1
|
Ou SJL, Yusri H, Yang D, Khoo CM, Liu MH. Effects of Moderate Consumption of a Probiotic-Fermented Sour Beer on the Inflammatory, Immunity, Lipid Profile, and Gut Microbiome of Healthy Men in a Participant-Blinded, Randomized-Controlled Within-Subject Crossover Study. Food Sci Nutr 2024; 12:10867-10880. [PMID: 39723031 PMCID: PMC11666817 DOI: 10.1002/fsn3.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/17/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Probiotic sour beer (PRO) fermented with Lacticaseibacillus paracasei Lpc-37 is a novel beverage option, which may potentially offer health benefits. In this study, the effects of PRO are evaluated on the inflammatory, immunity, lipid profile, and gut microbiome of consumers in a 5-week, participant-blinded, randomized-controlled within-subject crossover study. Twenty-one healthy male participants consumed 330 mL of PRO and normal sour beer (CON) daily for 2 weeks each with a 1 week of washout. Stool and blood samples were collected before and after each intervention. Significant increases for Proteobacteria and Bacteroides and a significant decrease in Dialister (p < 0.05) were observed in the CON group, while gut microbiome populations remained relatively stable in the PRO group. A significant increase was also found in HDL-cholesterol after PRO (p < 0.05), while no significant differences were observed in inflammatory and immunity profiles. Further research is warranted to explore its HDL-cholesterol increasing potential.
Collapse
Affiliation(s)
- Sean Jun Leong Ou
- Department of Food Science & TechnologyNational University of SingaporeSingaporeSingapore
| | - Hafizah Yusri
- Department of Food Science & TechnologyNational University of SingaporeSingaporeSingapore
| | - Dimeng Yang
- Department of Food Science & TechnologyNational University of SingaporeSingaporeSingapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Mei Hui Liu
- Department of Food Science & TechnologyNational University of SingaporeSingaporeSingapore
| |
Collapse
|
2
|
Ramachandran G, Pottakkat B. Probiotics-A Promising Novel Therapeutic Approach in the Management of Chronic Liver Diseases. J Med Food 2024; 27:467-476. [PMID: 38574254 DOI: 10.1089/jmf.2023.k.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
An increased incidence of liver diseases has been observed in recent years and is associated with gut dysbiosis, which causes bacterial infection, intestinal permeability, and further leads to disease-related complications. Probiotics, active microbial strains, are gaining more clinical importance due to their beneficial effect in the management of many diseases, including liver diseases. Clinical scenarios show strong evidence that probiotics have efficacy in treating liver diseases due to their ability to improve epithelial barrier function, prevent bacterial translocation, and boost the immune system. Moreover, probiotics survive both bile and gastric acid to reach the gut and exert their health benefit. Evidence shows that probiotics are a promising approach to prevent several complications in clinical practice. Herein, we discuss the recent evidence, challenges, and appropriate use of probiotics in managing advanced liver diseases, which may have an impact on future therapeutic strategies. Furthermore, the superior effect of strain-specific probiotics and their efficacy and safety in managing liver diseases are discussed.
Collapse
Affiliation(s)
- Gokulapriya Ramachandran
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
3
|
Kwon JE, Hong W, Jeon H, Kim CS, Kim H, Kang SC. Suppression of P2X4 and P2X7 by Lactobacillus rhamnosus vitaP1: effects on hangover symptoms. AMB Express 2024; 14:30. [PMID: 38491208 PMCID: PMC10942966 DOI: 10.1186/s13568-024-01685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
This study aimed to identify substances including Lactobacillus rhamnosus vitaP1 (KACC 92054P) that alleviate hangover-induced emotional anxiety and liver damage. The association between emotional anxiety caused by hangover and the genes P2X4, P2X7, SLC6A4 was investigated. In vitro and in vivo analyses were conducted to assess the influence of free-panica on alcohol-induced upregulated gene expression. Additionally, the concentration of AST, ALT, alcohol, and acetaldehyde in blood was measured. Free-panica, consisting of five natural products (Phyllanthus amarus, Phoenix dactylifera, Vitis vinifera, Zingiber officinale, and Lactobacillus rhamnosus), were evaluated for their regulatory effects on genes involved in alcohol-induced emotional anxiety and liver damage. The combination of these natural products in free-panica successfully restored emotional anxiety, and the concentration of AST, ALT, alcohol, and acetaldehyde in blood to those of the normal control group. These findings support the potential development of free-panica as a health functional food or medicinal intervention for relieving hangover symptoms and protecting liver from alcohol consumption.
Collapse
Affiliation(s)
- Jeong Eun Kwon
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Woojae Hong
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Hyelin Jeon
- Mbiometherapeutics Co., Ltd., Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Cha Soon Kim
- Genencell Co., Ltd. Yongin, Gyeonggi, 16950, Republic of Korea
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 17104, Republic of Korea.
| |
Collapse
|
4
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Li C, Xu Y, Zhang J, Zhang Y, He W, Ju J, Wu Y, Wang Y. The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice. Sci Rep 2023; 13:13278. [PMID: 37587146 PMCID: PMC10432483 DOI: 10.1038/s41598-023-39279-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
Resveratrol, curcumin, and quercetin are the secondary metabolites from medicinal food homology plants, that have been proven their potency in cancer treatment. However, the antitumor effect of a single component is weak. So, herein, we designed an antitumor compound named RCQ composed of resveratrol, curcumin, and quercetin. This study examined the effect on tumorigenesis and development of 4T1 breast cancer-bearing mice following administering RCQ by intragastric administration. RCQ increased the recruitment of T cells and reduced the accumulation of neutrophils and macrophages in the tumor microenvironment. Meanwhile, RCQ suppressed the development of tumor-infiltrating lymphocytes into immunosuppressive cell subpopulations, including CD4+ T cells to T helper Type 2 type (Th2), tumor-associated neutrophils (TANs) to the N2 TANs, and tumor-associated macrophages (TAMs) cells to M2 TAMs. RCQ reversed the predominance of immunosuppressive infiltrating cells in the tumor microenvironment and tipped the immune balance toward an immune activation state. In vitro the study showed that RCQ significantly increased reactive oxygen species (ROS), reduce mitochondrial membrane potentials in cancer cells, and modulate pro-apoptotic Bcl-2 family members. In conclusion, RCQ can promote the ROS apoptosis mechanism of tumor cells and alleviate immunosuppression of the tumor microenvironment to enhance the anti-tumor effect.
Collapse
Affiliation(s)
- Chenchen Li
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Associated Research Center for Intelligent Human Computer Collaboration on Tumor Precision Medicine, School of Pharmacy and The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Yajun Xu
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Junfeng Zhang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yuxi Zhang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Wen He
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiale Ju
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yinghua Wu
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yanli Wang
- School of Medicine and School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
6
|
Wang Q, Shi J, Zhao M, Ruan G, Dai Z, Xue Y, Shi D, Xu C, Yu O, Wang F, Xue Z. Microbial treatment of alcoholic liver disease: A systematic review and meta-analysis. Front Nutr 2022; 9:1054265. [PMID: 36479298 PMCID: PMC9719948 DOI: 10.3389/fnut.2022.1054265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2023] Open
Abstract
Background and aims Alcoholic liver disease (ALD) is characterized by impaired liver function due to chronic alcohol consumption, even fatal in severe cases. We performed a meta-analysis to determine whether microbial agents have therapeutic potential for ALD and elucidate the underlying mechanisms. Methods and results Forty-one studies were eligible for this meta-analysis after searching the PubMed, Cochrane, and Embase databases. The combined analysis showed that microbial therapy significantly decreased hepatic enzymatic parameters, including alanine transaminase [standardized mean difference (SMD): -2.70, 95% confidence interval (CI): -3.33 to -2.07], aspartate aminotransferase (SMD: -3.37, 95% CI: -4.25 to -2.49), γ-glutamyl transpeptidase (SMD: -2.07, 95% CI: -3.01 to -1.12), and alkaline phosphatase (SMD: -2.12, 95% CI: -3.32 to -0.92). Microbial agents endotoxin to enter the portal circulation and increasing reduced total cholesterol (SMD = -2.75, 95%CI -4.03 to -1.46) and triglycerides (SMD = -2.64, 95% CI: -3.22 to -2.06). Microbial agents increased amounts of the beneficial flora Lactobacillus (SMD: 4.40, 95% CI: 0.97-7.84) and Bifidobacteria (SMD: 3.84, 95% CI: 0.22-7.45), Bacteroidetes (SMD: 2.51, 95% CI: 0.29-4.72) and decreased harmful Proteobacteria (SMD: -4.18, 95% CI: -6.60 to -1.77), protecting the integrity of the intestinal epithelium and relieving endotoxin (SMD: -2.70, 95% CI: -3.52 to -2.17) into the portal vein, thereby reducing the production of inflammatory factors such as tumor necrosis factor-α (SMD: -3.35, 95% CI: -4.31 to -2.38), interleukin-6 (SMD: -4.28, 95% CI: -6.13 to -2.43), and interleukin-1β (SMD: -4.28, 95% CI: -6.37 to -2.19). Oxidative stress was also relieved, as evidenced by decreased malondialdehyde levels (SMD: -4.70, 95% CI: -6.21 to -3.20). Superoxide dismutase (SMD: 2.65, 95% CI: 2.16-3.15) and glutathione levels (SMD: 3.80, 95% CI: 0.95-6.66) were elevated. Conclusion Microbial agents can reverse dysbiosis in ALD, thus significantly interfering with lipid metabolism, relieving inflammatory response and inhibiting oxidative stress to improve liver function.
Collapse
Affiliation(s)
- Qinjian Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangmin Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Zhao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zebin Dai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilang Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ouyue Yu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Zhanxiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|