1
|
Vibhavari RJA, Rao V, Cheruku SP, Kumar BH, Maity S, Nandakumar K, Kumar L, Mehta CH, Nayak U, Chamallamudi MR, Kumar N. Enhancing temozolomide antiglioma response by inhibiting O6-methylguanine-DNA methyltransferase with selected phytochemicals: in silico and in vitro approach. 3 Biotech 2023; 13:385. [PMID: 37928438 PMCID: PMC10622385 DOI: 10.1007/s13205-023-03821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/09/2023] [Indexed: 11/07/2023] Open
Abstract
The aim of our study was to investigate the potential of rutin, catechin, dehydrozingerone, naringenin, and quercetin, both alone and in combination with temozolomide, to inhibit the expression of O6-methylguanine-DNA methyltransferase (MGMT) in glioma cells. MGMT has been shown to be a major cause of temozolomide resistance in glioma. Our study used both in silico and in vitro methods to assess the inhibitory activity of these phytochemicals on MGMT, with the goal of identifying the most effective combination of compounds for reducing temozolomide resistance. After conducting an initial in silico screening of natural compounds against MGMT protein, five phytochemicals were chosen based on their high docking scores and favorable binding energies. From the molecular docking and simulation studies, we found that quercetin showed a good inhibitory effect of MGMT with its high binding affinity. C6 glioma cells showed increased cytotoxicity when treated with the temozolomide and quercetin combination. It was understood from the isobologram and combination index plot that the drug combination showed a synergistic effect at the lowest dose. Quercetin when combined with temozolomide significantly decreased the MGMT levels in C6 cells in comparison with the other drugs as estimated by ELISA. The percentage of apoptotic cells increased significantly in the temozolomide-quercetin group indicating the potency of quercetin in decreasing the resistance of temozolomide as confirmed by acridine orange/ethidium bromide staining. Our experiment hence suggests that temozolomide resistance can be reduced by combining the drug with quercetin which will serve as an effective therapeutic target for glioblastoma treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03821-7.
Collapse
Affiliation(s)
- R. J. A. Vibhavari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - B. Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Lalit Kumar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Usha Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali, Hajipur, 844102 Bihar India
| |
Collapse
|
2
|
Gómez NA, Ramírez MM, Ruiz-Cortés ZT. PRIMARY FIBROBLAST CELL CYCLE SYNCHRONIZATION AND EFFECTS ON HANDMADE CLONED (HMC) BOVINE EMBRYOS. CIÊNCIA ANIMAL BRASILEIRA 2018. [DOI: 10.1590/1809-6891v19e-48555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Spatial and temporal synchrony and compatibility between the receptor oocyte and the donor cell nucleus are necessary for the process of embryo cloning to allow nuclear reprogramming and early embryonic development. The objective of the present study was to evaluate three cell cycle synchronization methods on a primary bovine fibroblast culture for 24, 48, or 72 h. These fibroblasts were used as nuclear donors to evaluate their in vitro developmental potential and the quality of the embryos produced through handmade cloning (HMC). No differences were found between the methods used for fibroblast synchronization in G0/G1 (p > 0.05). Production of clones from fibroblasts in four groups- no treatment at 0 h and using serum restriction SR, high culture confluence HCC, and SR+HCC at 24 h- resulted in high cleavage rates that were not different. Embryo production rates were 37.9%, 29.5%, and 30.9% in the 0h, SR24h, and SR+HHC24h groups, respectively, and 19.3% in the HCC group, which was significantly different from the other three (p < 0.05). There were no differences in the quality parameter among the clones produced with fibroblasts subjected to the different synchronization. Finally, when overall clone production was compared versus parthenotes and IVF embryos, the only difference was between clones and parthenogenetic embryos with zona pellucida (30.2% vs 38.6%). The number of blastomeres from the blastocytes produced through IVF was significantly greater than those from embryos activated parthenogenetically and from clones (117, 80, 75.9, and 67.1, respectively). The evaluation of three synchronization methods at different time points did not demonstrate an increase in the percentage of fibroblasts in the G0/G1 phases of the cell cycle; however, good quality and high cloning rates were obtained, suggesting that it is not always necessary to subject the cells to any synchronization treatments, as they would yield equally good cloning results.
Collapse
|
3
|
Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress. BMC Cancer 2018; 18:496. [PMID: 29716531 PMCID: PMC5930953 DOI: 10.1186/s12885-018-4394-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/17/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The transcription factor PAX6 is expressed in various cancers. In anaplastic astrocytic glioma, PAX6 expression is inversely related to tumor grade, resulting in low PAX6 expression in Glioblastoma, the highest-grade astrocytic glioma. The aim of the present study was to develop a PAX6 knock out cell line as a tool for molecular studies of the roles PAX6 have in attenuating glioblastoma tumor progression. METHODS The CRISPR-Cas9 technique was used to knock out PAX6 in U251 N cells. Viral transduction of a doxycycline inducible EGFP-PAX6 expression vector was used to re-introduce (rescue) PAX6 expression in the PAX6 knock out cells. The knock out and rescued cells were rigorously characterized by analyzing morphology, proliferation, colony forming abilities and responses to oxidative stress and chemotherapeutic agents. RESULTS The knock out cells had increased proliferation and colony forming abilities compared to wild type cells, consistent with clinical observations indicating that PAX6 functions as a tumor-suppressor. Cell cycle distribution and sensitivity to H2O2 induced oxidative stress were further studied, as well as the effect of different chemotherapeutic agents. For the PAX6 knock out cells, the percentage of cells in G2/M phase increased compared to PAX6 control cells, indicating that PAX6 keeps U251 N cells in the G1 phase of the cell cycle. Interestingly, PAX6 knock out cells were more resilient to H2O2 induced oxidative stress than wild type cells. Chemotherapy treatment is known to generate oxidative stress, hence the effect of several chemotherapeutic agents were tested. We discovered interesting differences in the sensitivity to chemotherapeutic drugs (Temozolomide, Withaferin A and Sulforaphane) between the PAX6 expressing and non-expressing cells. CONCLUSIONS The U251 N PAX6 knock out cell lines generated can be used as a tool to study the molecular functions and mechanisms of PAX6 as a tumor suppressor with regard to tumor progression and treatment of glioblastoma.
Collapse
|
4
|
Stepanenko AA, Kavsan VM. Karyotypically distinct U251, U373, and SNB19 glioma cell lines are of the same origin but have different drug treatment sensitivities. Gene 2014; 540:263-5. [PMID: 24583163 DOI: 10.1016/j.gene.2014.02.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Alexey A Stepanenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Kyiv 03680, Ukraine.
| | - Vadym M Kavsan
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Kyiv 03680, Ukraine
| |
Collapse
|
5
|
Timerman D, Yeung CM. Identity confusion of glioma cell lines. Gene 2013; 536:221-2. [PMID: 24333272 DOI: 10.1016/j.gene.2013.11.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/15/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Dmitriy Timerman
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Caleb M Yeung
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Leone PE, González MB, Elosua C, Gómez-Moreta JA, Lumbreras E, Robledo C, Santos-Briz A, Valero JM, de la Guardia RD, Gutiérrez NC, Hernández JM, García JL. Integration of Global Spectral Karyotyping, CGH Arrays, and Expression Arrays Reveals Important Genes in the Pathogenesis of Glioblastoma Multiforme. Ann Surg Oncol 2012; 19:2367-79. [DOI: 10.1245/s10434-011-2202-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Indexed: 12/17/2022]
|
7
|
Toepoel M, Joosten PHLJ, Knobbe CB, Afink GB, Zotz RB, Steegers-Theunissen RPM, Reifenberger G, van Zoelen EJJ. Haplotype-specific expression of the human PDGFRA gene correlates with the risk of glioblastomas. Int J Cancer 2008; 123:322-329. [PMID: 18464291 DOI: 10.1002/ijc.23432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aberrant expression of the platelet-derived growth factor alpha-receptor (PDGFRA) gene has been associated with various diseases, including neural tube defects and gliomas. We have previously identified 5 distinct haplotypes for the PDGFRA promoter region, designated H1, H2alpha, H2beta, H2gamma and H2delta. Of these haplotypes H1 and H2alpha are the most common, whereby H1 drives low and H2alpha high transcriptional activity in transient transfection assays. Here we have investigated the role of these PDGFRA promoter haplotypes in gliomagenesis at both the genetic and cellular level. In a case-control study on 71 glioblastoma patients, we observed a clear underrepresentation of H1 alleles, with pH1 = 0.141 in patients and pH1 = 0.211 in a combined Western European control group (n = 998, p < 0.05). Furthermore, in 3 out of 4 available H1/H2alpha heterozygous human glioblastoma cell lines, H1-derived mRNA levels were more than 10-fold lower than from H2alpha, resulting at least in part from haplotype-specific epigenetic differences such as DNA methylation and histone acetylation. Together, these results indicate that PDGFRA promoter haplotypes may predispose to gliomas. We propose a model in which PDGFRA is upregulated in a haplotype-specific manner during neural stem cell differentiation, which affects the pool size of cells that can later undergo gliomagenesis.
Collapse
Affiliation(s)
- Mascha Toepoel
- Department of Cell Biology FNWI, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Paul H L J Joosten
- Department of Cell Biology FNWI, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Christiane B Knobbe
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gijs B Afink
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Rainer B Zotz
- Department of Hemostasis and Transfusion Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
8
|
Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ, Rosenblum M, Mikkelsen T, Zenklusen JC, Fine HA. Genomic Changes and Gene Expression Profiles Reveal That Established Glioma Cell Lines Are Poorly Representative of Primary Human Gliomas. Mol Cancer Res 2008; 6:21-30. [DOI: 10.1158/1541-7786.mcr-07-0280] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Schrock E, Zschieschang P, O'Brien P, Helmrich A, Hardt T, Matthaei A, Stout-Weider K. Spectral karyotyping of human, mouse, rat and ape chromosomes--applications for genetic diagnostics and research. Cytogenet Genome Res 2006; 114:199-221. [PMID: 16954656 DOI: 10.1159/000094203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/19/2006] [Indexed: 01/30/2023] Open
Abstract
Spectral karyotyping (SKY) is a widely used methodology to identify genetic aberrations. Multicolor fluorescence in situ hybridization using chromosome painting probes in individual colors for all metaphase chromosomes at once is combined with a unique spectral measurement and analysis system to automatically classify normal and aberrant chromosomes. Based on countless studies and investigations in many laboratories worldwide, numerous new chromosome translocations and other aberrations have been identified in clinical and tumor cytogenetics. Thus, gene identification studies have been facilitated resulting in the dissection of tumor development and progression. For example, different translocation partners of the TEL/ETV6 transcription factor that is specially required for hematopoiesis within the bone marrow were identified. Also, the correct classification of complex karyotypes of solid tumors supports the prognostication of cancer patients. Important accomplishments for patients with genetic diseases, leukemias and lymphomas, mesenchymal tumors and solid cancers are summarized and exemplified. Furthermore, studies of disease mechanisms such as centromeric DNA breakage, DNA double strand break repair, telomere shortening and radiation-induced neoplastic transformation have been accompanied by SKY analyses. Besides the hybridization of human chromosomes, mouse karyotyping has also contributed to the comprehensive characterization of mouse models of human disease and for gene therapy studies.
Collapse
Affiliation(s)
- E Schrock
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Li YC, Tzeng CC, Song JH, Tsia FJ, Hsieh LJ, Liao SJ, Tsai CH, Van Meir EG, Hao C, Lin CC. Genomic alterations in human malignant glioma cells associate with the cell resistance to the combination treatment with tumor necrosis factor-related apoptosis-inducing ligand and chemotherapy. Clin Cancer Res 2006; 12:2716-29. [PMID: 16675563 DOI: 10.1158/1078-0432.ccr-05-1980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently under clinical development as a cancer therapeutic agent. Many human malignant glioma cells, however, are resistant to TRAIL treatment. We, therefore, investigated the genomic alterations in TRAIL-resistant malignant glioma cells. EXPERIMENTAL DESIGN Seven glioma cell lines and two primary cultures were first analyzed for their sensitivity to TRAIL and chemotherapy and then examined for the genomic alterations in key TRAIL apoptotic genes by comparative genomic hybridization (CGH), G-banding/spectral karyotyping, and fluorescence in situ hybridization (FISH). RESULTS CGH detected loss of the chromosomal regions that contain the following genes: 8p12-p23 (DR4 and DR5), 2q33-34 (caspase-8), 11q13.3 (FADD), 22q11.2 (Bid), and 12q24.1-q24.3 (Smac/DIABLO) in TRAIL-resistant cell lines. Spectral karyotyping showed numerical and structural aberrations involving the chromosomal regions harboring these genes. A combination of G-banding/spectral karyotyping and FISH further defined the loss or gain of gene copy of these genes and further showed the simultaneous loss of one copy of DR4/DR5, caspase-8, Bid, and Smac in two near-triploid cell lines that were resistant to the combination treatment with TRAIL and chemotherapy. Loss of the caspase-8 locus was also detected in a primary culture in correlation with the culture resistance to the combined TRAIL and chemotherapy treatment. CONCLUSIONS The study identifies chromosomal alterations in TRAIL apoptotic genes in the glioma cells that are resistant to the treatment with TRAIL and chemotherapy. These genetic alterations could be used to predict the responsiveness of malignant gliomas to TRAIL-based therapies in clinical treatment of the tumors.
Collapse
Affiliation(s)
- Yueh-Chun Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9:391-403. [PMID: 16697959 DOI: 10.1016/j.ccr.2006.03.030] [Citation(s) in RCA: 1784] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/02/2006] [Accepted: 03/22/2006] [Indexed: 02/06/2023]
Abstract
The concept of tumor stem cells (TSCs) provides a new paradigm for understanding tumor biology, although it remains unclear whether TSCs will prove to be a more robust model than traditional cancer cell lines. We demonstrate marked phenotypic and genotypic differences between primary human tumor-derived TSCs and their matched glioma cell lines. Unlike the matched, traditionally grown tumor cell lines, TSCs derived directly from primary glioblastomas harbor extensive similarities to normal neural stem cells and recapitulate the genotype, gene expression patterns, and in vivo biology of human glioblastomas. These findings suggest that TSCs may be a more reliable model than many commonly utilized cancer cell lines for understanding the biology of primary human tumors.
Collapse
Affiliation(s)
- Jeongwu Lee
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bayani J, Pandita A, Squire JA. Molecular cytogenetic analysis in the study of brain tumors: findings and applications. Neurosurg Focus 2005; 19:E1. [PMID: 16398459 DOI: 10.3171/foc.2005.19.5.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Classic cytogenetics has evolved from black and white to technicolor images of chromosomes as a result of advances in fluorescence in situ hybridization (FISH) techniques, and is now called molecular cytogenetics. Improvements in the quality and diversity of probes suitable for FISH, coupled with advances in computerized image analysis, now permit the genome or tissue of interest to be analyzed in detail on a glass slide. It is evident that the growing list of options for cytogenetic analysis has improved the understanding of chromosomal changes in disease initiation, progression, and response to treatment. The contributions of classic and molecular cytogenetics to the study of brain tumors have provided scientists and clinicians alike with new avenues for investigation. In this review the authors summarize the contributions of molecular cytogenetics to the study of brain tumors, encompassing the findings of classic cytogenetics, interphase- and metaphase-based FISH studies, spectral karyotyping, and metaphase- and array-based comparative genomic hybridization. In addition, this review also details the role of molecular cytogenetic techniques in other aspects of understanding the pathogenesis of brain tumors, including xenograft, cancer stem cell, and telomere length studies.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Ontario, Canada.
| | | | | |
Collapse
|
13
|
Krupp W, Geiger K, Schober R, Siegert G, Froster UG. Cytogenetic and molecular cytogenetic analyses in diffuse astrocytomas. ACTA ACUST UNITED AC 2004; 153:32-8. [PMID: 15325091 DOI: 10.1016/j.cancergencyto.2003.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/30/2003] [Accepted: 12/22/2003] [Indexed: 11/27/2022]
Abstract
Diffuse astrocytomas are highly variable tumors and show complex biologic behavior that is based on multi-step oncogenesis. We report cytogenetic and molecular cytogenetic investigations in 23 cases of diffuse astrocytomas. The results of conventional karyotyping, interphase fluorescence in situ hybridization (FISH), comparative genomic hybridization, multicolor FISH, and spectral karyotyping are reported. Various numerical and structural chromosomal aberrations were identified. Clustering of structural alterations in the short arm of chromosome 2 (2p) and the long arm of chromosome 7 (7q) were detected. Using spectral karyotyping, additional chromosome rearrangements not detectable by conventional methods were found. Some of these anomalies have not been previously described in diffuse astrocytomas. An independent validation of these discrepant findings is required.
Collapse
Affiliation(s)
- Wolfgang Krupp
- Department of Neurosurgery, University of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
14
|
Sallinen SL, Sallinen P, Ahlstedt-Soini M, Haapasalo H, Helin H, Isola J, Karhu R. Arm-specific multicolor fluorescence in situ hybridization reveals widespread chromosomal instability in glioma cell lines. CANCER GENETICS AND CYTOGENETICS 2003; 144:52-60. [PMID: 12810256 DOI: 10.1016/s0165-4608(02)00926-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An investigation of numerical and structural chromosome aberrations using chromosome arm-specific multicolor fluorescence in situ hybridization (armFISH) revealed considerable genetic heterogeneity among and within 11 glioma cell lines. Despite the substantial variation in numerical chromosome alterations among the cell lines, several distinct and glioma growth-associated losses or gains were frequently observed, that is, losses of chromosomes 10, 13, and 22 and gain of chromosome 7 in particular. Structural aberrations frequently affected chromosomes 1, 4, 7, 16, and 19; however, no single structural chromosome aberration common to all or even several glioma cell lines could be found. Structural alterations were often multiform, and a large variety of unstable chromosome structures were detected. Two of the cell lines also harbored small marker chromosomes containing mainly heterochromatin and chromosomal insertions within hetero-chromatic regions. Altogether, the armFISH provides a versatile tool for the identification of chromosomal aberrations as well as their formation patterns in tumors with a complex genome at the level of chromosome arms.
Collapse
Affiliation(s)
- Satu-Leena Sallinen
- Laboratory of Cancer Genetics, University of Tampere and Tampere University Hospital, P.O. Box 2000, FIN-33521 Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
15
|
Ozaki T, Neumann T, Wai D, Schäfer KL, van Valen F, Lindner N, Scheel C, Böcker W, Winkelmann W, Dockhorn-Dworniczak B, Horst J, Poremba C. Chromosomal alterations in osteosarcoma cell lines revealed by comparative genomic hybridization and multicolor karyotyping. CANCER GENETICS AND CYTOGENETICS 2003; 140:145-52. [PMID: 12645653 DOI: 10.1016/s0165-4608(02)00685-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We characterized the chromosomal alterations in eight osteosarcoma cell lines (OST, HOS, U-2 OS, ZK-58, MG-63, SJSA-1, Saos-2, and MNNG) by comparative genomic hybridization (CGH); gains and losses of DNA sequences were defined as chromosomal regions with a fluorescence ratio, wherein all of the 95% confidence interval was above 1.25 and below 0.75, respectively. In four of 8 cell lines, multicolor karyotyping (MK) was added. CGH revealed the average number of aberrations per cell line was 20.8 (range: 10-31); the average numbers of gains and losses were 11.1 and 9.6, respectively. The frequent gains were identified on 1p21 approximately q24, 1q25-q31, 7p21, 7q31, 8q23 approximately q24, and 14q21; frequent losses were at 18q21 approximately q22, 18q12, 19p, and 3p12 approximately p14. High-level gains were observed on 8q23 approximately q24, 5p, and 1p21 approximately p22. MK revealed the most common translocations in the four cell lines were t(8;9), t(1;3), t(3;5), t(1;13), t(2;6), t(3; 17), t(1;15), t(10;20), and t(6;20). Chromosomes 1, 3, 8, 9, and 20 were most frequently involved in translocation events. The concordance rate of aberrations in CGH and translocations in MK was 76%. MK was useful to identify the chromosomal alterations and as a supplement to the CGH results in three of four chromosomes.
Collapse
Affiliation(s)
- Toshifumi Ozaki
- Department of Orthopaedics, Westfälische Wilhelms-University, Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zuber MA, Krupp W, Holland H, Froster UG. Characterization of chromosomal aberrations in a case of glioblastoma multiforme combining cytogenetic and molecular cytogenetic techniques. CANCER GENETICS AND CYTOGENETICS 2002; 138:111-5. [PMID: 12505254 DOI: 10.1016/s0165-4608(02)00587-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A case of glioblastoma multiforme (GBM) that was investigated with a broad spectrum of cytogenetic and molecular cytogenetic techniques is reported. The results of cytogenetic studies, interphase fluorescence in situ hybridization, comparative genomic hybridization, and spectral karyotyping (SKY) are reported. Various structural chromosomal aberrations were identified, among which aberrations involving chromosome arm 2p were especially frequent. Using SKY, six translocations not previously described in GBM are reported.
Collapse
Affiliation(s)
- M A Zuber
- Institute of Human Genetics, University of, Leipzig, Germany.
| | | | | | | |
Collapse
|
17
|
MacLeod RAF, Dirks WG, Drexler HG. Persistent use of misidentified cell lines and its prevention. Genes Chromosomes Cancer 2002; 33:103-5. [PMID: 11746993 DOI: 10.1002/gcc.1217] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Sharpless NE, Ferguson DO, O'Hagan RC, Castrillon DH, Lee C, Farazi PA, Alson S, Fleming J, Morton CC, Frank K, Chin L, Alt FW, DePinho RA. Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions. Mol Cell 2001; 8:1187-96. [PMID: 11779495 DOI: 10.1016/s1097-2765(01)00425-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although nonhomologous end-joining (NHEJ) deficiency has been shown to accelerate lymphoma formation in mice, its role in suppressing tumors in cells that do not undergo V(D)J recombination is unclear. Utilizing a tumor-prone mouse strain (ink4a/arf(-/-)), we examined the impact of haploinsufficiency of a NHEJ component, DNA ligase IV (Lig4), on murine tumorigenesis. We demonstrate that lig4 heterozygosity promotes the development of soft-tissue sarcomas that possess clonal amplifications, deletions, and translocations. That these genomic alterations are relevant in tumorigenesis is supported by the finding of frequent mdm2 amplification, a known oncogene in human sarcoma. Together, these findings support the view that loss of a single lig4 allele results in NHEJ activity being sufficiently reduced to engender chromosomal aberrations that drive non-lymphoid tumorigenesis.
Collapse
Affiliation(s)
- N E Sharpless
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|