, No.100 Hai Quan Road, Shanghai 201418, China.
| | - Haining Zhuang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, 1000 Jinqi Road, Shanghai 201403, China.
| | - Min Sun
- School of perfume and aroma technology, Shanghai Institute of Technology, No.100 Hai Quan Road, Shanghai 201418, China.
| | - Lingyun Yao
- School of perfume and aroma technology, Shanghai Institute of Technology, No.100 Hai Quan Road, Shanghai 201418, China.
| |
Collapse
|
22
|
Characterization of Key Aroma Compounds and Construction of Flavor Base Module of Chinese Sweet Oranges. Molecules 2019; 24:molecules24132384. [PMID: 31252622 PMCID: PMC6651742 DOI: 10.3390/molecules24132384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/23/2022] Open
Abstract
Sweet orange flavor, with its refreshing, joyful and attractive aroma, is favored by the majority of consumers all over the world. However, the industry terminology between flavorists for flavor evaluation is a bit vague and not intuitive for customers. Therefore, the study focused on analysis of sweet orange aroma and establishment of base module of orange flavor. The approach to the research involves screening key aroma compounds, identifying the attributes aroma and building base module of sweet orange. The notes of sweet orange flavor were determined by GC-O olfaction and sensory evaluation. 25 key aroma compounds with OAV ≥ 1 were screened and divided into eight notes: citrus, fruity, fresh, green, peely, woody, fatty, floral. Partial least squares regression (PLSR) was used to further verify the corresponding relationship between the volatile substances and notes. Terpenes, esters, aldehydes and alcohols compounds can provide these notes. Based on the notes, 8 base modules of sweet orange were built by selecting and matching aroma ingredients. Through this study, beginners could be trained according to the 8 notes of base modules and flavorists can engage in dialogue with different raw material sourcing teams or providers.
Collapse
|
23
|
Miranda RF, de Paula MM, da Costa GM, Barão CE, da Silva ACR, Raices RSL, Gomes RG, Pimentel TC. Orange juice added with L. casei: is there an impact of the probiotic addition methodology on the quality parameters? Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Compositional Analysis and Aroma Evaluation of Feijoa Essential Oils from New Zealand Grown Cultivars. Molecules 2019; 24:molecules24112053. [PMID: 31146480 PMCID: PMC6600377 DOI: 10.3390/molecules24112053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 01/20/2023] Open
Abstract
Feijoa is an aromatic fruit and the essential oil from feijoa peel could be a valuable by-product in the juicing industry. An initial comparison of the essential oil extraction methods, steam-distillation and hydro-distillation, was conducted. The volatile compounds in the essential oils from four feijoa cultivars were identified and semi-quantified by GC-MS and the aroma active compounds in each essential oil were characterized using SPME-GC-O-MS. Hydro-distillation, with a material to water ratio of 1:4 and an extraction time of 90 min, was the optimized extraction method for feijoa essential oil. The Wiki Tu cultivar produced the highest essential oil yield among the four selected cultivars. A total of 160 compounds were detected, among which 90 compounds were reported for the first time in feijoa essential oils. Terpenes and esters were dominant compounds in feijoa essential oil composition and were also major contributors to feijoa essential oil aroma. Key aroma active compounds in feijoa essential oils were α-terpineol, ethyl benzoate, (Z)-3-hexenyl hexanoate, linalool, (E)-geraniol, 2-undecanone, 3-octanone, α-cubebene, and germacrene D. This is the first report on the optimization of the extraction method and the establishment of the aroma profile of feijoa essential oils, with a comparison of four New Zealand grown cultivars.
Collapse
|
25
|
Yang Y, Zhao C, Tian G, Lu C, Li C, Bao Y, Tang Z, McClements DJ, Xiao H, Zheng J. Characterization of physical properties and electronic sensory analyses of citrus oil-based nanoemulsions. Food Res Int 2018; 109:149-158. [PMID: 29803437 DOI: 10.1016/j.foodres.2018.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/14/2023]
Abstract
Citrus oils and their emulsions have been widely used in food and beverage products due to their flavor, various beneficial health functions and relative high solubility for lipophilic bioactive components. However, the non-digestibility and instability has limited the application of emulsions made from a single type of citrus oil. In this study, common triacylglycerol oils (i.e. corn oil and MCT oil) and citrus oils (i.e. bergamot oil and sweet orange oil) were used in combination with different mixing ratios (triacylglycerol oil:citrus oil = 1:0, 9:1, 5:1, 3:1, 1:1 and 0:1) to produce various nanoemulsions (10% oil phase), and their physical and electronic sensory properties were systematically characterized. The results demonstrated that the mixed oil nanoemulsions were much more stable than pure citrus oil emulsions. Electronic nose, electronic eye and electronic tongue were shown to be able to provide informative evaluation of the electronic sensory of the emulsions. Data-fitting of these electronic sensory devices significantly improved the effective discrimination and accuracy of sensory evaluation of the emulsions. These results provided basis for using triacylglycerol oils and citrus oils in combination to produce nanoemulsions with superior physical and electronic sensory properties. Moreover, the electronic sensory evaluation method utilized in this study provided a useful approach for evaluation of emulsion-based food and beverage products.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guifang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengxiu Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | | | - Hang Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Asikin Y, Kawahira S, Goki M, Hirose N, Kyoda S, Wada K. Extended aroma extract dilution analysis profile of Shiikuwasha ( Citrus depressa Hayata) pulp essential oil. J Food Drug Anal 2018; 26:268-276. [PMID: 29389564 PMCID: PMC9332631 DOI: 10.1016/j.jfda.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 11/25/2022] Open
Abstract
Shiikuwasha pulp is an important raw material for producing citrus essential oils. The volatile aroma composition of pulp essential oil was evaluated using gas chromatography (GC) methods, and its aroma profile was assessed using GC-olfactometry with an extended aroma extract dilution analysis (AEDA) technique in regard to alterations of odor strength and sensorial perception throughout serial dilution steps. The essential oil comprised a mixture of 55 aroma compounds, including monoterpene hydrocarbon, sesquiterpene hydrocarbon, alcohol, aldehyde, ester, and oxide compounds. The predominant compounds were limonene [57.36% (4462.80 mg/100 g of pulp)] and γ-terpinene [25.14% (1956.21 mg/100 g of pulp)]. However, linalool was identified as one of the key aroma components providing the highest flavor dilution factor in AEDA, whilst three sesquiterpene hydrocarbons (δ-elemene, germacrene B, and bicyclosesquiphellandrene) and two esters (heptyl acetate and decyl acetate) had superior relative flavor activities. The extended AEDA profile identified variations in assessed odor perceptions, intensity, and duration of aroma components over dilution, whereas the 12 most odor-active compounds showed comparable odor strengths.
Collapse
|
27
|
Erasmus SW, Muller M, Alewijn M, Koot AH, van Ruth SM, Hoffman LC. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb. Food Chem 2017; 233:331-342. [PMID: 28530582 DOI: 10.1016/j.foodchem.2017.04.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/30/2022]
Abstract
The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile fingerprints were affected by the origin of the meat. The classification of the origin of the lamb was achieved by examining the calculated and recorded fingerprints in combination with chemometrics. Four different partial least squares discriminant analysis (PLS-DA) models were fitted to the data to classify lamb meat and fat samples into "region of origin" (six different regions) and "origin" (Karoo vs. Non-Karoo). The estimation models classified samples 100% correctly. Validation of the first two models gave 42% (fat) and 58% (meat) correct classification of region, while the second two models performed better with 92% (fat) and 83% (meat) correct classification of origin.
Collapse
Affiliation(s)
- Sara W Erasmus
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; Department of Animal Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Magdalena Muller
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Martin Alewijn
- Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Alex H Koot
- Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Saskia M van Ruth
- Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Louwrens C Hoffman
- Department of Animal Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
28
|
Xiao Z, Wu Q, Niu Y, Wu M, Zhu J, Zhou X, Chen X, Wang H, Li J, Kong J. Characterization of the Key Aroma Compounds in Five Varieties of Mandarins by Gas Chromatography-Olfactometry, Odor Activity Values, Aroma Recombination, and Omission Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8392-8401. [PMID: 28885016 DOI: 10.1021/acs.jafc.7b02703] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, volatile compounds of five varieties of mandarin juices [Tankan, Miyagawa, Mashui (MS), Skiranui, and Ponkan (PG)] were investigated by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). A total of 47 volatile compounds were identified by GC-MS. Partial least-squares regression was used to process the mean scores from sensory evaluation by panelists of volatile compounds and samples. The sample PG was associated with "fruity", "floral", and "sweet" notes, while MS was correlated with "green" and "peely" notes. In addition, 36 aroma-active compounds, including esters, alcohols, aldehydes, ketones, and monoterpenes, were detected by GC-O. According to the quantitative results, 29 aroma compounds were important, which indicated that their odor activity values (OAVs) were ≥1. On the basis of the GC-O results and OAVs of these volatile compounds, 22 odor-active compounds were mixed to simulate successfully the overall aroma of PG mandarin juice. Furthermore, omission experiments confirmed that nonanal, hexanal, linalool, and (R)-(+)-limonene were the key odorants for the overall aroma of PG juice sample and that β-ionone, decanal, γ-terpinene, and methyl butyrate were also important odor-active compounds.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Quyang Wu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Minling Wu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Jiancai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Xuan Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Xiaomei Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Hongling Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Jing Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| | - Jiali Kong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology , Shanghai 201418, PR China
| |
Collapse
|
29
|
Yang Y, Zhao C, Tian G, Lu C, Zhao S, Bao Y, McClements DJ, Xiao H, Zheng J. Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7781-7789. [PMID: 28820942 DOI: 10.1021/acs.jafc.7b03270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e., mandarin, sweet orange, and bergamot oils) emulsions were systematically investigated for the first time. The results demonstrated the significant impact of temperature on aroma profile and physical properties. The abundance of d-limonene was found to be the main factor determining the aroma of the three citrus-oil emulsions at different preheating and storage temperatures, while β-linalool and linalyl acetate were important for the aroma of bergamot oil emulsion. Preheating temperature showed a profound impact on the aroma of citrus-oil emulsions, and the aroma of different citrus oil emulsions showed different sensitivity to preheating temperature. Storage temperature was also able to alter the properties of citrus oil emulsions. The higher was the storage temperature, the more alteration of aroma and more instability of the emulsions there was, which could be attributed to the alteration of the oil components and the properties of emulsions. Among all three emulsions, bergamot-oil emulsion was the most stable and exhibited the most potent ability to preserve the aroma against high temperature. Our results would facilitate the application of citrus-oil emulsions in functional foods and beverages.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Guifang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Shaojie Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Yuming Bao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, China
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Xiao Z, Li J, Niu Y, Liu Q, Liu J. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination. Nat Prod Res 2017; 31:2294-2302. [PMID: 28347181 DOI: 10.1080/14786419.2017.1303693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.
Collapse
Affiliation(s)
- Zuobing Xiao
- a School of Perfume and Aroma Technology , Shanghai Institute of Technology , Shanghai , People's Republic of China.,b Shanghai Research Institute of Fragrance and Flavor Industry , Shanghai , People's Republic of China
| | - Jing Li
- a School of Perfume and Aroma Technology , Shanghai Institute of Technology , Shanghai , People's Republic of China
| | - Yunwei Niu
- a School of Perfume and Aroma Technology , Shanghai Institute of Technology , Shanghai , People's Republic of China
| | - Qiang Liu
- c China Tobacco Yunnan Industrial Co., Ltd , Kunming , People's Republic of China
| | - Junhua Liu
- b Shanghai Research Institute of Fragrance and Flavor Industry , Shanghai , People's Republic of China
| |
Collapse
|