1
|
Peng Q, Zhou H, Zheng H, Xie G. Investigating the role of primary fungi in Huangjiu fermentation: Insights from flavor orientation and synthetic microbiomes. Food Microbiol 2025; 129:104765. [PMID: 40086991 DOI: 10.1016/j.fm.2025.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Huangjiu, a traditional alcoholic beverage, presents a complex fermentation ecosystem primarily influenced by specific fungal species. This study utilized a culture-dependent approach and amplicon sequencing to explore fungal community succession during Huangjiu fermentation. Key fungi identified include Saccharomyces cerevisiae, Aspergillus species (flavus, oryzae, niger), Saccharomycopsis fibuligera, Thermomyces lanuginosus, Rhizopus arrhizus, Issatchenkia orientalis, Wickerhamomyces anomalus, and Diutina rugosa. Employing a synthetic microbiome, we developed a dual-strain fermentation system to evaluate the impact of these fungi on Huangjiu's organoleptic properties. Introduction of these fungi significantly altered the flavor profile, enhancing 23 volatile organic compounds (VOCs), with S. fibuligera notably increasing nine distinct VOCs. While molds contributed to bitterness by increasing bitter amino acids, S. fibuligera effectively mitigated these components, enhancing the beverage's alcohol body, smoothness, and balance. These findings provide crucial insights for optimizing Huangjiu fermentation to improve its quality and appeal.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Huihui Zhou
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
2
|
Chen H, Zhong S, Liu Z, Hu Z, Wang C, Zhou Y, Xu N, Zhao F, Li D, Hu Y. Microbiome-metabolomic insights into the systemic regulation in Fangxian Huangjiu fermentation. Food Chem 2025; 481:143980. [PMID: 40154057 DOI: 10.1016/j.foodchem.2025.143980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Metabolic forces drive microecological succession in Huangjiu fermentation. This study investigates the dynamic metabolic-microbial interplay during Fangxian Huangjiu fermentation. Temporal changes of metabolome and microbiome revealed a syntropic relationship that purified the microbial community with convergent metabolic patterns. With species turnover driving microbial community structure, early-stage microbiomes exhibited great functional diversity. Functions related to energy and molecular building blocks were enriched at the end of early stage, and contributed greatly to microbial adaptation, highlighting the importance of metabolic forces in shaping community structure. Proteobacteria were identified as key facilitators of diverse metabolic activities, and Enterobacter emerged as a fundamental microbial community particularly for materials transformation. Correlation analysis enriched amino acid metabolism pathways. Further, Pantoea ananatis and Wickerhamomyces anomalus were isolated to enhance sphingosine-1-phosphate, γ-aminobutyric acid, and creatine levels without altering physicochemical properties. The study offers insights into the regulation of Huangjiu fermentation, and suggested potential micobiome manipulation to optimize characteristics.
Collapse
Affiliation(s)
- Haiyin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Sicheng Zhong
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhao Hu
- Hubei Lulingwang Liquor Industry Co., Ltd, Fangxian 442399, Hubei, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yuke Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Ning Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Fuquan Zhao
- Hubei Lulingwang Liquor Industry Co., Ltd, Fangxian 442399, Hubei, China
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yong Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China; Hubei Xizhiyuan Bioengineering Co., Ltd, 445099, Hubei, China.
| |
Collapse
|
3
|
Peng Q, Zheng H, Xue J, Xu Y, Hou Q, Yang K, Xia H, Xie G. Mechanism of Polygonum hydropiper reducing ethyl carbamate in Chinese rice wine (Huangjiu) brewing. Food Microbiol 2025; 125:104628. [PMID: 39448146 DOI: 10.1016/j.fm.2024.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
Polygonum hydropiper (PH) is a rich source of active compounds and serves as a pivotal ingredient in Chinese rice wine (Huangjiu) production. This study investigates the impact of PH and Polygonum hydropiper extract (PHE) on ethyl carbamate (EC) production during Huangjiu fermentation. Our findings reveal that PH enhances the relative abundance of Bacillus subtilis in Huangjiu fermentation, thereby facilitating its interaction with Saccharomyces cerevisiae. Furthermore, PH modulates the urea metabolism of S. cerevisiae. In the PH-B. subtilis-S. cerevisiae fermentation system, the expression of DUR1,2 and DUR3 genes in S. cerevisiae is upregulated. This augmentation leads to increased urea uptake and metabolism by S. cerevisiae in the fermentation broth, subsequently reducing the urea concentration in the fermentation medium (The EC content in the CK group was approximately 355.55 % and 356.05 % higher than those in the PH and PHE groups, respectively). Consequently, PH demonstrates promise in reducing the EC concentration of Huangjiu, offering a novel approach to enhance the safety of Huangjiu consumption.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Jingrun Xue
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, 312000, China
| | - Qifan Hou
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Kaiming Yang
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huangjia Xia
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
4
|
Shen C, Yu Y, Zhang X, Zhang H, Chu M, Yuan B, Guo Y, Li Y, Zhou J, Mao J, Xu X. The dynamic of physicochemical properties, volatile compounds and microbial community during the fermentation of Chinese rice wine with diverse cereals. Food Res Int 2024; 198:115319. [PMID: 39643362 DOI: 10.1016/j.foodres.2024.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the impact of liquid state fermentation on the key flavor compounds and microbial community structure in Chinese rice wine brewed from five different raw materials: buckwheat, sorghum, japonica rice, glutinous rice, and black rice. Using HS-SPME-GC-MS and HPLC, the volatile compounds were analyzed across various grain liquefaction methods, detecting 82 volatiles, including esters, alcohols, aldehydes, and acids. The concentration of flavor compounds such as esters, amino acids, phenolic acids, and organic acids varied significantly depending on the raw material used. Based on odor activity values, 31 key compounds were identified, including 15 ethyl esters, like ethyl laurate, responsible for the unique and complex aroma of the rice wines. Bitter amino acids, making up over 50 % of the total amino acids, were predominant. Among the varieties, the buckwheat-fermented wine exhibited the highest ester content (27.39 mg/L), nearly double that of other samples, along with elevated amino acids (1.47 mg/mL) and phenolic acids (904.29 mg/L). Black rice ranked second in amino acid content (0.93 mg/mL), while glutinous rice had the highest organic acid content (239.76 mg/mL). Metagenomic sequencing on the fifth day of fermentation revealed significant differences in microbial community structure among the raw materials. Saccharomyces, Aspergillus, Thermomyces, Epicoccus, and Albertella were dominant fungi, while Weissella, Thermoactinomyces, Bacillus, and Saccharopolyspora were dominant bacteria. Sensory analysis showed that buckwheat-fermented rice wine was distinguished by its honey, floral, creamy, and umami attributes, while balancing alcohol, acidity, bitterness, and Qu aroma. The results demonstrate the significant influence of raw material selection and liquefaction method on both flavor profile and microbial diversity in Chinese rice wine.
Collapse
Affiliation(s)
- Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xue Zhang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Haoqiang Zhang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Mengjia Chu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Biao Yuan
- Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Yinping Li
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jiandi Zhou
- National Engineering Research Center of Huangjiu, China Shaoxing Yellow Rice Wine Group Co., Ltd., Shaoxing 312000, China
| | - Jian Mao
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; Department of Food Quality and Safety, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Peng Q, Zheng H, Li J, Li S, Huang J, Xu Y, Xie G. Impact of Bacillus subtilis on Chinese yellow rice wine (Huangjiu) fermentation: Method variations and flavor analysis. Food Chem 2024; 460:140658. [PMID: 39126949 DOI: 10.1016/j.foodchem.2024.140658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
This investigation explores the impact of various fermentation techniques and the inoculation of Bacillus subtilis spores on the physicochemical properties and principal flavor profiles of Huangjiu. Employing sensory analysis, headspace solid-phase microextraction, gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS), and orthogonal partial least squares discriminant analysis (OPLS-DA), we observed that these variables significantly alter the physicochemical attributes of Huangjiu. Our analysis, integrating volatile organic compounds (VOCs) with odor activity values (OAV), revealed that while B. subtilis inoculation modifies the concentrations of key flavor compounds, it does not affect their types. Notably, the inoculation enhances the concentrations of 13 primary flavor compounds, thereby enriching floral and fruity notes while reducing higher alcohol levels. These findings contribute valuable insights into the flavor formation mechanisms of Huangjiu and guide the optimization of fermentation processes.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiachen Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Shanshan Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiaxin Huang
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co.,Ltd., Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China..
| |
Collapse
|
6
|
Peng Q, Zheng H, Zhou H, Chen J, Xu Y, Wang Z, Xie G. Elucidating core microbiota in yellow wine (Huangjiu) through flavor-oriented synthesis and construction of microbial communities. Food Res Int 2024; 197:115139. [PMID: 39593354 DOI: 10.1016/j.foodres.2024.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 11/28/2024]
Abstract
Huangjiu, a traditional Chinese alcoholic beverage with a history spanning thousands of years, holds significant cultural and economic value in China. Despite its importance, the complexity of Huangjiu fermentation and the intricate interactions within its microbial community remain underexplored. This study addresses this gap by identifying the core volatile organic compounds (VOCs) and key microorganisms that define the flavor profile of Huangjiu. We employed HS-SPME-GC-MS along with aroma reconstitution and omission experiments to identify core VOCs, including Isobutanol, Isoamyl alcohol, β-Phenylethanol, and others. Metagenomic sequencing combined with QPCR was used to analyze microbial communities, revealing the temporal and spatial dynamics during fermentation. A synthetic microbial community model was constructed using the core microbes identified: Saccharomyces cerevisiae, Lactobacillus brevis, Saccharopolyspora rectivirgula, Bacillus subtilis, Leuconostoc citreum, Lactobacillus plantarum, Lactobacillus curvatus, Lactobacillus casei, and Aspergillus oryzae. This model successfully replicated Huangjiu's core VOCs and sensory characteristics, increased alcohol content, and reduced acidity. Our study contributes valuable insights into the microbial influences on Huangjiu quality, paving the way for its enhanced production and providing a foundation for future research in fermented beverages.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huihui Zhou
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jingyi Chen
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, China
| | - Zhixin Wang
- Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
7
|
Yu H, Li Z, Zheng D, Chen C, Ge C, Tian H. Exploring microbial dynamics and metabolic pathways shaping flavor profiles in Huangjiu through metagenomic analysis. Food Res Int 2024; 196:115036. [PMID: 39614478 DOI: 10.1016/j.foodres.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
In the production of Huangjiu (Chinese rice wine), fermentation microbiota plays a crucial role in flavor formation. This study investigates the microbial dynamics and metabolic pathways that shape the flavor profiles of Huangjiu using different starters. Sensory evaluation and metabolite analysis of six starters revealed significant differences in ester, fruity, and sweet aromas. Saccharomyces, Aspergillus, and Rhizopus were identified as the dominant genera significantly impacting fermentation. Metagenomic species and functional gene annotations of Huangjiu starters elucidated the metabolic pathways for key flavor compounds synthesis pathways. Enzyme genes involved in these pathways were classified and annotated to microbial genera using the NR database, identifying 231 classes of relevant catalytic enzymes and 154 microbial genera. A metabolic relationship between flavor compound formation and different microbial genera was established using catalytic enzymes as a bridge. This study highlights the impact of starter composition on the final product and provides new insights for optimizing starters to enhance Huangjiu flavor quality.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Ziqing Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Danwei Zheng
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chang Ge
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
8
|
Ma J, Huang W, Ma Y, Li J, Feng N, Wen B, Jia F, Wang Y, Gao Z. Effect of Chinese bayberry residue on quality of Chinese quinoa ( Chenopodium quinoa Willd.) Rice wine. Food Chem X 2024; 23:101584. [PMID: 39007111 PMCID: PMC11245981 DOI: 10.1016/j.fochx.2024.101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Chinese bayberry residue (CBR) is a by-product of processing, which can be used as an auxiliary material during the processing of quinoa rice wine. In this study, the effects of CBR on the chemical profile, bioactive function, taste traits, and flavor of Chinese quinoa rice wine (CQRW) were investigated. The results showed that adding CBR increased the total phenolics, the total flavonoids, and antioxidant capacity. Malic acid content was the highest in Chinese rice wine (CRW), while the total content of components detected in HPLC-MS/MS was the highest in 10%CBR + CQRW. The CQRW exhibited the highest amino acid content, followed by 20%CBR + CQRW. E-tongue analysis results showed that 10%CBR + CQRW, 20%CBR + CQRW, and CQRW had the closest taste traits. Moreover, GC-MS analysis identified 72 aroma compounds in 10%CBR + CQRW sample, more than other samples. In summary, adding 10% CBR significantly improved the quality of CQRW.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- Ministerial and Provincial Co-Innovation Center for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Agriculture College of Shanxi Agricultural university, Taigu, Shanxi 030801, PR China
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- Ministerial and Provincial Co-Innovation Center for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Agriculture College of Shanxi Agricultural university, Taigu, Shanxi 030801, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Naihong Feng
- Institute of Economic Crops, Shanxi Agricultural University, Taiyuan, Shanxi 030031, PR China
| | - Bo Wen
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Feihong Jia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Zhiqiang Gao
- Ministerial and Provincial Co-Innovation Center for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Agriculture College of Shanxi Agricultural university, Taigu, Shanxi 030801, PR China
| |
Collapse
|
9
|
Luo Y, Zhang C, Liao H, Luo Y, Huang X, Wang Z, Xiaole X. Integrative metagenomics, volatilomics and chemometrics for deciphering the microbial structure and core metabolic network during Chinese rice wine (Huangjiu) fermentation in different regions. Food Microbiol 2024; 122:104569. [PMID: 38839228 DOI: 10.1016/j.fm.2024.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yunchuan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Xia Xiaole
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300000, PR China.
| |
Collapse
|
10
|
Wang X, Cai G, Wu D, Lu J. Correlation between the bacterial community succession and purine compound changes during Huangjiu fermentation. Food Microbiol 2024; 121:104522. [PMID: 38637084 DOI: 10.1016/j.fm.2024.104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Purine is mainly culprit of hyperuricemia (HUA) and gout, which is widely present in Huangjiu in the form of free bases. Bacterial succession plays an important role in quality control in Huangjiu. The correlation between the purine compound content and the bacterial communities during the fermentation process has not yet been evaluated. In this study, high-throughput sequencing (HTS) technology was used to monitor the bacterial community composition of Huangjiu at different fermentation stages. The correlation between the bacterial community and the contents of physicochemical properties and purine compounds were evaluated using the Spearman analysis method. The key enzymes of purine metabolism pathway in the microbial community were analyzed by bioinformatics using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The results showed that the purine content in Huangjiu increased gradually in 0∼9d of fermentation (21.05-65.71 mg/L), and stabilized gradually in 12∼18d (65.63-69.55 mg/L), while the abundance of lactic acid bacteria (LAB) of bacterial microbial flora were increased (0∼9d) and then stabilized (12∼18d). Moreover, Lactobacillus acetotolerans and Lactobacillus helveticus were highly correlated positively with purine contents, while Limosilactobacillus fermentum and Lactiplantibacillus plantarum were correlated negatively. In addition, the dominant strains of bacteria were involved in the metabolism of purine, and the key enzymes for purine compound synthesis were more abundant than that for purine degradation. This study is helpful to scientifically understand the formation mechanism of purines, providing a basis for screening functional strains of purine degrading to accurately regulate purine level in Huangjiu.
Collapse
Affiliation(s)
- Xianglin Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Guolin Cai
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Dianhui Wu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
11
|
Li L, Li N, Fu J, Liu J, Ping Wen X, Cao H, Xu H, Zhang Y, Cao R. Synthesis of an autochthonous microbial community by analyzing the core microorganisms responsible for the critical flavor of bran vinegar. Food Res Int 2024; 175:113742. [PMID: 38129049 DOI: 10.1016/j.foodres.2023.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Traditional bran vinegar brewing unfolds through natural fermentation, a process driven by spontaneous microbial activity. The unique metabolic activities of various microorganisms lead to distinct flavors and qualities in each batch of vinegar, making it challenging to consistently achieve the desired characteristic flavor compounds. Therefore, identifying the critical microbial species responsible for flavor production and designing starter cultures with improved fermentation efficiency and characteristic flavors are effective methods to address this discrepancy. In this study, 11 core functional microbial species affecting the fermentation flavor of Sichuan shai vinegar (Cupei were placed outside solarization and night-dew for more than one year, and vinegar was the liquid leached from Cupei) (SSV), were revealed by combining PacBio full-length diversity sequencing based on previous metagenomics. The effects of environmental factors and microbial interactions on the growth of 11 microorganisms during fermentation were verified using fermentation experiments. Ultimately, the microbial community was strategically synthesized using a 'top-down' approach, successfully replicating the distinctive flavor profile of Sichuan shai vinegar (SSV). The results showed that the interaction between microorganisms and environmental factors affected microorganism growth. Compared with traditional fermentation, the synthetic microbial community's vinegar-fermented grains (Cupei) can reproduce the key flavor of SSV and is conducive to the production of amino acids. In this study, the key flavor of SSV was reproduced through rational design of the synthetic microbial community. This achievement holds profound significance for the broader application of microbiome assembly strategies in the realm of fermented foods.
Collapse
Affiliation(s)
- Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China.
| | - Na Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Junjie Fu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Jun Liu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Xue Ping Wen
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Hong Cao
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Hongwei Xu
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Ying Zhang
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Rong Cao
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| |
Collapse
|
12
|
Wang X, Yang S, Lu J, Xie G, Wu D. Screening and application of purine degrading Limosilactobacillus fermentum LF-1 from Huangjiu fermentation broth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7921-7931. [PMID: 37490358 DOI: 10.1002/jsfa.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND As the important building blocks of nucleic acids, purines are alkaloids and responsible for hyperuricemia and gout. The purine content in Huangjiu is higher, and mainly exists in the form of free bases, which is easier to be absorbed by human body. However, the currently available reports on purine in Huangjiu mainly focus on detection methods and content survey. No studies on the regulation of the purine content in Huangjiu have been reported. RESULTS Eighty-four strains, with the degradation capacity of purine, were screened from the fermentation broth of Huangjiu. In detail, the isolated lactic acid bacteria (LAB) strain 75 # showed the strongest degradation ability of guanosine, inosine and four purines, which reduce their levels by 83.4% (guanosine), 97.4% (inosine), 95.1% (adenine), 95.0% (guanine), 94.9% (hypoxanthine) and 65.9% (xanthine), respectively. Subsequently, the LAB strain 75# was identified to be Limosilactobacillus fermentum by 16S rRNA gene sequencing, which was named as Limosilactobacillus fermentum LF-1 and applied to the fermentation of Huangjiu in the laboratory. Compared with the fermentation broth of Huangjiu without adding L. fermentum LF-1, the content of purine compounds in the fermentation broth inoculated with L. fermentum LF-1 was reduced by 64.7%. In addition, the fermented Huangjiu had richer flavor compounds, and the physicochemical indices were in accordance with the national standard of Chinese Huangjiu. CONCLUSION The screened strain L. fermentum LF-1 may be a promising probiotic for the development of a novel that can efficiently degrade purine in Huangjiu. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianglin Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shaojie Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guangfa Xie
- Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
- Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
13
|
Chen G, Yuan Y, Tang S, Yang Z, Wu Q, Liang Z, Chen S, Li W, Lv X, Ni L. Comparative analysis of microbial communities and volatile flavor components in the brewing of Hongqu rice wines fermented with different starters. Curr Res Food Sci 2023; 7:100628. [PMID: 38021257 PMCID: PMC10660030 DOI: 10.1016/j.crfs.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
As one of the quintessential representatives of Chinese rice wine, Hongqu rice wine is brewed with glutinous rice as the main raw material and Hongqu (Gutian Qu or Wuyi Qu) as the fermentation starter. The present study aimed to investigate the impact of Hongqu on the volatile compositions and the microbial communities in the traditional production of Gutian Hongqu rice wine (GT) and Wuyi Hongqu rice wine (WY). Through the OPLS-DA analysis, 3-methylbutan-1-ol, isobutanol, ethyl lactate, ethyl acetate, octanoic acid, diethyl succinate, phenylethyl alcohol, hexanoic acid and n-decanoic acid were identified as the characteristic volatile flavor components between GT and WY. Microbiome analysis revealed significant enrichments of Lactobacillus, Pediococcus, Aspergillus and Hyphopichia in WY brewing, whereas Monascus, Saccharomyces, Pantoea, and Burkholderia-Caballeronia-Paraburkholderia were significantly enriched in GT brewing. Additionally, correlation analysis showed that Saccharomyces, Lactobacillus, Weissella and Pediococcus were significantly positively correlated wih most characteristic volatile components. Conversely, Picha, Monascus, Franconibacter and Kosakonia showed significant negative correlations with most of the characteristic volatile components. Furthermore, bioinformatical analysis indicated that the gene abundances for enzymes including glucan 1,4-alpha-glucosidase, carboxylesterase, alcohol dehydrogenase, dihydroxy-acid dehydratase and branched-chain-amino-acid transaminase were significantly higher in WY compared to GT. This finding explains the higher content of higher alcohols and characteristic esters in WY relative to GT. Collectively, this study provides a theoretical basis for improving the flavor profile of Hongqu rice wine and establishing a solid scientific foundation for the sustainable development of Hongqu rice wine industry.
Collapse
Affiliation(s)
- Guimei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yujie Yuan
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Suwen Tang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Qi Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Wenlong Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xucong Lv
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Fujian Huizelong Alcohol Co., Ltd, Pingnan County, Ningde, Fujian, 352303, PR China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| |
Collapse
|
14
|
Wang J, Wang D, Huang M, Sun B, Ren F, Wu J, Meng N, Zhang J. Identification of nonvolatile chemical constituents in Chinese Huangjiu using widely targeted metabolomics. Food Res Int 2023; 172:113226. [PMID: 37689963 DOI: 10.1016/j.foodres.2023.113226] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 09/11/2023]
Abstract
Huangjiu is a traditional Chinese alcoholic beverage, whose non-volatile chemical profile remains unclarified. Here, the non-volatile compounds of Huangjiu were first identified using a widely targeted metabolomics analysis. In total, 1146 compounds were identified, 997 of them were identified in Huangjiu for the first time. Moreover, 113 compounds were identified as key active ingredients of traditional Chinese medicines and 78 components were found as active pharmaceutical ingredients against 389 diseases. In addition, the comparative analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that Huangjiu from different regions differ in metabolite composition. Cofactor and amino acid biosynthesis and ABC transport were the dominant metabolic pathways. Furthermore, 7 metabolic pathways and 77 metabolic pathway regulatory markers were further found to be related with the different characteristics of different Huangjius. This study provides a theoretical and material basis for the quality control, health efficacy, and industrial development of Huangjiu.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Danqing Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jihong Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Nan Meng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinglin Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Liu S, Ren D, Qin H, Yin Q, Yang Y, Liu T, Zhang S, Mao J. Exploring major variable factors influencing flavor and microbial characteristics of upper jiupei. Food Res Int 2023; 172:113057. [PMID: 37689852 DOI: 10.1016/j.foodres.2023.113057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 09/11/2023]
Abstract
The flavor quality of jiupei gradually decreased with the increase of cellar height. In this study, high-throughput sequencing, metabolomics and HS-SPME-GC-MS techniques were used to explore the mechanism of flavor quality decline in upper jiupei in mud sealed cellars. The results showed the total content of flavor compounds increased from 1947.48 mg/L in top-site to 3855.51 mg/L in bottom of the cellar, and 19 differential flavor compounds were identified based on OPLS-DA, mainly including 12 esters such as ethyl hexanoate, ethyl butyrate, propyl hexanoate, hexyl caproate and 5 other substances such as caprylic acid, decanal and nonaldehyde. Lactobacillus, Prevotella and Methanobacterium were dominant genus of bacteria in all of cellars, while Thermomyces, Aspergillus, Pichia, Trichosporon and Rhizopus were the dominant genera of fungi. Oxygen was the key factor causing the quality heterogeneity of flavor substances and microbial communities in jiupei at different depths. Anaerobic micro-pressure sealed cellars (AMSC) method was developed and applied to jiupei fermentation, the difference in oxygen content between top site (5.90 ± 0.62 %) and bottom of the cellar (4.17 ± 0.75 %) in AMSC was smaller than that in mud sealed cellars, there were no significant differences in flavor substances content between top site and bottom of the cellar, and microbial communities showed no significant differences of the four-layer jiupei. This study provides a theoretical support for improving the flavor quality of upper jiupei.
Collapse
Affiliation(s)
- Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hui Qin
- Luzhou Laojiao Group Co. Ltd, Luzhou 646000, China
| | - Qianqian Yin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Yang
- Luzhou Laojiao Group Co. Ltd, Luzhou 646000, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Suyi Zhang
- Luzhou Laojiao Group Co. Ltd, Luzhou 646000, China.
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Zheng S, Zhang W, Ren Q, Wu J, Zhang J, Wang B, Meng N, Li J, Huang M. The Production of Intensified Qu and Its Microbial Communities and Aroma Variation during the Fermentation of Huangjiu (Chinese Rice Wine). Foods 2023; 12:2674. [PMID: 37509766 PMCID: PMC10378853 DOI: 10.3390/foods12142674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, intensified Qu (IQ) has been gradually applied to brewing in order to improve the aroma of Huangjiu (Chinese rice wine). In this study, Saccharomyces cerevisiae and Wickerhamomyces anomalus solutions were added to Fengmi Qu (FMQ) from Fangxian, China to produce IQ, and brewing trial was conducted. High-throughput sequencing (HTS) was used to analyze the microbial community in fermentation broth of IQ (IQFB). Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and sensory evaluation were performed to analyze volatile aroma compounds (VACs) in sample without Qu and both fermentation broths. The results showed that Pediococcus, Cronobacter, Enterococcus, Weissella, and Acinetobacter and Saccharomycopsis, Wickerhamomyces, and Saccharomyces were dominant bacterial and fungal groups, respectively. A total of 115 VACs were detected, and the content of esters including ethyl acetate, isoamyl acetate, and so on was noticeably higher in IQFB. The finding of sensory evaluation reflected that adding pure yeast to Qu could enhance fruit and floral aromas. Correlation analysis yielded 858 correlations between significant microorganisms and different VACs. In addition, prediction of microbial community functions in IQFB revealed global and overview maps and carbohydrate metabolism to be the main one. This study is advantageous for further regulation of the fermentation process of Huangjiu by microbial means.
Collapse
Affiliation(s)
- Siman Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wendi Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qing Ren
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jinchen Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
17
|
Yu J, Zhou Z, Xu X, Ren H, Gong M, Ji Z, Liu S, Hu Z, Mao J. Differentiating Huangjiu with Varying Sugar Contents from Different Regions Based on Targeted Metabolomics Analyses of Volatile Carbonyl Compounds. Foods 2023; 12:foods12071455. [PMID: 37048277 PMCID: PMC10094199 DOI: 10.3390/foods12071455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Huangjiu is one of the oldest alcoholic beverages in the world. It is usually made by fermenting grains, and Qu is used as a saccharifying and fermenting agent. In this study, we identified differential carbonyl compounds in Huangjiu with varying sugar contents from different regions. First, we developed and validated a detection method for volatile carbonyl compounds in Huangjiu, and for optimal extraction, 5 mL of Huangjiu and 1.3 g/L of O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) were incubated at 45 °C for 5 min before extracting the volatile carbonyl compounds at 45 °C for 35 min. Second, the targeted quantitative analysis of 50 carbonyl compounds in Huangjiu showed high levels of Strecker aldehydes and furans. Finally, orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to differentiate between Huangjiu with different sugar contents, raw materials, and region of origin. A total of 19 differential carbonyl compounds (VIP > 1, p < 0.05) were found in Huangjiu with different sugar contents (semidry and semisweet Huangjiu), and 20 differential carbonyl compounds (VIP > 1, p < 0.05) were found in different raw materials for Huangjiu production (rice and nonrice Huangjiu). A total of twenty-two and eight differential carbonyl compounds, with VIP > 1 and p < 0.05, were identified in semidry and semisweet Huangjiu from different regions (Zhejiang, Jiangsu, Shanghai, and Fujian), respectively.
Collapse
Affiliation(s)
- Junting Yu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Xibiao Xu
- Shaoxing Nverhong Winery Co., Ltd., Shaoxing 312000, China
| | - Huan Ren
- Shaoxing Nverhong Winery Co., Ltd., Shaoxing 312000, China
| | - Min Gong
- College of Life Sciences, Linyi University, Linyi 276000, China
| | - Zhongwei Ji
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhiming Hu
- Shaoxing Nverhong Winery Co., Ltd., Shaoxing 312000, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Huangjiu, Shaoxing 312000, China
| |
Collapse
|
18
|
Impact of Aging Microbiome on Metabolic Profile of Natural Aging Huangjiu through Machine Learning. Foods 2023; 12:foods12040906. [PMID: 36832981 PMCID: PMC9956941 DOI: 10.3390/foods12040906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Aging is a time-consuming step in the manufacturing of fermented alcoholic beverages. Natural-aging huangjiu sealed in pottery jars was taken as an example to investigate the changes of physiochemical indexes during aging and to quantify intercorrelations between aging-related factors and metabolites through machine learning methods. Machine learning models provided significant predictions for 86% of metabolites. Physiochemical indexes well reflected the metabolic profile, and total acid was the most important index that needed to be controlled. For aging-related factors, several aging biomarkers of huangjiu were also well predicted. Feature attribution analysis showed aging year was the most powerful predictive factor, and several microbial species were significantly associated with aging biomarkers. Some of the correlations, mostly connected to environmental microorganisms, were newly found, showing considerable microbial influence on aging. Overall, our results reveal the potential determinants that affect the metabolic profile of aged huangjiu, paving the way for a systematical understanding of changes in metabolites of fermented alcoholic beverages.
Collapse
|
19
|
Yu H, Liu S, Qin H, Zhou Z, Zhao H, Zhang S, Mao J. Artificial intelligence-based approaches for traditional fermented alcoholic beverages' development: review and prospect. Crit Rev Food Sci Nutr 2022; 64:2879-2889. [PMID: 36310425 DOI: 10.1080/10408398.2022.2128034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditional fermented alcoholic beverages (TFABs) have gained widespread acceptance and enjoyed great popularity for centuries. COVID-19 pandemics lead to the surge in health demand for diet, thus TFABs once again attract increased focus for the health benefits. Though the production technology is quite mature, food companies and research institutions are looking for transformative innovation in TFABs to make healthy, nutritious offerings that give a competitive advantage in current beverage market. The implementation of intelligent platforms enables companies and researchers to gather, store and analyze data in a more convenient way. The development of data collection methods contributed to the big data environment of TFABs, providing a fresh perspective that helps brewers to observe and improve the production steps. Among data analytical tools, Artificial Intelligence (AI) is considered to be one of the most promising methodological approaches for big data analytics and decision-making of automated production, and machine learning (ML) is an important method to fulfill the goal. This review describes the development trends and challenges of TFABs in big data era and summarize the application of AI-based methods in TFABs. Finally, we provide perspectives on the potential research directions of new frontiers in application of AI approaches in the supply chain of TFABs.
Collapse
Affiliation(s)
- Huakun Yu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, China
| | - Shuangping Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Luzhou Laojiao Group Co. Ltd, Luzhou, China
| | - Hui Qin
- Luzhou Laojiao Group Co. Ltd, Luzhou, China
| | - Zhilei Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China
| | - Hongyuan Zhao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, China
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Suyi Zhang
- Luzhou Laojiao Group Co. Ltd, Luzhou, China
| | - Jian Mao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China
| |
Collapse
|
20
|
Zheng H, Meng K, Liu J, Lin Z, Peng Q, Xie G, Wu P, Elsheery NI. Identification and expression of bifunctional acid urea-degrading enzyme/urethanase from Enterobacter sp. R-SYB082 and its application in degradation of ethyl carbamate in Chinese rice wine (Huangjiu). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4599-4608. [PMID: 35179235 DOI: 10.1002/jsfa.11818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ethyl carbamate (EC) is a potential carcinogen existing in fermented foods such as Chinese rice wine (Huangjiu). Since urea is an important precursor of EC, the degradation of urea could be an effective way to reduce EC in foods. RESULTS In this study, an Enterobacter sp. R-SYB082 with acid urea degradation characteristics was obtained through microbial screening. Further research isolated a new acid urea-degrading enzyme from R-SYB082 strain - ureidoglycolate amidohydrolase (UAH) - which could degrade EC directly. The cloning and expression of UAH in Escherichia coli BL21 (DE3) suggested that the activity of urea-degrading enzyme reached 3560 U L-1 , while urethanase activity reached 2883 U L-1 in the optimal fermentation condition. The enzyme had the dual ability of degrading substrate urea and product EC. The removal rate of EC in Chinese rice wine could reach 90.7%. CONCLUSION This study provided a new method for the integrated control of EC in Chinese rice wine and other fermented foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huajun Zheng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Kai Meng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Jun Liu
- Thermo Fisher Scientific (China) Co. Ltd, Shanghai, China
| | - Zichen Lin
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Qi Peng
- National Engineering Research Center for Chinese Huangjiu (Branch Center), Shaoxing University, Shaoxing, China
- School of Life Science, Shaoxing University, Shaoxing, China
- California Institute of Food and Agricultural Research, University of California, Davis, CA, USA
| | - Guangfa Xie
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | | |
Collapse
|
21
|
The effects of an innovative pulping technique of synchronously pulping and gelatinizing treatment on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of glutinous rice wine. Food Sci Biotechnol 2022; 31:1343-1353. [PMID: 35992314 PMCID: PMC9385904 DOI: 10.1007/s10068-022-01119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 02/02/2023] Open
Abstract
Liquid-state fermentation has been increasingly applied in the industrial glutinous rice wine (GRW) production. However, products brewed by this emerging technique possess some deficiencies in flavor quality. Therefore, this study firstly developed and optimized an innovative pulping technique by the synchronously pulping and gelatinizing treatment (Process I) to improve GRW flavor quality, and then revealed the influences of Process I on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of GRW. Results show that Process I significantly (p < 0.05) enriched the soluble solid and crude protein content of glutinous rice milk by improving gelatinization degree and pulping efficiency, which consequently enhanced the microbial growth, glycolysis, and protein decomposition during the GRW fermentation process. GC-MS analysis shows that Process I sequentially significantly (p < 0.05) enhanced the esterification and Ehrlich or Harrison pathway during the fermentation process. This contributed to a higher content of key ester and alcohol compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01119-7.
Collapse
|
22
|
Peng Q, Zheng H, Meng K, Zhu Y, Zhu W, Zhu H, Shen C, Fu J, Elsheery NL, Xie G, Han J, Wu P, Fan Y, Girma D, Sun J, Hu B. The way of Qu-making significantly affected the volatile flavor compounds in Huangjiu (Chinese rice wine) during different brewing stages. Food Sci Nutr 2022; 10:2255-2270. [PMID: 35844911 PMCID: PMC9281927 DOI: 10.1002/fsn3.2835] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
The volatile flavor compounds of Huangjiu (Chinese rice wine) brewed from different raw materials were obviously different, but there were few studies on the volatile flavor compounds of Huangjiu brewed from different wheat Qu at different brewing stages. In this paper, headspace-solid phase microextraction combined with gas chromatography-mass spectrometry, combined with principal component analysis and sensory evaluation, was used to determine the volatile flavor compounds in Huangjiu brewed from wheat Qu made by hand and wheat Qu made by mechanical. The results showed that there were significant differences in the contents and types of volatile flavor substances in Huangjiu brewed from different wheat Qu at fermentation stages, and the prefermentation and postfermentation Huangjiu samples could be well distinguished from each other. Compared with the Huangjiu brewed from wheat Qu made by mechanical, the Huangjiu brewed from wheat Qu made by hand has stronger aroma and better taste.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
- California Institute of Food and Agricultural ResearchUniversity of CaliforniaDavisCaliforniaUSA
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Kai Meng
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Yimeng Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Wenxia Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Hongyi Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Chi Shen
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Jianwei Fu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Nabil l. Elsheery
- Agricultural Botany DepartmentFaculty of AgricultureTanta UniversityTantaEgypt
| | - Guangfa Xie
- College of Biology and Environmental EngineeringCollege of Shaoxing CRWZhejiang Shuren UniversityHangzhouChina
| | | | - Peng Wu
- School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Yuyan Fan
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - DulaBealu Girma
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Jianqiu Sun
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Baowei Hu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| |
Collapse
|
23
|
Metabolites comparison in post-fermentation stage of manual (mechanized) Chinese Huangjiu (yellow rice wine) based on GC–MS metabolomics. Food Chem X 2022; 14:100324. [PMID: 35586029 PMCID: PMC9108467 DOI: 10.1016/j.fochx.2022.100324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022] Open
Abstract
The differential metabolites of manual (mechanized) Huangjiu were determined during post-fermentation stage. The metabolic pathways associated with the differential metabolites were identified. The contribution of different metabolites to the flavor of Huangjiu was analyzed.
In order to understand the differences of metabolites and their key metabolic pathways between traditional manual and mechanized Huangjiu, gas chromatography-mass spectrometry (GC–MS) combined with non targeted metabolomics was used to track and monitor Huangjiu in the whole post-fermentation stage. The results showed that 25 metabolites and 14 metabolites were identified as differential metabolites in manual and mechanized Huangjiu, respectively (VIP > 1, P < 0.05); three metabolic pathways had significant effects on differential metabolites (−log (P) > 1, impact > 0.01). Compared with the two kinds of Huangjiu, 21 kinds of metabolites were identified as differential metabolites (VIP > 1, P < 0.05); four metabolic pathways had significant effects on differential metabolites (−log (P) > 1, impact > 0.01). This study is helpful to gain insight into the underlying mechanism of flavor formation during the post-fermentation process of Huangjiu and provide a theoretical basis for the industrial development.
Collapse
|