1
|
Wahyuni DK, Nuha GA, Atere TG, Kharisma VD, Tari VS, Rahmawati CT, Murtadlo AAA, Syukriya AJ, Wacharasindu S, Prasongsuk S, Purnobasuki H. Antimicrobial potentials of Pandanus amaryllifolius Roxb.: Phytochemical profiling, antioxidant, and molecular docking studies. PLoS One 2024; 19:e0305348. [PMID: 39141632 PMCID: PMC11324095 DOI: 10.1371/journal.pone.0305348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
The emergence of antimicrobial resistance has led to an urgent need for novel antimicrobial drugs. This study aimed to determine the antioxidant and antimicrobial potentials in silico and in vitro of Pandanus amaryllifolius Roxb. ethanolic extract. The extracts were subjected to gas chromatography-mass spectrometry (GC-MS) analysis to identify the compounds. In silico antimicrobial studies were performed to gain insights into the possible mechanism of action of the active compounds as antimicrobials. The antimicrobial activities of the ethanolic extracts were assessed using the agar well diffusion method against the Surabaya strain of Escherichia coli and Staphylococcus aureus. Antioxidant properties of the extract were done using DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and ABTS [2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)] inhibition assays. The phytochemical screening revealed that the extract has high flavonoids and polyphenols contents. The GC-MS analysis detected the presence of 52 bioactive substances, with n-hexadecanoic acid, 9, 12, 15-octadecatrienoic acid, benzofuran 2,3-dihydro-. quinic acid, neophytadiene as major compound. Molecular docking studies showed that these compounds have a high binding affinity towards the target proteins, thereby inhibiting their activities. The ethanolic extract of P. amaryllifolius Roxb. exhibited antioxidant and antimicrobial activities. The IC50 were 11.96 ± 4.01 μg/ml and 26.18 ± 7.44 μg/ml for DPPH and ABTS. The diameters of inhibition zones (DIZ) and percentage of inhibition (PI) were calculated and varied for every single pathogen 16.44 ± 1.21mm/66.76 ± 4.92% (50%) and 21.22 ± 0.11mm/82.49 ± 3.91% (50%) for E. coli and S. aureus (DIZ/PI) respectively. Overall, this study provides information on the mechanism responsible for P. amaryllifolius Roxb. extract as a natural antimicrobe and lays the foundation for further studies to isolate and characterize the active compounds as antimicrobial candidates.
Collapse
Affiliation(s)
- Dwi Kusuma Wahyuni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Gita Aqila Nuha
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Tope Gafar Atere
- Department of Medical Biochemistry, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Viol Dhea Kharisma
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Vinaya Satyawan Tari
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Cici Tya Rahmawati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Ahmad Affan Ali Murtadlo
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | | | - Sumrit Wacharasindu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sehanat Prasongsuk
- Plant and Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| |
Collapse
|
2
|
Casula M, Fais G, Manis C, Scano P, Verseux C, Concas A, Cao G, Caboni P. Cultivation and nutritional characteristics of Chlorella vulgaris cultivated using Martian regolith and synthetic urine. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:108-116. [PMID: 39067982 DOI: 10.1016/j.lssr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Long-term spatial missions will require sustainable methods for biomass production using locally available resources. This study investigates the feasibility of cultivating Chlorella vulgaris, a high value microalgal specie, using a leachate of Martian regolith and synthetic human urine as nutrient sources. The microalga was grown in a standard medium (BBM) mixed with 0, 20, 40, 60, or 100 % Martian medium (MM). MM did not significantly affect final biomass concentrations. Total carbohydrate and protein contents decreased with increasing MM fractions between 0 % and 60 %, but biomass in the 100% MM showed the highest levels of carbohydrates and proteins (25.2 ± 0.9 % and 37.1 ± 1.4 % of the dry weight, respectively, against 19.0 ± 1.7 % and 32.0 ± 2.7 % in the absence of MM). In all MM-containing media, the fraction of the biomass represented by total lipids was lower (by 3.2 to 4.5%) when compared to BBM. Conversely, total carotenoids increased, with the highest value (97.3 ± 1.5 mg/100 g) measured with 20% MM. In a three-dimensional principal component analysis of triacylglycerols, samples clustered according to growth media; a strong impact of growth media on triacylglycerol profiles was observed. Overall, our findings suggest that microalgal biomass produced using regolith and urine can be used as a valuable component of astronauts' diet during missions to Mars.
Collapse
Affiliation(s)
- Mattia Casula
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
| | - Giacomo Fais
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Cristina Manis
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, Italy
| | - Paola Scano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, Italy
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359 Bremen, Germany
| | - Alessandro Concas
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, Italy.
| |
Collapse
|
3
|
Stefoska-Needham A. Sorghum and health: An overview of potential protective health effects. J Food Sci 2024. [PMID: 38407549 DOI: 10.1111/1750-3841.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Whole-grain sorghum foods may elicit health-promoting effects when consumed regularly in the diet. This review discusses key functional sorghum grain constituents, including dietary fiber, slowly digestible and resistant starches, lipids, and phytochemicals and their effects on metabolic processes that are associated with the development of chronic diseases, such as heart disease and diabetes. Currently, the range of sorghum food products available to consumers is limited globally, hindering the potential consumer benefits. A collaborative effort to innovate new product developments is therefore needed, with a focus on processing methods that help to retain the grain's favorable nutritive, health-enhancing, and sensory attributes. Evidence for sorghum's purported health effects, together with evidence of impacts of processing on different sorghum foods, are presented in this review to fully elucidate the potential of sorghum grain to confer health benefits to humans.
Collapse
Affiliation(s)
- Anita Stefoska-Needham
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Australia
| |
Collapse
|
4
|
Desta KT, Choi YM, Shin MJ, Yoon H, Wang X, Lee Y, Yi J, Jeon YA, Lee S. Comprehensive evaluation of nutritional components, bioactive metabolites, and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Res Int 2023; 173:113390. [PMID: 37803729 DOI: 10.1016/j.foodres.2023.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Sorghum, one of the prospective crops for addressing future food and nutrition security, has received attention in recent years due to its health-promoting compounds. It is known that several environmental and genetic factors affect the metabolite contents of dietary crops. This study investigated the diversity of different nutrients, functional metabolites, and antioxidant activity using three different assays in 53 sorghum landraces from Korea, China, Japan, Ethiopia, and South Africa. The effects of origin and seed color variations were also investigated. Total phenolic (TPC), total tannin (TTC), total fat, total protein, total dietary fiber, and total crude fiber contents all varied significantly among the sorghum landraces (p < 0.05). Using a gas chromatography-flame ionization detector, palmitic, stearic, oleic, linoleic, and linolenic acids were detected in all the sorghum landraces, and their content significantly varied (p < 0.05). Furthermore, four 3-deoxyanthocyanidins (luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin) and two flavonoids (luteolin and apigenin) were detected in most of the landraces using liquid chromatography-tandem mass spectrometry, and their concentrations also significantly varied. Statistical analyses supported by multivariate tools demonstrated that seed color variation had a significant effect on TPC, TTC, DPPH• and ABTS•+ scavenging activities, and ferric-reducing antioxidant power, with yellow landraces having the highest and white landraces having the lowest values. Seed color variation also had a significant effect on dietary fiber, linoleic acid, linolenic acid, and luteolin contents. In contrast, all nutritional components and fatty acids except total protein and oleic acid were significantly affected by origin, while most 3-deoxyanthocyanidins and flavonoids were unaffected by both origin and seed color differences. This is the first study to report the effect of origin on sorghum seed metabolites and antioxidant activities, laying the groundwork for future studies. Moreover, this study identified superior landraces that could be good sources of health-promoting metabolites.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yoonjung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea.
| |
Collapse
|
5
|
Batariuc A, Coțovanu I, Mironeasa S. Sorghum Flour Features Related to Dry Heat Treatment and Milling. Foods 2023; 12:2248. [PMID: 37297492 PMCID: PMC10252988 DOI: 10.3390/foods12112248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Heat treatment of sorghum kernels has the potential to improve their nutritional properties. The goal of this study was to assess the impact of dry heat treatment at two temperatures (121 and 140 °C) and grain fractionation, on the chemical and functional properties of red sorghum flour with three different particle sizes (small, medium, and large), for process optimization. The results showed that the treatment temperature had a positive effect on the water absorption capacity, as well as the fat, ash, moisture and carbohydrate content, whereas the opposite tendency was obtained for oil absorption capacity, swelling power, emulsion activity and protein and fiber content. Sorghum flour particle size had a positive impact on water absorption capacity, emulsion activity and protein, carbohydrate and fiber content, while oil absorption capacity, swelling power and fat, ash and moisture content were adversely affected. The optimization process showed that at the treatment temperature at 133 °C, an increase in fat, ash, fiber and carbohydrate content was experienced in the optimal fraction dimension of red sorghum grains. Moreover, the antioxidant performance showed that this fraction produced the best reducing capability when water was used as an extraction solvent. Starch digestibility revealed a 22.81% rise in resistant starch, while the thermal properties showed that gelatinization enthalpy was 1.90 times higher compared to the control sample. These findings may be helpful for researchers and the food industry in developing various functional foods or gluten-free bakery products.
Collapse
Affiliation(s)
| | | | - Silvia Mironeasa
- Faculty of Food Engineering, “Stefan cel Mare” University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania; (A.B.); (I.C.)
| |
Collapse
|
6
|
Alzate-Yepes T, Pérez-Palacio L, Martínez E, Osorio M. Mechanisms of Action of Fruit and Vegetable Phytochemicals in Colorectal Cancer Prevention. Molecules 2023; 28:molecules28114322. [PMID: 37298797 DOI: 10.3390/molecules28114322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and its incidence is expected to increase by almost 80% by 2030. CRC apparition is related to poor diet, mainly due to low consumption of phytochemicals present in fruits and vegetables. Hence, this paper reviews the most promising phytochemicals in the literature, presenting scientific evidence regarding potential CRC chemopreventive effects. Moreover, this paper reveals the structure and action of CRC mechanisms that these phytochemicals are involved in. The review reveals that vegetables rich in phytochemicals such as carrots and green leafy vegetables, as well as some fruits such as pineapple, citrus fruits, papaya, mango, and Cape gooseberry, that have antioxidant, anti-inflammatory, and chemopreventive properties can promote a healthy colonic environment. Fruits and vegetables in the daily diet promote antitumor mechanisms by regulating cell signaling and/or proliferation pathways. Hence, daily consumption of these plant products is recommended to reduce the risk of CRC.
Collapse
Affiliation(s)
- Teresita Alzate-Yepes
- School of Nutrition and Dietetics, University of Antioquia, Carrera 75 # 65-87, Medellín 050010, Antioquia, Colombia
| | - Lorena Pérez-Palacio
- School of Nutrition and Dietetics, University of Antioquia, Carrera 75 # 65-87, Medellín 050010, Antioquia, Colombia
| | - Estefanía Martínez
- School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellín 050031, Antioquia, Colombia
| | - Marlon Osorio
- School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellín 050031, Antioquia, Colombia
- Systems Biology Group, School of Health Sciences, Pontifical Bolivarian University, Calle 78 B # 72 A 10, Medellín 050034, Antioquia, Colombia
| |
Collapse
|
7
|
Jung S, Jeong EW, Baek Y, Han SI, Go GW, Lee HG. Comparison of physicochemical properties of sorghum extract by ethanol concentration and its anti-adipogenic effect in 3T3-L1 cells. Food Sci Biotechnol 2023; 32:705-712. [PMID: 37009038 PMCID: PMC10050621 DOI: 10.1007/s10068-023-01272-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Sorghum is a vital cereal source that has various phenolic compounds and potential health-promoting benefits. This study evaluated the phenolic content, antioxidant and anti-obesity effects of sorghum extract (SE) prepared using three solvent systems: 50% (SE50), 80% (SE80), and 100% (SE100) ethanol. The results showed that SE50 exhibited the highest total polyphenol and flavonoid content among the sorghum extracts using different ethanol concentrations as extraction solvents. In addition, SE50 showed significantly higher antioxidant capacity than the other extracts. Interestingly, SE50 significantly inhibited lipid accumulation in 3T3-L1 adipocytes; however, SE80 and SE100 had no beneficial effects. Moreover, SE50 significantly downregulated the mRNA expression levels of adipogenic genes (Cebpα, Pparγ, and Fabp4) and lipogenic genes (Srebp1c, Fas, and Scd1). These results suggest that SE50 is superior to other ethanol extracts in phenolic contents, antioxidant and anti-obesity activities, and it could be used as a nutraceutical for anti-obesity.
Collapse
Affiliation(s)
- Seyoung Jung
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Eun Woo Jeong
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Sang-Ik Han
- Department of Central Area Crop Science, Rural Development Administration, National Institute of Crop Science, Miryang, 50424 Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| |
Collapse
|
8
|
Li Z, Zhao X, Zhang X, Liu H. The Effects of Processing on Bioactive Compounds and Biological Activities of Sorghum Grains. Molecules 2022; 27:molecules27103246. [PMID: 35630723 PMCID: PMC9145058 DOI: 10.3390/molecules27103246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Sorghum is ranked the fifth most commonly used cereal and is rich in many kinds of bioactive compounds. Food processing can affect the accumulation and decomposition of bioactive compounds in sorghum grains, and then change the biological activities of sorghum grains. The present review aims to analyze the effects of processing technologies on bioactive compounds and the biological activities of sorghum grains. Decortication reduces the total phenols, tannins, and antioxidant activity of sorghum grains. The effects of thermal processes on bioactive compounds and potential biological activities of sorghum grains are complicated due to thermal treatment method and thermal treatment conditions, such as extrusion cooking, which has different effects on the bioactive compounds and antioxidant capacity of sorghum due to extrusion conditions, such as temperature and moisture, and food matrices, such as whole grain and bran. Emerging thermal processes, such as microwave heating and high-pressure processing, could promote the release of bound phenolic substances and procyanidins, and are recommended. Biological processes can increase the nutritive and nutraceutical quality and reduce antinutritional compounds, except for soaking which reduces water-soluble compounds in sorghum.
Collapse
Affiliation(s)
- Zhenhua Li
- College of Agriculture, Guizhou University, Huaxi District, Guiyang 550025, China
- Correspondence: (Z.L.); (H.L.)
| | - Xiaoyan Zhao
- Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, Jinan 250002, China; (X.Z.); (X.Z.)
| | - Xiaowei Zhang
- Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, Jinan 250002, China; (X.Z.); (X.Z.)
| | - Hongkai Liu
- Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, Jinan 250002, China; (X.Z.); (X.Z.)
- Correspondence: (Z.L.); (H.L.)
| |
Collapse
|
9
|
Zhang Y, Capanoglu E, Jiao L, Yin L, Liu X, Wang R, Xiao J, Lu B. Coarse cereals modulating chronic low-grade inflammation: review. Crit Rev Food Sci Nutr 2022; 63:9694-9715. [PMID: 35503432 DOI: 10.1080/10408398.2022.2070596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including β-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Linshu Jiao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Xianjin Liu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Baiyi Lu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
I. Mohamed H, M. Fawzi E, Basit A, Kaleemullah, Lone R, R. Sofy M. Sorghum: Nutritional Factors, Bioactive Compounds, Pharmaceutical and Application in Food Systems: A Review. PHYTON 2022; 91:1303-1325. [DOI: 10.32604/phyton.2022.020642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/18/2022] [Indexed: 10/26/2023]
|
11
|
Bioactive Compounds and Biological Activities of Sorghum Grains. Foods 2021; 10:foods10112868. [PMID: 34829151 PMCID: PMC8618165 DOI: 10.3390/foods10112868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Sorghum is the fifth most commonly used cereal worldwide and is a rich source of many bioactive compounds. We summarized phenolic compounds and carotenoids, vitamin E, amines, and phytosterols in sorghum grains. Recently, with the development of detection technology, new bioactive compounds such as formononetin, glycitein, and ononin have been detected. In addition, multiple in vitro and in vivo studies have shown that sorghum grains have extensive bio-logical activities, such as antioxidative, anticancer, antidiabetic, antiinflammatory, and antiobesity properties. Finally, with the establishment of sorghum phenolic compounds database, the bound phenolics and their biological activities and the mechanisms of biological activities of sorghum bioactive compounds using clinical trials may be researched.
Collapse
|
12
|
Large-Scale Non-Targeted Metabolomics Reveals Antioxidant, Nutraceutical and Therapeutic Potentials of Sorghum. Antioxidants (Basel) 2021; 10:antiox10101511. [PMID: 34679645 PMCID: PMC8532915 DOI: 10.3390/antiox10101511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/10/2023] Open
Abstract
Sorghum is one of the most important food and feed cereal crops and has been gaining industrial importance in recent years for its biofuel, nutraceutical and antioxidant values. A genetic profile variation study was undertaken for the accumulation of phytochemicals in 61 diverse sorghum accessions differing in their growth habitat and grain color through non-targeted Gas Chromatography–Mass Spectrometry (GC-MS/MS) analysis. Mass Spectrometry–Data Independent AnaLysis (MS-DIAL) and MetaboAnalyst identified 221 metabolites belonging to 27 different phytochemicals. Tropical and temperate sorghums were distinct in their metabolic profiles with minimum overlaps, and 51 different metabolites were crucial in differentiating the two groups. Temperate sorghums had the ability to accumulate more of phenolic acids, phytosterols, flavonoids, carotenoids, and tropical sorghums for stress-related amino acids, sugars and fatty acids. Grain-color-based Partial Least Square–Discriminant Analysis (PLS-DA) analysis identified 94 Variable Importance in Projections (VIP) metabolites containing majority of flavonoids, phenylpropanoids and phytosterols. This study identified two sorghum lines (IS 7748 and IS 14861) with rich amounts of antioxidants (catechins and epicatechins) belonging to the group of condensed tannins that otherwise do not accumulate commonly in sorghum. Out of 13 metabolic pathways identified, flavonoid biosynthesis showed the highest expression. This study provided new opportunities for developing biofortified sorghum with enhanced nutraceutical and therapeutics through molecular breeding and metabolic engineering.
Collapse
|
13
|
Polyphenol Containing Sorghum Brans Exhibit an Anti-Cancer Effect in Apc Min/+ Mice Treated with Dextran Sodium Sulfate. Int J Mol Sci 2021; 22:ijms22158286. [PMID: 34361052 PMCID: PMC8347436 DOI: 10.3390/ijms22158286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is considered a high-risk cancer in developed countries. Its etiology is correlated with a high consumption of red meat and low consumption of plant-based foods, including whole grains. Sorghum bran is rich in polyphenols. This study aimed to determine whether different high-phenolic sorghum brans suppress tumor formation in a genetic CC rodent model and elucidate mechanisms. Tissue culture experiments used colorectal cancer cell lines SW480, HCT-116 and Caco-2 and measured protein expression, and protein activity. The animal model used in this study was APC Min+/mouse model combined with dextram sodium sulfate. High phenolic sorghum bran extract treatment resulted in the inhibition of proliferation and induced apoptosis in CC cell lines. Treatment with high phenolic sorghum bran extracts repressed TNF-α-stimulated NF-κB transactivation and IGF-1-stimulated PI3K/AKT pathway via the downregulation of β-catenin transactivation. Furthermore, high-phenolic sorghum bran extracts activated AMPK and autophagy. Feeding with high-phenolic sorghum bran for 6 weeks significantly suppressed tumor formation in an APC Min/+ dextran sodium sulfate promoted CC mouse model. Our data demonstrates the potential application of high-phenolic sorghum bran as a functional food for the prevention of CC.
Collapse
|
14
|
Amarakoon D, Lou Z, Lee WJ, Smolensky D, Lee SH. A mechanistic review: potential chronic disease-preventive properties of sorghum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2641-2649. [PMID: 33179254 DOI: 10.1002/jsfa.10933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Sorghum is one of the most widely cultivated crops, and is used in foods, domestic animal feedstuffs, alcohol production, and biofuels. Recently, many research groups have demonstrated that sorghum contains various components that are strongly associated with the prevention of major human chronic diseases such as obesity, diabetes, atherosclerosis, cancer, and inflammation. However, to use sorghum more widely as a food for the potential prevention and treatment of human chronic diseases, more studies will be required to elucidate the biological mechanisms. In this review paper, we highlight multiple findings to propose a mechanistic link between sorghum consumption and reduced risk of chronic diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Darshika Amarakoon
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Zhiyuan Lou
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Wu-Joo Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| |
Collapse
|
15
|
Espitia-Hernández P, Chávez González ML, Ascacio-Valdés JA, Dávila-Medina D, Flores-Naveda A, Silva T, Ruelas Chacón X, Sepúlveda L. Sorghum ( Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Crit Rev Food Sci Nutr 2020; 62:2269-2280. [PMID: 33280412 DOI: 10.1080/10408398.2020.1852389] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sorghum is the fifth cereal most produced in the world after wheat, rice, maize, and barley. In some regions, this crop is replacing maize, due to its high yield, resistance to drought and heat. There are several varieties of sorghum, whose coloration varies from cream, lemon-yellow, red, and even black. Pigmented sorghum grain is a rich source of antioxidants like polyphenols, mainly tannins, which have multiple benefits on human health such as, antiproliferative properties associated with the prevention of certain cancers, antioxidant activities related to the prevention of associated diseases to oxidative stress, antimicrobial and anti-inflammatory effects, it also improves glucose metabolism. Despite having these types of compounds, it is not possible to assimilate them, their use in the food industry has been limited, since sorghum is considered a food of low nutritional value, due to the presence of anti-nutritional factors such as strong tannins which form complexes with proteins and iron, thus reducing their digestibility. Based on these restrictions that this product has had as food for humans, the analysis of this review emphasizes the valorization of sorghum as a source of bioactive substances and the importance they confer on human health because of the biological potential it has.
Collapse
Affiliation(s)
- Pilar Espitia-Hernández
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Mónica L Chávez González
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Juan A Ascacio-Valdés
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Desiree Dávila-Medina
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | - Antonio Flores-Naveda
- Center for Training and Development in Seed Technology, Autonomous Agrarian University Antonio Narro, Buenavista, Saltillo, Coahuila, México
| | - Teresinha Silva
- Antibiotics Department, Bioscience Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Xóchitl Ruelas Chacón
- Food Science and Technology Department, Autonomous Agrarian University Antonio Narro, Buenavista, Saltillo, Coahuila, México
| | - Leonardo Sepúlveda
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| |
Collapse
|
16
|
Li M, Xu T, Zheng W, Gao B, Zhu H, Xu R, Deng H, Wang B, Wu Y, Sun X, Zhang Y, Yu LL. Triacylglycerols compositions, soluble and bound phenolics of red sorghums, and their radical scavenging and anti-inflammatory activities. Food Chem 2020; 340:128123. [PMID: 33010645 DOI: 10.1016/j.foodchem.2020.128123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/31/2023]
Abstract
Six commercial red sorghum varieties (Tong Za 117, 141, 142 and 143, Chi Za 109 and 101) were investigated for their triacylglycerol (TAG) profiles, soluble and bound phenolics, and radical scavenging and anti-inflammatory activities. A total of 21 TAGs were identified in red sorghum oils for the first time. Total phenolic (TPC) and flavonoid contents (TFC) in the soluble or bound phenolic fractions differed among red sorghums. Significant correlation among TPC, TFC and DPPH radical scavenging activities was observed in both fractions. Except for caffeic acid, most of phenolic acids in red sorghums are in the bound form. Soluble 3-deoxyanthocyanidins contents (2.12-57.14 μg/g) were significantly higher than those of bound forms (0.01-0.18 μg/g) regardless of sorghum varieties and types of 3-deoxyanthocyanidins. Moreover, the stronger anti-inflammatory capacity of soluble phenolic fraction in Tong Za 117 correlated with its higher TPC, TFC and radical scavenging activity than those of its bound counterpart.
Collapse
Affiliation(s)
- Ming Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Provincial Key Laboratory of Agricultural Products Deep Processing, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Wenhao Zheng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyan Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruofei Xu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanyu Deng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Wang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanbei Wu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
17
|
Bekele EK, Nosworthy MG, Henry CJ, Shand PJ, Tyler RT. Oxidative stability of direct-expanded chickpea-sorghum snacks. Food Sci Nutr 2020; 8:4340-4351. [PMID: 32884714 PMCID: PMC7455968 DOI: 10.1002/fsn3.1731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022] Open
Abstract
In contrast to other pulses, chickpea has a relatively high fat content (3%-10%). This study was designed to investigate direct-expanded chickpea-sorghum extruded snacks (50:50, 60:40, and 70:30 chickpea:sorghum, w/w) with respect to: their oxidative stability and sensory properties during accelerated (55°C) and room temperature (25°C) storage; correlations between chemical markers (peroxide value and p-anisidine value) and sensory data during accelerated storage; and the shelf-life of snacks extruded at the optimal expansion point as determined by a rotatable central composite design. Peroxide values and p-anisidine values were in the range of 0-2.5 mEq/Kg and 5-30, respectively, for both accelerated and room temperature storage, and increased during storage (p < .05). 70:30 and 60:40 (w/w) chickpea-sorghum snacks had higher peroxide and p-anisidine values compared to the 50:50 snack during storage at either temperature (p < .05). Rancid aroma and off-flavor of 60:40 and 70:30 chickpea-sorghum snacks (slightly intense = 6) also were higher than that of the 50:50 snack (moderately weak = 3) (p < .05). Significant correlations (p < .05) were found between chemical markers and sensory attributes (p < .05). The study illustrated that shelf-life decreased as the percentage of chickpea in the blend increased. Therefore, in terms of shelf-life, a 50:50 chickpea-sorghum blend is preferable.
Collapse
Affiliation(s)
- Esayas K. Bekele
- School of Nutrition, Food Science and TechnologyHawassa UniversityHawassaEthiopia
- College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Matthew G. Nosworthy
- College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Carol J. Henry
- College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Phyllis J. Shand
- College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Robert T. Tyler
- College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
18
|
Wang B, Li M, Gao H, Sun X, Gao B, Zhang Y, Yu L. Chemical composition of tetraploid Gynostemma pentaphyllum gypenosides and their suppression on inflammatory response by NF-κB/MAPKs/AP-1 signaling pathways. Food Sci Nutr 2020; 8:1197-1207. [PMID: 32148825 PMCID: PMC7020333 DOI: 10.1002/fsn3.1407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The chemical composition and anti-inflammatory activity of gypenosides isolated from tetraploid Gynostemma pentaphyllum (GP) leaves were investigated. The gypenosides accounted for 7.43 mg/g of the tested GP sample, which were composed of four major saponins including isomers of gypenoside 1 and 2 (C47H76O18), 3 (C47H76O17), and 4 (C46H74O17). Pretreatment of gypenosides reduced mRNA expressions of the proinflammatory mediators in LPS-stimulated RAW264.7 macrophage cells, such as IL-6, IL-1β, COX-2, and TNF-α in a dose-dependent manner. The secreted protein levels of IL-6 and TNF-α, and NO production were also decreased by gypenosides within the concentration range of 50-200 μg/ml. Moreover, the mechanism studies demonstrated that gypenosides (200 μg/ml) treatment significantly inhibited the nuclear translocation of nuclear factor-κB and activator protein 1 (c-Fos and c-Jun) through down-regulating the phosphorylation of their upstream IκB kinase and mitogen-activated protein kinases (MAPKs), especially that of c-Jun N-terminal kinase and extracellular regulated protein kinase(JNK and ERK), but not that of the p38 MAPK. These results suggested that the gypenosides might have potential anti-inflammatory effect and use for improving human health.
Collapse
Affiliation(s)
- Bo Wang
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Li
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hang Gao
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangjun Sun
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Boyan Gao
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yaqiong Zhang
- Department of Food Science & EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Liangli Yu
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMDUSA
| |
Collapse
|