1
|
Zhang L, Yu Y, Tan C, Nie S, Wen Q, Tu Z. Exploration of changes in sensory, physicochemical properties and microbial metabolic activities of grass carp meat with five thermal processing treatments during refrigerated storage. Food Chem X 2024; 23:101662. [PMID: 39148526 PMCID: PMC11324995 DOI: 10.1016/j.fochx.2024.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
This study aimed to employed the effects of five thermal processing methods, namely steaming (SM), boiling (BO), frying (FY), roasting (RO), and vacuum sealing (SV), on the sensory, physicochemical properties, and microbial composition of grass carp meat during refrigerated storage, alongside unheated raw meat (RW) as control. The results showed that thermal treatment improved the sensory quality and shelf life of refrigerated grass carp meat, and their shelf life was RW < BO
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yaqin Yu
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chunming Tan
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Shi Nie
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qinghui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
2
|
Aksu MI, Arslan H. Properties of encapsulated raspberry powder and its efficacy for improving the pH, colour quality and shelf life of modified atmosphere packaged chicken nuggets. Br Poult Sci 2024; 65:559-573. [PMID: 38994664 DOI: 10.1080/00071668.2024.2359988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 07/13/2024]
Abstract
1. Recent research has shown that encapsulated raspberry powder (RP) is a natural colourant for foodstuffs. However, no research has been conducted on its use in chicken nuggets. In addition, the effect of RP on products with and without phosphate addition is unknown. This study assessed the effects of RP (control, 0.5%, 1.0%) and phosphate (0.0%, 0.3%) on the pH and colour quality properties of nuggets.2. In the production of RP, red raspberry (Rubus ideaus L.) juices were encapsulated using maltodextrin in a spray-dryer. Antioxidant activity, total anthocyanin, total phenolics, colour, moisture and pH analyses of the RP were performed.3. Nuggets were packaged in modified atmosphere packaging (MAP; 40%CO2 + 60%N2) and were stored at 2.0 ± 0.5°C for 120 d. The pH and external and internal surface colour (L*, a*, b*, C* and h) values were measured on d 0, 15, 30, 45, 60, 75, 90, 105 and 120 of storage.4. The addition of phosphate increased the pH in the samples, while these decreased with the addition of RP (p < 0.05). During storage, the highest pH were seen in the phosphate samples and the lowest in the nuggets with 1.0% RP addition (p < 0.05).5. With the addition of phosphate, the external surface a* value of nuggets increased (p < 0.05). Depending on the level of RP added to the nuggets, the external surface L* value decreased and a* and b* values increased (p < 0.05). After d 30 of storage, the a* value increased in the samples with RP addition and this increase was higher in the with phosphate nuggets (p < 0.05).6. The internal surface a* value increased with the addition of RP during nugget production (p < 0.05). The increase in a* value was greater in samples with added phosphate (p < 0.05). During storage, the highest a* values were seen in nuggets treated with phosphate + 0.1% RP (p < 0.05). The addition of RP to chicken nugget emulsion improved redness, colour stability and shelf life.
Collapse
Affiliation(s)
- M I Aksu
- Faculty of Agriculture, Department of Food Engineering, Atatürk University, Erzurum, Turkey
| | - H Arslan
- Faculty of Agriculture, Department of Food Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
3
|
Vidal C, Lopez-Polo J, Osorio FA. Physical Properties of Cellulose Derivative-Based Edible Films Elaborated with Liposomes Encapsulating Grape Seed Tannins. Antioxidants (Basel) 2024; 13:989. [PMID: 39199233 PMCID: PMC11351243 DOI: 10.3390/antiox13080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Combined use of edible films (EF) with nanoencapsulation systems could be an effective alternative for improving the films' physical properties and maintaining bioactive compounds' stability. This research work focuses on the combined use of EF of cellulose-derived biopolymers enriched with liposomes that encapsulate grape seed tannins and on the subsequent evaluation of the physical properties and wettability. Tannin-containing liposomal suspensions (TLS) showed 570.8 ± 6.0 nm particle size and 99% encapsulation efficiency. In vitro studies showed that the release of tannins from liposomes was slower than that of free tannins, reaching a maximum release of catechin of 0.13 ± 0.01%, epicatechin of 0.57 ± 0.01%, and gallic acid of 3.90 ± 0.001% over a 144 h period. Adding liposomes to biopolymer matrices resulted in significant decrease (p < 0.05) of density, surface tension, tensile strength, elongation percentage, and elastic modulus in comparison to the control, obtaining films with greater flexibility and lower breaking strength. Incorporating TLS into EF formulations resulted in partially wetting the hydrophobic surface, reducing adhesion and cohesion compared to EF without liposomes. Results indicate that the presence of liposomes improves films' physical and wettability properties, causing them to extend and not contract when applied to hydrophobic food surfaces.
Collapse
Affiliation(s)
- Constanza Vidal
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| | - Johana Lopez-Polo
- Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
4
|
Ashrafi A, Ahari H, Asadi G, Nafchi AM. Improving fried burger quality and modulating acrylamide formation by active coating containing Rosa canina L. extract nanoemulsions. J Food Sci 2024; 89:2158-2173. [PMID: 38488727 DOI: 10.1111/1750-3841.17019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/12/2024]
Abstract
During the frying of foods, undesirable reactions such as protein denaturation, acrylamide formation, and so on occur in the product, which has confirmed carcinogenic effects. The use of antioxidants has been proposed as an effective solution to reduce the formation of these compounds during the process. The current study aimed to assess the impact of an edible coating holding within chia seed gum (CSG) and Rosa canina L. extract (RCE) nanoemulsions on the physicochemical properties, oil uptake, acrylamide formation, 5-hydroxymethyl-2-furfural (HMF) content, and sensory characteristics of beef-turkey burgers. The RCE-loaded nanoemulsions were prepared using the ultrasonic homogenization method, and different concentrations (i.e., 10%, 20%, and 40% w/w) were added to the CSG solutions; these active coatings were used to cover the burgers. CSG-based coatings, especially coatings containing the highest concentration of nanoemulsions (40%), caused a significant decrease in the oil uptake and moisture retention, acrylamide content, and HMF content of fried burgers. The texture of coated burgers was softer than that of uncoated samples; they also had a higher color brightness and a lower browning index. Field emission scanning electron microscopy analysis showed that RCE concentration less than 40% should be used in CSG coatings because it will cause minor cracks, which is an obvious possibility of failure of coating performance. Coating significantly (4-10 times) increased the antioxidant activity of burgers compared to the control. In conclusion, it is suggested to use the active coating produced in this study to improve fried burger quality and modulate acrylamide formation.
Collapse
Affiliation(s)
- Azam Ashrafi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhassan Asadi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
5
|
Ranjbar M, Azizi Tabrizzad MH, Asadi G, Ahari H. Investigating the microbial properties of sodium alginate/chitosan edible film containing red beetroot anthocyanin extract for smart packaging in chicken fillet as a pH indicator. Heliyon 2023; 9:e18879. [PMID: 37609408 PMCID: PMC10440462 DOI: 10.1016/j.heliyon.2023.e18879] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
The current trend in the production of smart films involves the use of pH-responsive color indicators derived from natural sources. In line with this trend, the aim of this research is to produce edible films from sodium alginate (A) and chitosan (Ch) incorporating red beet anthocyanin (Ac) extract, and to assess the properties of these films and their use as coatings for chicken fillets. The study employed a factorial design to evaluate the effects of treatments C (control), A25%-ch75% (films consisting of 25% sodium alginate and 75% chitosan), and A25%-ch75%-Ac (films consisting of 25% sodium alginate, 75% chitosan, and red beet anthocyanin). The findings indicate that the inclusion of red beet anthocyanin extract did not result in any discernible differences in the FTIR spectra of the film samples. Analysis of the XRD results revealed that the addition of the extract led to a reduction in the crystal structure of the film. Moreover, SEM results demonstrated that the extract caused alterations in the polymer chains and an increase in the porosity of the film matrix. With regard to the chicken fillet samples coated with the film, over time, there was an increase in microbial analysis (total microorganism count and Staphylococcus aureus coagulase-positive) and chemical properties (pH, peroxide, thiobarbituric acid, and nitrogen compounds) for all samples. However, this trend was significantly lower in the samples coated with the Ac extract (P < 0.05). Texture analysis results revealed that the hardness parameter of all samples decreased over the storage period, while the samples containing the Ac extract demonstrated a significant increase in this parameter (P < 0.05). Additionally, the color changes of the pH sensor corresponded to the anthocyanin structure. Based on the results, the smart film composed of sodium alginate/chitosan incorporating red beet anthocyanin extract has the potential to enhance the quality, prolong the shelf life, and decrease the microbial load of chicken fillet when used as a coating. Furthermore, red beet anthocyanin can serve as a suitable indicator for spoilage changes in packaged food products.
Collapse
Affiliation(s)
- Milad Ranjbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Gholamhassan Asadi
- Assistant Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Younesi M, Peighambardoust SH, Sarabandi K, Akbarmehr A, Ahaninjan M, Soltanzadeh M. Application of structurally modified WPC in combination with maltodextrin for microencapsulation of Roselle (Hibiscus sabdariffa) extract as a natural colorant source for gummy candy. Int J Biol Macromol 2023:124903. [PMID: 37220850 DOI: 10.1016/j.ijbiomac.2023.124903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
The aim of this work was to improve the stability of Roselle extract (RE) by spray-drying using maltodextrin (MD) alone, and in combination with WPC in the forms of unmodified and modified (via ultrasonication, UWPC, or enzymatic hydrolysis, HWPC). Enzymatic hydrolysis by improving the surface activity of WPC increased spray-drying yield (75.1 %), and improved physical (flow) and functional (solubility, and emulsifying) properties of obtained microparticles. Degree of hydrolysis of the primary WPC (2.6 %) was increased to 6.1 % and 24.6 % after ultrasonication and hydrolysis, respectively. Both modifications caused a significant increase in the solubility of WPC, in a way that initial solubility (10.6 %, at pH = 5) was significantly increased to 25.5 % in UWPC, and to 87.3 % in HWPC (P < 0.05). Furthermore, emulsifying activity (20.6 m2/g) and emulsifying stability (17 %) indices of primary WPC (at pH = 5) were significantly increased to 32 m2/g and 30 % in UWPC, and to 92.4 m2/g and 69.0 % in HWPC, respectively (P < 0.05). FT-IR analysis indicated successful encapsulation of RE within carriers' matrix. According to FE-SEM study, the surface morphology of microparticles was improved when modified HWPC was used as a carrier. Microencapsulation of RE with HWPC showed the highest contents of total phenolic compounds (13.3 mg GAE/mL), total anthocyanins (9.1 mg C3G/L) as well as a higher retention of antioxidant activity according to ABTS+ (85.0 %) and DPPH (79.5 %) radicals scavenging assays. Considering all properties of microparticles obtained by HWPC next to their color attributes, it can be concluded that HWPC-RE powders could be used as natural colorant and antioxidant source for the fortification of gummy candy. Gummy candy obtained using 6 % concentration of the above powder gave the highest overall sensory scores.
Collapse
Affiliation(s)
- Mohsen Younesi
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir Akbarmehr
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Mehdi Ahaninjan
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Maral Soltanzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
7
|
Yuan Y, Ma M, Zhang S, Wang D. Efficient Utilization of Tea Resources through Encapsulation: Dual Perspectives from Core Material to Wall Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1310-1324. [PMID: 36637407 DOI: 10.1021/acs.jafc.2c07346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the high production and consumption of tea around the world, efficient utilization of tea byproducts (tea pruning, tea residues after production, and drinking) is the focus of improving the economy of the tea industry. This review comprehensively discusses the efficient utilization of tea resources by encapsulation from the dual perspectives of core material and wall material. The core material is mainly tea polyphenols, followed by tea oils. The encapsulation system for tea polyphenols includes microcapsules, nanoparticles, emulsions, gels, conjugates, metal-organic frameworks, liposomes, and nanofibers. In addition, it is also diversified for the encapsulation of tea oils. Tea resources as wall materials refer to tea saponins, tea polyphenols, tea proteins, and tea polysaccharides. The application of the tea-based delivery system widely involves functionally fortified food, meat preservation, film, medical treatment, wastewater treatment, and plant protection. In the future, the coencapsulation of tea resources as core materials and other functional ingredients, the precise targeting of these tea resources, and the wide application of tea resources in wall materials need to be focused on. In conclusion, the described technofunctional properties and future research challenges in this review should be followed.
Collapse
Affiliation(s)
- Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Zarabi O, Ahmadi M, Hedayatifard M, Golestan L, Farhadi A. Preservation Effect of Ice-Glazing Using Pullulan and Bay Laurel Extract on the Quality Characteristics of Caspian Trout ( Salmo trutta caspius) during Frozen Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Oriana Zarabi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Ahmadi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Masoud Hedayatifard
- Fisheries Department, College of Agriculture and Natural Resources, Qaemshahr branch, Islamic Azad University, Amol, Iran
| | - Leila Golestan
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Ayoub Farhadi
- Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
9
|
Santos EM, Rodriguez JA, Lorenzo JM, Mondragón AC, Pateiro M, Gutiérrez E, Ferreira TA. Antioxidant Effect of Pumpkin Flower (Cucurbita maxima) in Chicken Patties. Foods 2022; 11:foods11152258. [PMID: 35954026 PMCID: PMC9368278 DOI: 10.3390/foods11152258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, the antioxidant effect of pumpkin flower powder was evaluated in chicken patties. For this purpose, three drying methods were proposed to obtain the pumpkin flower powder and preserve its properties (antioxidants, color, odor): foam-mat drying, freeze drying, and oven drying. The drying process of the powder plays an important role in the conservation of bioactive compounds. The foam-mat drying method would allow the preservation of these compounds after cooking and after cold storage due to encapsulation like mechanism of the added proteins. Thus, these powders were selected as the most adequate vehicle to incorporate in the formulation, since patties with these additives presented the better antioxidant scores for DPPH, ABTS, and FRAP even after 7 days of storage. In addition, total polyphenolic content and the presence or thiobarbituric acid reactive substances (TBARS) were better scored in samples with the pumpkin flowers. The incorporation of the pumpkin flower additives in the patty formulation improved sensorial attributes of the chicken patties and consumers acceptance after cold storage.
Collapse
Affiliation(s)
- Eva María Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico; (E.M.S.); (J.A.R.)
| | - Jose A. Rodriguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico; (E.M.S.); (J.A.R.)
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (J.M.L.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Alicia C. Mondragón
- Laboratorio de Higiene Inspeccion y Control de Alimentos, Departamento de Quimica Analitica Nutricion y Bromatologia, Universidad de Santiago de Compostela, 27002 Lugo, Spain;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (J.M.L.); (M.P.)
| | - Evelin Gutiérrez
- Departamento de Ingenieria Mecatronica, Universidad Politécnica de Pachuca, Ex. Hacienda Sta. Barbara, Zempoala 43830, Mexico;
| | - Thania Alexandra Ferreira
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico; (E.M.S.); (J.A.R.)
- Correspondence:
| |
Collapse
|
10
|
Santos EM, Sánchez-Ortega I, Lorenzo JM, Domínguez R, Munekata PES, Falfán-Cortés RN, Ibarra IS, Rangel-Vargas E. Use of Hibiscus sabdariffa Calyxes in Meat Products. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.876042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the search for new ingredients that counteract some of the problems associated with the consumption of meat and meat products like high contents of saturated fat, salt, cholesterol, the absence of dietary fiber, and the presence of synthetic additives, Hibiscus sabdariffa calyxes have shown good colorant, antimicrobial, and antioxidant properties. This research paper studies the use of H. sabdariffa roselle calyxes directly or by means of extracts in meat and meat products. Although its application is incipient, the results are promising. The vibrant red color of the calyxes makes calyxes suitable for their use in meat products even though the concentration must be optimized since the acid taste can detract from the overall acceptance. The antimicrobial properties contribute to safer meat products, and antioxidant effects, helping to extend the shelf life of meat products and reducing oxidative processes. Nonetheless, achieving the desired effects is still challenging since several factors can affect these functional properties.
Collapse
|
11
|
Aydin G, Zorlu EB. Characterisation and Antibacterial Properties of Novel Biodegradable Films Based on Alginate and Roselle ( Hibiscus sabdariffa L.) Extract. WASTE AND BIOMASS VALORIZATION 2022; 13:2991-3002. [PMID: 35222746 PMCID: PMC8856933 DOI: 10.1007/s12649-022-01710-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
Composite films were prepared with alginate and roselle extract (HE) at different concentrations (1%, 3%, and 5% w/v) via solvent casting technique and analyzed in terms of physical, mechanical, and antibacterial properties. The incorporation of HE into alginate films resulted in rough and heterogeneous surface characteristics with increasing concentrations of HE. The thickness and water vapor permeability of alginate-HE composite films were significantly higher (p < 0.05) compared to pure alginate films. Moreover, water content, solubility, swelling, tensile strength, and elongation at break value of the composite films decreased (p < 0.05) with increasing concentrations of the extract. FTIR spectra revealed shifts and intensity variations in the composite films and the formation of new peaks suggesting a possible interaction between alginate and HE. Alginate-HE films exhibited good antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria. The antibacterial effect of the films, more pronounced against Gram-positive bacteria, increased with higher amounts of HE. The resulting films may be utilised as new biodegradable, antibacterial films in the food packaging industry to prolong shelf life and preserve food safety. Graphical Abstract Supplementary Information The online version of this article (10.1007/s12649-022-01710-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gulsum Aydin
- Biotechnology Department, Faculty of Sciences, Selcuk University, Konya, Turkey
| | - Elif Busra Zorlu
- Biotechnology Department, Faculty of Sciences, Selcuk University, Konya, Turkey
| |
Collapse
|
12
|
Wu H, Richards MP, Undeland I. Lipid oxidation and antioxidant delivery systems in muscle food. Compr Rev Food Sci Food Saf 2022; 21:1275-1299. [PMID: 35080797 DOI: 10.1111/1541-4337.12890] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/24/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
Lipid oxidation accelerates quality deterioration in muscle-based foods (fish, red meat, and poultry), resulting in off-odors/flavors, color problems, texture defects, and safety concerns. Adding antioxidants is one approach to control lipid oxidation, and several delivery strategies have been applied, such as supplementing antioxidants to the feed, direct mixing into minces, or, for whole muscle pieces; spraying, glazing, and injection. However, some issues linked to these technologies hinder their wide utilization, such as low effectiveness, noncompatibility with clean label, and off-flavor. These shortcomings have promoted the development of new antioxidant delivery technologies. In this review, the main focus is on the principles, characteristics, and implementation of five novel antioxidant delivery methods in different types of muscle food products. Their advantages and drawbacks are also summarized, plus comments about future trends in this area. Among novel routes to deliver antioxidants to muscle foods are, for whole tissues, recyclable dipping solutions; for minces, encapsulation; and, for both minces and whole tissues, cross-processing with nonmuscle antioxidant-containing raw materials as well as applications of edible films/coatings and active packaging. Advantages of these technologies comprise, for example, low price, the possibility to control the antioxidant release rate, overcoming strong aromas from natural antioxidants, and allowing antioxidant-containing raw materials from the food industry to be valorized, providing an opportunity for more circular food production.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Mark P Richards
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ingrid Undeland
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
13
|
Marques Mandaji C, da Silva Pena R, Campos Chisté R. Encapsulation of bioactive compounds extracted from plants of genus Hibiscus: A review of selected techniques and applications. Food Res Int 2022; 151:110820. [PMID: 34980372 DOI: 10.1016/j.foodres.2021.110820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/24/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022]
Abstract
The genus Hibiscus includes more than 250 species, and many studies showed that these plants contain bioactive compounds with technological potential to be used in the development of functional foods. However, the instability of these compounds during typical food processing conditions, such as exposure to high temperatures, pH changes and presence of light and oxygen have stimulated the use of encapsulation techniques to increase their stability and applicability. Among the existing Hibiscus species, only H. sabdariffa, H. cannabinus, and H. acetosella have been investigated in encapsulation studies, being spray drying the most common method approached. Considering the high technological potential offered by the incorporation of encapsulated bioactive compounds from plants of the genus Hibiscus in food formulations, this review discusses key information of selected encapsulation techniques, which represents promising alternatives to increase food systems' stability and stimulate the design of new functional foods. Relevant gaps in the literature were also noticed, mainly the lack of systematic studies regarding the composition of bioactive compounds after encapsulation, instead of total determinations, and biological activities in different analytical systems, such as antioxidant, antimicrobial and anti-inflammatory properties as well as bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Carolina Marques Mandaji
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Rosinelson da Silva Pena
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil; Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil; Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil.
| |
Collapse
|
14
|
Eslamian Amiri M, Ahmady M, Ariaii P, Golestan L, Ghorbani‐HasanSaraei A. Use composite coating of chitosan-chia seed gum enriched with microliposomes of Bay laurel essential oil to increase the shelf life of quail fillets. Food Sci Nutr 2021; 9:6524-6537. [PMID: 34925782 PMCID: PMC8645717 DOI: 10.1002/fsn3.2578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022] Open
Abstract
In this study, the effect of composite chitosan-chia seed coating (CH-CG) with Bay laurel (Laurus nobilis) essential oil (BE) in two forms including free and nanocapsulated on the shelf life of quail fillets during the 16-day refrigeration (4 ± 1℃) period was investigated. For this purpose, first, BE was extracted by Clevenger apparatus. Then, nanoliposomes BE were produced, and the properties of BE and nanoliposomes BE were investigated. In order to investigate the shelf life of quail, 6 treatments were produced including 1: control (C), 2: CH-CG, CH-CG+BE at 800 ppm, 3: CH-CG+BE at 1600 ppm, 4: CH-CG+nano BE at 800 ppm, 5: CH-CG+nano BE at 1600 ppm, and periodically chemical parameters (peroxide value, free fatty acid, total volatile basic nitrogen, texture firmness, and chewing ability) and microbial (total viable bacteria (TVC) and psychrotrophic bacteria), and the effect of different treatments on control in Escherichia coli and Staphylococcus aureus inoculated populations in quail was also investigated. The BE had high antioxidant and antimicrobial properties. The particle size and microencapsulation efficiency of BE nanoliposome were 98.3 nm and 75.95%, respectively. The results of chemical and microbial analysis showed that in general, the coating with essential oil slowed down the increasing trend of oxidation and microbial indices compared to the control treatment and nanocapsulation of essential oil has increased its antimicrobial and antioxidant properties (p < .05). At the end of storage period, in all tests, treatments of 3, 4, and 5 had the allowed microbial and chemical range and they also inhibited the growth of these bacteria (p < .05). Overall, considering the higher sensory score of treatment 4 and economic efficiency, it seems that this treatment can be used as a natural preservative in the meat industry.
Collapse
Affiliation(s)
| | - Mohammad Ahmady
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | - Peiman Ariaii
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | - Leila Golestan
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | | |
Collapse
|
15
|
Lamri M, Bhattacharya T, Boukid F, Chentir I, Dib AL, Das D, Djenane D, Gagaoua M. Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. Foods 2021; 10:2633. [PMID: 34828914 PMCID: PMC8623812 DOI: 10.3390/foods10112633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are gaining momentum as a smart tool towards a safer, more cost-effective and sustainable food chain. This study aimed to provide an overview of the potential uses, preparation, properties, and applications of nanoparticles to process and preserve fresh meat and processed meat products. Nanoparticles can be used to reinforce the packaging material resulting in the improvement of sensory, functional, and nutritional aspects of meat and processed meat products. Further, these particles can be used in smart packaging as biosensors to extend the shelf-life of fresh and processed meat products and also to monitor the final quality of these products during the storage period. Nanoparticles are included in product formulation as carriers of health-beneficial and/or functional ingredients. They showed great efficiency in encapsulating bioactive ingredients and preserving their properties to ensure their functionality (e.g., antioxidant and antimicrobial) in meat products. As a result, nanoparticles can efficiently contribute to ensuring product safety and quality whilst reducing wastage and costs. Nevertheless, a wider implementation of nanotechnology in meat industry is highly related to its economic value, consumers' acceptance, and the regulatory framework. Being a novel technology, concerns over the toxicity of nanoparticles are still controversial and therefore efficient analytical tools are deemed crucial for the identification and quantification of nanocomponents in meat products. Thus, migration studies about nanoparticles from the packaging into meat and meat products are still a concern as it has implications for human health associated with their toxicity. Moreover, focused economic evaluations for implementing nanoparticles in meat packaging are crucial since the current literature is still scarce and targeted studies are needed before further industrial applications.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, India;
| | - Fatma Boukid
- Food Safety and Functionality Programme, Institute of Agriculture and Food Research and Technology (IRTA), 17121 Monells, Spain;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agroressources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Amira Leila Dib
- GSPA Research Laboratory, Institut des Sciences Vétérinaires, Université Frères Mentouri Constantine 1, Constantine 25000 Algeria;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
16
|
Maleki M, Ariaii P, Sharifi Soltani M. Fortifying of probiotic yogurt with free and microencapsulated extract of Tragopogon Collinus and its effect on the viability of Lactobacillus casei and Lactobacillus plantarum. Food Sci Nutr 2021; 9:3436-3448. [PMID: 34262704 PMCID: PMC8269579 DOI: 10.1002/fsn3.2250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, the effect of free and microencapsulation of Tragopogon Collins extract (TPE) on the properties of probiotic yogurt was investigated. For this purpose, first, TPE was extracted by ultrasound method. The amounts of phenolic and flavonoid compounds in TPE were 890.04 mg/g gallic acid and 512.76 mg/g extract (respectively), and it had high antioxidant and antimicrobial properties. Then, the extract was encapsulated by maltodextrin-whey protein concentrate. The results related to the particle size, zeta-potential, and microencapsulation efficiency of the TPE microencapsulation were 93.87 nm, 18.99 MV, and 64.35% respectively. In order to investigate the effect of nano- and free TPE on the properties of yogurt during a 15-day storage period of 5 treatments including control, nano- and free TPE at 750 and 1,000 ppm were provided and the physicochemical properties, probiotic bacteria viability, and sensory properties were investigated. The results showed that adding TPE to yogurt affects the physicochemical properties, probiotic bacterial viability, and sensory properties were investigated. The results showed that adding TPE to yogurt affects the physicochemical properties. TPE samples had lower pH, less syneresis, and more acidity, viscosity, and antioxidant properties compared to the control sample (p < .05). Furthermore, in these samples, the viability of probiotic bacteria during storage was higher than the control treatment and the sensory properties were acceptable. In most cases, better results were observed in nano-TPE treatment. Therefore, by industrial production of probiotic yogurt containing nano-TPE as a functional food, a new choice will be provided for consumers of dairy products that would have more desirable nutritional value and sensory properties.
Collapse
Affiliation(s)
- Mohammad Maleki
- Department of Food Science and TechnologyIslamic Azad University, Ayatollah Amoli BranchAmolIran
| | - Peiman Ariaii
- Department of Food Science and TechnologyIslamic Azad University, Ayatollah Amoli BranchAmolIran
| | - Mahdi Sharifi Soltani
- Department of VeterinaryAgriculture FacultyIslamic Azad University, Chalous BranchChalousIran
| |
Collapse
|
17
|
Moghadam RM, Ariaii P, Ahmady M. The effect of microencapsulated extract of pennyroyal (Mentha pulegium. L) on the physicochemical, sensory, and viability of probiotic bacteria in yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Combining edible coatings technology and nanoencapsulation for food application: A brief review with an emphasis on nanoliposomes. Food Res Int 2021; 145:110402. [PMID: 34112405 DOI: 10.1016/j.foodres.2021.110402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
The use of bioactive compounds within the biopolymer-based Edible Coatings (EC) matrices has certain limitations for their application at the food industry level. Encapsulation has been considered as a strategy that enables protecting and improving the physical and chemical characteristics of the compounds; as a result, it extends the shelf life of coated foods. This review discusses recent progress in combining edible coatings with nanoencapsulation technology. We also described and discussed various works, in which nanoliposomes are used as encapsulation systems to prepare, and subsequently apply the edible coatings in plant products and meat products. The use of nanoliposomes for the encapsulation of phenolic compounds and essential oils provides an improvement in the antioxidant and antimicrobial properties of coatings by extending the shelf life of food matrices. However, when liposomes are stored for a long period of time, they may present some degree of instability manifested by an increase in size, polydispersity index, and zeta potential. This is reflected in an aggregation, fusion, and rupture of the vesicles. This investigation can help researchers and industries to select an appropriate and efficient biopolymer to form EC containing nanoencapsulated active compounds. This work also addresses the use of nanoliposomes to create EC extending markedly the shelf life of fruit, reducing the weight loss, and deterioration due to the action of microorganisms.
Collapse
|