1
|
Guzmán-Lorite M, Rosu F, Marina ML, García MC, Gabelica V. miRNA and DNA analysis by negative ion electron transfer dissociation and infrared multiple-photon dissociation mass spectrometry. Anal Chim Acta 2024; 1299:342431. [PMID: 38499418 DOI: 10.1016/j.aca.2024.342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The use of simple and hybrid fragmentation techniques for the identification of molecules in tandem mass spectrometry provides different and complementary information on the structure of molecules. Nevertheless, these techniques have not been as widely explored for oligonucleotides as for peptides or proteins. The analysis of microRNAs (miRNAs) warrants special attention, given their regulatory role and their relationship with several diseases. The application of different fragmentation techniques will be very interesting for their identification. RESULTS Four synthetic miRNAs and a DNA sequence were fragmented in an ESI-FT-ICR mass spectrometer using both simple and hybrid fragmentation techniques: CID, nETD followed by CID, IRMPD, and, for the first time, nETD in combination with IRMPD. The main fragmentation channel was base loss. The use of nETD-IRMPD resulted in d/z, a/w, and c/y ions at higher intensities. Moreover, nETD-IRMPD provided high sequence coverage and low internal fragmentation. Native MS analysis revealed that only miR159 and the DNA sequence formed stable dimers under physiological ionic strength. The use of organic co-solvents or additives resulted in a lower sequence coverage due to lesser overall ionization efficiency. NOVELTY This work demonstrates that the combination of nETD and IRMPD for miRNA fragmentation constitutes a suitable alternative to common fragmentation methods. This strategy resulted in efficient fragmentation of [miRNA]5- using low irradiation times and fewer internal fragments while ensuring a high sequence coverage. Moreover, given that such low charge states predominate upon spraying in physiological-like conditions, native MS can be applied for obtaining structural information at the same time.
Collapse
Affiliation(s)
- Miriam Guzmán-Lorite
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Frédéric Rosu
- Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600, Pessac, France
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. Del Río", Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Concepción García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. Del Río", Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600, Pessac, France; Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600, Pessac, France
| |
Collapse
|
2
|
Xu T, Zhu Y, Lin Z, Lei J, Li L, Zhu W, Wu D. Evidence of Cross-Kingdom Gene Regulation by Plant MicroRNAs and Possible Reasons for Inconsistencies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4564-4573. [PMID: 38391237 DOI: 10.1021/acs.jafc.3c09097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The debate on whether cross-kingdom gene regulation by orally acquired plant miRNAs is possible has been ongoing for nearly 10 years without a conclusive answer. In this study, we categorized plant miRNAs into different groups, namely, extracellular vesicle (EV)-borne plant miRNAs, extracted plant miRNAs, herbal decoction-borne plant miRNAs, synthetic plant miRNA mimics, and plant tissue/juice-borne plant miRNAs. This categorization aimed to simplify the analysis and address the question more specifically. Our evidence suggests that EV-borne plant miRNAs, extracted plant miRNAs, herbal decoction-borne plant miRNAs, and synthetic plant miRNA mimics consistently facilitate cross-kingdom gene regulation. However, the results regarding the cross-kingdom gene regulation by plant tissue- and juice-borne plant miRNAs are inconclusive. This inconsistency may be due to variations in study methods, a low absorption rate of miRNAs and the selective absorption of plant miRNAs in the gastrointestinal tract. Overall, it is deduced that cross-kingdom gene regulation by orally acquired plant miRNAs can occur under certain circumstances, depending on factors such as the types of plant miRNAs, the delivery mechanism, and their concentrations in the plant.
Collapse
Affiliation(s)
- Tielong Xu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Yating Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Ziqi Lin
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Jinyue Lei
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Longxue Li
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Diyao Wu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| |
Collapse
|
3
|
Feng YL. A New Frontier in Phytotherapy: Harnessing the Therapeutic Power of Medicinal Herb-derived miRNAs. Curr Pharm Des 2024; 30:3009-3017. [PMID: 39162273 DOI: 10.2174/0113816128310724240730072626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Medicinal herbs have been utilized in the treatment of various pathologic conditions, including neoplasms, organ fibrosis, and diabetes mellitus. However, the precise pharmacological actions of plant miRNAs in animals remain to be fully elucidated, particularly in terms of their therapeutic efficacy and mechanism of action. In this review, some important miRNAs from foods and medicinal herbs are presented. Plant miRNAs exhibit a range of pharmacological properties, such as anti-cancer, anti-fibrosis, anti-viral, anti-inflammatory effects, and neuromodulation, among others. These results have not only demonstrated a cross-species regulatory effect, but also suggested that the miRNAs from medicinal herbs are their bioactive components. This shows a promising prospect for plant miRNAs to be used as drugs. Here, the pharmacological properties of plant miRNAs and their underlying mechanisms have been highlighted, which can provide new insights for clarifying the therapeutic mechanisms of medicinal herbs and suggest a new way for developing therapeutic drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- Department of Life Science, Xianyang Normal University, No.43 Wenlin Road, Xianyang 712000, Shaanxi, China
| |
Collapse
|
4
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
5
|
Proia P, Rossi C, Alioto A, Amato A, Polizzotto C, Pagliaro A, Kuliś S, Baldassano S. MiRNAs Expression Modulates Osteogenesis in Response to Exercise and Nutrition. Genes (Basel) 2023; 14:1667. [PMID: 37761807 PMCID: PMC10529960 DOI: 10.3390/genes14091667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, many articles have been published describing the impact of physical activity and diet on bone health. This review has aimed to figure out the possible epigenetic mechanisms that influence bone metabolism. Many studies highlighted the effects of macro and micronutrients combined with exercise on the regulation of gene expression through miRs. The present review will describe how physical activity and nutrition can prevent abnormal epigenetic regulation that otherwise could lead to bone-metabolism-related diseases, the most significant of which is osteoporosis. Nowadays, it is known that this effect can be carried out not only by endogenously produced miRs, but also through those intakes through the diet. Indeed, they have also been found in the transcriptome of animals and plants, and it is possible to hypothesise an interaction between miRNAs produced by different kingdoms and epigenetic influences on human gene expression. In particular, the key to the activation pathways triggered by diet and physical activity appears to be the activation of Runt-related transcription factor 2 (RUNX2), the expression of which is regulated by several miRs. Among the main miRs involved are exercise-induced miR21 and 21-5p, and food-induced miR 221-3p and 222-3p.
Collapse
Affiliation(s)
- Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Carlo Rossi
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
- Centro Medico di Fisioterapia “Villa Sarina”, 91011 Alcamo, Italy
| | - Anna Alioto
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy;
| | - Caterina Polizzotto
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Andrea Pagliaro
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Szymon Kuliś
- Faculty of Physical Education, Józef Piłsudski University of Physical Education, 00-968 Warsaw, Poland;
| | - Sara Baldassano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
6
|
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into Health-Promoting Effects of Plant MicroRNAs: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14372-14386. [PMID: 34813309 DOI: 10.1021/acs.jafc.1c04737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant-derived microRNAs (miRNAs) play a significant role in human health and are "dark nutrients", as opposed to traditional plant nutrients, as well as important components of food diversification. Studies have revealed that multiple plant-derived miRNA pathways affect human health. First, plant miRNAs regulate plant growth and development and accumulation of metabolites, which alters the food quality and thus indirectly interferes with the health of the host. Moreover, when absorbed in vivo, some miRNAs may target the host cell mRNAs to affect protein expression. In addition, plant miRNAs target and reshape the human gut microbiota (GM), which interferes with the physiology and metabolism of the host. Therefore, miRNAs play a significant role in the cross-kingdom communication of plants, GM, and the host and in maintaining a balance of the three. Future contributions of plant miRNAs can bring new perspectives and opportunities to better understand food nutrition and health care research, which will facilitate the right exploitation of plant resources.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|