1
|
Liu R, Li J, Salena BJ, Li Y. Aptamer and DNAzyme Based Colorimetric Biosensors for Pathogen Detection. Angew Chem Int Ed Engl 2024:e202418725. [PMID: 39551709 DOI: 10.1002/anie.202418725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The detection of pathogens is critical for preventing and controlling health hazards across clinical, environmental, and food safety sectors. Functional nucleic acids (FNAs), such as aptamers and DNAzymes, have emerged as versatile molecular tools for pathogen detection due to their high specificity and affinity. This review focuses on the in vitro selection of FNAs for pathogens, with emphasis on the selection of aptamers for specific biomarkers and intact pathogens, including bacteria and viruses. Additionally, the selection of DNAzymes for bacterial detection is discussed. The integration of these FNAs into colorimetric biosensors has enabled the development of simple, cost-effective diagnostic platforms. Both non-catalytic and catalytic colorimetric biosensors are explored, including those based on gold nanoparticles, polydiacetylenes, protein enzymes, G-quadruplexes, and nanozymes. These biosensors offer visible detection through color changes, making them ideal for point-of-care diagnostics. The review concludes by highlighting current challenges and future perspectives for advancing FNA-based colorimetric biosensing technologies for pathogen detection.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research, School of Biomedical Engineering, Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
2
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
3
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
4
|
Ali M, Nair P, Capretta A, Brennan JD. In-vitro Clinical Diagnostics using RNA-Cleaving DNAzymes. Chembiochem 2024; 25:e202400085. [PMID: 38574237 DOI: 10.1002/cbic.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.
Collapse
Affiliation(s)
- Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, and, Firestone Institute of Respiratory Health at St. Joseph's Health Care, Hamilton, ON, L8N 4A6, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
5
|
Huang J, Zhai L, Wang J, Sun X, Wang B, Wei Z. An Evaluation of the Sensitivity and Applicability of a Droplet Digital Polymerase Chain Reaction Assay to Simultaneously Detect Pseudomonas aeruginosa and Pseudomonas fragi in Foods. Foods 2024; 13:1453. [PMID: 38790753 PMCID: PMC11120221 DOI: 10.3390/foods13101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Achieving effective control over microbial contamination necessitates the precise and concurrent identification of numerous pathogens. As a common bacterium in the environment, Pseudomonas is rich in variety. It not only has pathogenic strains, but also spoilage bacteria that cause food spoilage. In this research, we devised a remarkably sensitive duplex droplet digital PCR (dddPCR) reaction system to simultaneously detect pathogenic Pseudomonas aeruginosa (P. aeruginosa) and spoilage Pseudomonas fragi (P. fragi). By employing comparative genomics, we identified four genes of P. fragi. Through a specific analysis, the RS22680 gene was selected as the detection target for P. fragi, and the lasR gene was chosen for P. aeruginosa, which were applied to construct a dddPCR reaction. In terms of specificity, sensitivity and anti-interference ability, the constructed dddPCR detection system was verified and analyzed. The assay showed excellent sensitivity and applicability, as evidenced by a limit of detection of 100 cfu/mL. When the concentration of natural background bacteria in milk or fresh meat was 100 times that of the target detection bacteria, the method was still capable of completing the absolute quantification. In the simulation of actual sample contamination, P. aeruginosa could be detected after 3 h of enrichment culture, and P. fragi could be detected after 6 h. The established dddPCR detection system exhibits exceptional performance, serving as a foundation for the simultaneous detection of various pathogenic bacteria in food products.
Collapse
Affiliation(s)
| | - Ligong Zhai
- Department of Food Engineering College, Anhui Science and Technology University, Chuzhou 233100, China; (J.H.); (J.W.); (X.S.); (B.W.); (Z.W.)
| | | | | | | | | |
Collapse
|
6
|
Gutiérrez-Santana JC, Coria-Jiménez VR. Diagnosis and Therapeutic Strategies Based on Nucleic Acid Aptamers Selected against Pseudomonas aeruginosa: The Challenge of Cystic Fibrosis. ChemMedChem 2024; 19:e202300544. [PMID: 38016927 DOI: 10.1002/cmdc.202300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Antimicrobial resistance (AMR) is a rapidly spreading global health problem, and approximately five million deaths associated with AMR pathogens were identified prior to the COVID-19 pandemic. Pseudomonas aeruginosa has developed increasing AMR, and in patients with cystic fibrosis (CF) colonized by this bacterium, rare phenotypes have emerged that complicate the diagnosis and treatment of the hosts, in addition to multiple associated "epidemic strains" with high morbidities and mortalities. The conjugation of aptamers with fluorochromes or nanostructures has allowed the design of new identification strategies for Pseudomonas aeruginosa with detection limits of up to 1 cell ⋅ mL-1 , and the synergy of aptamers with antibiotics, antimicrobial peptides and nanostructures has exhibited promising therapeutic qualities. Some selected aptamers against this bacterium have shown intrinsic antimicrobial activity. However, these aptamers have been poorly evaluated in clinical isolates and have shown decreased interactions for CF isolates, demonstrating, in these cases, uncommon phenotypes resulting from the selective qualities of this disease as well as the great adaptive capacity of the pathogen. Therefore, finding an aptamer or set of aptamers that have the ability to recognize strange phenotypes of this bacillus is crucial in the battle against AMR.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Santana
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco Coyoacán, 04530, Ciudad de México, México
| | - Victor Rafael Coria-Jiménez
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco Coyoacán, 04530, Ciudad de México, México
| |
Collapse
|
7
|
Khan S, Monteiro JK, Prasad A, Filipe CDM, Li Y, Didar TF. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300875. [PMID: 37085965 DOI: 10.1002/adma.202300875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Despite extensive commercial and regulatory interventions, food spoilage and contamination continue to impose massive ramifications on human health and the global economy. Recognizing that such issues will be significantly eliminated by the accurate and timely monitoring of food quality markers, smart food sensors have garnered significant interest as platforms for both real-time, in-package food monitoring and on-site commercial testing. In both cases, the sensitivity, stability, and efficiency of the developed sensors are largely informed by underlying material design, driving focus toward the creation of advanced materials optimized for such applications. Herein, a comprehensive review of emerging intelligent materials and sensors developed in this space is provided, through the lens of three key food quality markers - biogenic amines, pH, and pathogenic microbes. Each sensing platform is presented with targeted consideration toward the contributions of the underlying metallic or polymeric substrate to the sensing mechanism and detection performance. Further, the real-world applicability of presented works is considered with respect to their capabilities, regulatory adherence, and commercial potential. Finally, a situational assessment of the current state of intelligent food monitoring technologies is provided, discussing material-centric strategies to address their existing limitations, regulatory concerns, and commercial considerations.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
8
|
Miao Q, Ding W, Bao X, Wang S, Lin Q, Xu Y, Lu J, Lyu M, Wang S. An efficient DNAzyme for the fluorescence detection of Vibrio cholerae. Food Sci Nutr 2023; 11:3235-3245. [PMID: 37324923 PMCID: PMC10261802 DOI: 10.1002/fsn3.3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Vibrio cholerae (Vc) causes cholera disease. Vc contamination is widely found in water and aquatic products, and therefore is a serious food safety concern, especially for the seafood industry. In this paper, we attempted the rapid detection of V. cholerae. Nine rounds of in vitro selection using an unmodified DNA library were successfully performed to find specific DNAzymes of Vc. Their activity was evaluated based on a fluorescence assay and gel electrophoresis. Finally, a DNAzyme (named DVc1) with good activity and specificity with a detection limit of 7.2 × 103 CFU/mL of Vc was selected. A simple biosensor was constructed by immobilizing DVc1 and its substrate in shallow circular wells of a 96-well plate using pullulan polysaccharide and trehalose. When the crude extracellular mixture of Vc was added to the detection wells, the fluorescent signal was observed within 20 min. The sensor effectively detected Vc in aquatic products indicating its simplicity and efficiency. This sensitive DNAzyme sensor can be a rapid onsite Vc detection tool.
Collapse
Affiliation(s)
- Qingzhen Miao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Wen Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Xiuli Bao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Siyuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Qianru Lin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Yingying Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| |
Collapse
|
9
|
Mohammadi-Arani R, Javadi-Zarnaghi F, Boccaletto P, Bujnicki JM, Ponce-Salvatierra A. DNAzymeBuilder, a web application for in situ generation of RNA/DNA-cleaving deoxyribozymes. Nucleic Acids Res 2022; 50:W261-W265. [PMID: 35446426 PMCID: PMC9252740 DOI: 10.1093/nar/gkac269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
Nucleic acid cleaving DNAzymes are versatile and robust catalysts that outcompete ribozymes and protein enzymes in terms of chemical stability, affordability and ease to synthesize. In spite of their attractiveness, the choice of which DNAzyme should be used to cleave a given substrate is far from obvious, and requires expert knowledge as well as in-depth literature scrutiny. DNAzymeBuilder enables fast and automatic assembly of DNAzymes for the first time, superseding the manual design of DNAzymes. DNAzymeBuilder relies on an internal database with information on RNA and DNA cleaving DNAzymes, including the reaction conditions under which they best operate, their kinetic parameters, the type of cleavage reaction that is catalyzed, the specific sequence that is recognized by the DNAzyme, the cleavage site within this sequence, and special design features that might be necessary for optimal activity of the DNAzyme. Based on this information and the input sequence provided by the user, DNAzymeBuilder provides a list of DNAzymes to carry out the cleavage reaction and detailed information for each of them, including the expected yield, reaction products and optimal reaction conditions. DNAzymeBuilder is a resource to help researchers introduce DNAzymes in their day-to-day research, and is publicly available at https://iimcb.genesilico.pl/DNAzymeBuilder.
Collapse
Affiliation(s)
- Razieh Mohammadi-Arani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Azadi Square, Hezar Jerib Avenue, 8174673441, Isfahan, Iran
| | - Fatemeh Javadi-Zarnaghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Azadi Square, Hezar Jerib Avenue, 8174673441, Isfahan, Iran
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|
10
|
DEOXYRIBOZYMES IN DETECTION OF PATHOGENIC BACTERIA. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim. The purpose of the review was to analyze the use of DNAzyme biosensors for the detection of pathogens. In the recent years, deoxyribozymes (DNAzymes) have a significant impact as biosensors in diverse fields, from detection of metal ions in the environment to theranostic applications and detection of microorganisms. Although routinely used sophisticated instrumental methods are available to detect pathogenic bacterial contamination, they involve time-consuming, complicated sample pre-treatment and expensive instruments. As an alternative, pathogen-specific DNAzymes have demonstrated a series of advantages: a non-destructive rapid analysis technique with in situ and real-time detection of bacteria with high sensitivity and selectivity. A wide range of pathogen-specific DNAzymes has been developed using colorimetric and fluorescence-based detections for pathogenic bacterial contamination in various samples. The current review summarizes the in vitro selection of pathogen-specific DNAzymes, various strategies utilized in the sensor designs, and their potential use in theranostic applications.
Collapse
|