1
|
Duo L, Yang J, Wang X, Zhang G, Zhao J, Zou H, Wang Z, Li Y. Krill oil: nutraceutical potential in skin health and disease. Front Nutr 2024; 11:1388155. [PMID: 39070257 PMCID: PMC11272659 DOI: 10.3389/fnut.2024.1388155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Krill oil (KO), extracted from the Antarctic marine crustacean Euphausia superba, is a nutrient-dense substance that includes rich profiles of n-3 polyunsaturated fatty acids (n-3 PUFAs), phospholipids (PLs), astaxanthin (ASX), as well as vitamins A and E, minerals, and flavonoids. As a high-quality lipid resource, KO has been widely used as a dietary supplement for its health-protective properties in recent years. KO has various benefits, including antioxidative, anti-inflammatory, metabolic regulatory, neuroprotective, and gut microbiome modulatory effects. Especially, the antioxidant and anti-inflammatory effects make KO have potential in skin care applications. With increasing demands for natural skin anti-aging solutions, KO has emerged as a valuable nutraceutical in dermatology, showing potential for mitigating the effects of skin aging and enhancing overall skin health and vitality. This review provides an overview of existing studies on the beneficial impact of KO on the skin, exploring its functional roles and underlying mechanisms through which it contributes to dermatological health and disease management.
Collapse
Affiliation(s)
- Lan Duo
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Yang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Xue Wang
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Wang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Yu Li
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Gao Y, Ding Z, Liu Y, Xu YJ. Advances in encapsulation systems of Antarctic krill oil: From extraction to encapsulation, and future direction. Compr Rev Food Sci Food Saf 2024; 23:e13332. [PMID: 38578167 DOI: 10.1111/1541-4337.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.
Collapse
Affiliation(s)
- Yuhang Gao
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Kalogianni EP, Georgiou D, Charisis A, Exarhopoulos S, Tzika P. Valorization of mullet roe by‐products for the production of polyunsaturated fatty acids rich oils. J AM OIL CHEM SOC 2023. [DOI: 10.1002/aocs.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Eleni P. Kalogianni
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Despoina Georgiou
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Aggelos Charisis
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Stylianos Exarhopoulos
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Paraskevi Tzika
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| |
Collapse
|
4
|
Effect of some Cultivation Factors and Extraction Methods on Terminalia Catappa L. Seed Oil. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022. [DOI: 10.1155/2022/1356092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Terminalia catappa L. is a common tropic tree for shade and ornament in many countries. Recently, Terminalia catappa L. seed oil has been considered as a new oleaginous seed for dietary and biofuel production. In this study, ripe Terminalia catappa L. fruits originated in Vietnam were collected and seed oil extracted. In our experiment conditions, the effect of tree location, tree age, and annual harvest time on seed weight and seed oil content was investigated. As results, the seeds at the eastern site of the ground obtained not only the biggest size (3.607 g) but also contained the highest oil mass percentage (56.38%). The suitable annual harvesting time for the good seed quality was from March to April. In addition, the Terminalia catappa L. seeds for oil extraction began being harvested in the fourth year with 55.88% oil content compared to 55.99% of the five and six-year-old and trees. After seed drying, the seed oil was extracted by five different methods including cold screw pressing, hot screw pressing, hydraulic pressing, and solvent extracting, and combining method (cold screw pressing then solvent extraction of oil cake). Among the physical methods, cold screw pressing observed the highest oil yield of 77.32%, and the good oil quality was obtained with low free fatty acid (0.550% oleic acid), low acid value (1.080 mg KOH/g oil), and low peroxide value (1.240 meq O2/kg oil). However, the combination of cold screw pressing and cake oil extracting by solvent increased the oil yield by 14.61%. The saponification values fluctuated between 196 to 197 mg KOH/g oil, while the iodine values were in the range of 77.00 and 79.89 g I2/kg oil.
Collapse
|
5
|
Lv S, Xie S, Liang Y, Xu L, Hu L, Li H, Mo H. Comprehensive lipidomic analysis of the lipids extracted from freshwater fish bones and crustacean shells. Food Sci Nutr 2022; 10:723-730. [PMID: 35311165 PMCID: PMC8907742 DOI: 10.1002/fsn3.2698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/07/2022] Open
Abstract
A comprehensive lipidomic analysis of the lipids extracted from grass carp bones, black carp bones, shrimp shells, and crab shells was performed in this study. First, HPLC analysis revealed that the lipids extracted from shrimp and crab shells contained 60.65% and 77.25% of diacylglycerols, respectively. Second, GC-MS analysis identified 18 fatty acid species in the lipids extracted from fish bones and crustacean shells, in which polyunsaturated fatty acids (PUFAs) were highly enriched. PUFAs were present at 45.43% in the lipids extracted from shrimp shells. Notably, the lipids extracted from shrimp and crab shells contained a considerable amount of eicosapentaenoic acids and docosahexaenoic acids. Finally, multidimensional mass spectrometry-based shotgun lipidomics showed that various lipids including acetyl-L-carnitine, sphingomyelin (SM), lysophosphatidylcholine, and phosphatidylcholine (PC) were all identified in the lipid samples, but PC and SM were the most abundant. Specifically, the total content of PC in shrimp shells was as high as 6.145 mmol/g. More than 35 species of PC were found in all samples, which were more than other lipids. This study is expected to provide a scientific basis for the application of freshwater fish bones and crustacean shells in food, medicine, and other fields.
Collapse
Affiliation(s)
- Shuang Lv
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Suya Xie
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Yunxia Liang
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Long Xu
- College of Food Science and TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Liangbin Hu
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Hongbo Li
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| | - Haizhen Mo
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anChina
- Shaanxi Agricultural Products Processing Technology Research InstituteXi'anChina
| |
Collapse
|
6
|
Zeb L, Teng X, Shafiq M, Wang S, Xiu Z, Su Z. Three-liquid-phase salting-out extraction of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-rich oils from Euphausia superba. Eng Life Sci 2021; 21:666-682. [PMID: 34690637 PMCID: PMC8518559 DOI: 10.1002/elsc.202000098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/20/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022] Open
Abstract
The TLPSOES parameters were optimized by response surface methodology using Box-Behnken design, which were 16.5% w/w of ammonium citrate, 17.5% w/w of ethanol, and 46% w/w of n-hexane at 70 min of stirring time. Under optimized conditions the extraction efficiency attained was 90.91 ± 0.97% of EPA, 90.02 ± 1.04% of DHA, and 91.85 ± 1.11% of KO in the top n-hexane phase. The highest extraction efficiency of proteins and flavonoids, i.e. 88.34 ± 1.35% and 79.67 ± 1.13%, was recorded in the solid interface and ethanol phase, respectively. The KO extracted by TLPSOES system consisted of lowest fluoride level compared to the conventional method and whole wet krill biomass. The TLPSOES is a potential candidate for nutraceutical industry of KO extraction from wet krill biomass.
Collapse
Affiliation(s)
- Liaqat Zeb
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Xin‐Nan Teng
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Muhammad Shafiq
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Shu‐Chang Wang
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Zhi‐Long Xiu
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Zhi‐Guo Su
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
7
|
Wang J, Yu Z, Yin F, Li D, Liu H, Song L, Zhou D. Comparison of different solvents for extraction of oils from by‐products of shrimps
Penaeus vannamei
and
Procambarus clarkia. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jia‐Liang Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
| | - Zhuo‐Liang Yu
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
| | - Fa‐Wen Yin
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian PR China
| | - De‐Yang Li
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian PR China
| | - Hui‐Lin Liu
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian PR China
| | - Liang Song
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian PR China
| | - Da‐Yong Zhou
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian PR China
| |
Collapse
|
8
|
Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications. Mar Drugs 2021; 19:md19060306. [PMID: 34073184 PMCID: PMC8226823 DOI: 10.3390/md19060306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Euphausia superba, commonly known as krill, is a small marine crustacean from the Antarctic Ocean that plays an important role in the marine ecosystem, serving as feed for most fish. It is a known source of highly bioavailable omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In preclinical studies, krill oil showed metabolic, anti-inflammatory, neuroprotective and chemo preventive effects, while in clinical trials it showed significant metabolic, vascular and ergogenic actions. Solvent extraction is the most conventional method to obtain krill oil. However, different solvents must be used to extract all lipids from krill because of the diversity of the polarities of the lipid compounds in the biomass. This review aims to provide an overview of the chemical composition, bioavailability and bioaccessibility of krill oil, as well as the mechanisms of action, classic and non-conventional extraction techniques, health benefits and current applications of this marine crustacean.
Collapse
|
9
|
Nazarudin MF, Isha A, Mastuki SN, Ain NM, Mohd Ikhsan NF, Abidin AZ, Aliyu-Paiko M. Chemical Composition and Evaluation of the α-Glucosidase Inhibitory and Cytotoxic Properties of Marine Algae Ulva intestinalis, Halimeda macroloba, and Sargassum ilicifolium. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2753945. [PMID: 33299448 PMCID: PMC7704141 DOI: 10.1155/2020/2753945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023]
Abstract
Seaweed has tremendous potentials as an alternative source of high-quality food products that have attracted research in recent times, due to their abundance and diversity. In the present study, three selected seaweed species commonly found in the Malaysian Peninsular, Ulva intestinalis, Halimeda macroloba, and Sargassum ilicifolium, were subjected to preliminary chemical screening and evaluated for α-glucosidase inhibitory and cytotoxic activities against five cancer cell lines. Chemical composition of U. intestinalis, H. macroloba, and S. ilicifolium methanolic extracts was evaluated by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Our results revealed the highest total carotenoids (162.00 μg g-1 DW), chlorophyll a (313.09 ± 2.53 μg g-1 DW), and chlorophyll b (292.52 ± 8.84 μg g-1 DW) concentrations in U. intestinalis. In the α-glucosidase inhibitory activity, S. ilicifolium demonstrated the lowest efficacy with an IC50 value of 38.491 ppm compared to other species of seaweed. H. macroloba extract, on the other hand, was found to be the most cytotoxic toward MCF-7 and HT 29 cells with IC50 of 37.25 ± 0.58 and 21.32 ± 0.25 μg/mL, respectively, compared to other cell lines evaluated. Furthermore, H. macroloba extract was also found to be less toxic to normal cell (3T3) with IC50 of 48.80 ± 0.11 μg/mL. U. intestinalis extract exhibited the highest cytotoxicity toward Hep G2 cells with IC50 of 23.21 ± 0.11 μg/mL, whereas S. ilicifolium was less toxic to MDA- MB231 cell with IC50 of 25.23 ± 0.11 μg/mL. Subsequently, the GC-MS analysis of the methanolic extracts of these seaweed samples led to the identification of 27 metabolites in U. intestinalis, 22 metabolites in H. macroloba, and 24 metabolites in S. ilicifolium. Taken together, the results of this present study indicated that all the seaweed species evaluated are good seaweed candidates that exhibit potential for cultivation as functional food sources for human consumption and need to be promoted.
Collapse
Affiliation(s)
- Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azizul Isha
- Laboratory of Natural Medicines and Products Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Nurulhuda Mastuki
- Laboratory of Natural Medicines and Products Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nooraini Mohd. Ain
- Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Natrah Fatin Mohd Ikhsan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Atifa Zainal Abidin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohammed Aliyu-Paiko
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Biochemistry Department, Ibrahim Badamasi Babangida University (IBBU), Lapai, Nigeria
| |
Collapse
|
10
|
Jing W, Bi Y, Wang G, Zeng S, Han L, Yang H, Wang N, Zhao Y. Krill Oil Perturbs Proliferation and Migration of Mouse Colon Cancer Cells in vitro by Impeding Extracellular Signal-Regulated Protein Kinase Signaling Pathway. Lipids 2020; 56:141-153. [PMID: 32931040 DOI: 10.1002/lipd.12281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
The prevalence of colorectal cancer (CRC) continues to increase. Treatment of CRC remains a significant clinical challenge, and effective therapies for advanced CRC are desperately needed. Increasing attention and ongoing research efforts have focused on krill oil that may provide health benefits to the human body. Here we report that krill oil exerts in vitro anticancer activity through a direct inhibition on proliferation, colony formation, migration, and invasion of mouse colon cancer cells. Krill oil inhibited the proliferation and colony formation of CT-26 colon cancer cells by causing G0/G1 cell cycle arrest and apoptosis. Cell cycle arrest was attributable to reduction of cyclin D1 levels in krill oil-treated cells. Further studies revealed that krill oil induced mitochondrial-dependent apoptosis of CT-26 cells, including loss of mitochondrial membrane potential, increased cytosolic calcium levels, activation of caspase-3, and downregulation of anti-apoptotic proteins MCL-1 and BCL-XL. Krill oil suppressed migration of CT-26 cells by disrupting the microfilaments and microtubules. Extracellular signal-regulated protein kinase (ERK) plays crucial roles in regulating proliferation and migration of cancer cells. We found that krill oil attenuated the activation of ERK signaling pathway to exert the effects on cell cycle, apoptosis, and migration of colon cancer cells. We speculate that polyunsaturated fatty acids of krill oil may dampen ERK activation by decreasing the phospholipid saturation of cell membrane. Although findings from in vitro studies may not necessarily translate in vivo, our study provides insights into the possibility that krill oil or its components could have therapeutic potential in colon cancer.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Yuxuan Bi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Ganyu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Shuyan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Lihui Han
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Hui Yang
- Department of Radiology, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Na Wang
- Jinan Jiyuan Biological Technology Co., Ltd, Longao North Road, Jinan, 250102, China
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China.,Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| |
Collapse
|