1
|
Ahmadi-Hadad A, de Queiroz PCC, Schettini F, Giuliano M. Reawakening the master switches in triple-negative breast cancer: A strategic blueprint for confronting metastasis and chemoresistance via microRNA-200/205: A systematic review. Crit Rev Oncol Hematol 2024; 204:104516. [PMID: 39306311 DOI: 10.1016/j.critrevonc.2024.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits a proclivity for early recurrence and development of metastasis. Moreover, drug resistance tends to arise few months following chemotherapeutic regimen with agents such as Doxorubicin, Paclitaxel, Docetaxel, and Cisplatin. miR-200 family and miR-205 are considered key regulators of metastasis by regulating the Epithelial-to-mesenchymal transition (EMT) via inhibiting ZEB1. Therefore, these microRNAs may offer therapeutic applications. Moreover, they hold potential for inhibiting chemoresistance and increasing chemosensitivity. These microRNAs are suppressed in TNBC cells. Increasing their levels, however, can inhibit EMT and improve progression-free survival (PFS). Besides using direct miRNA therapy via viral vectors, some drugs like Acetaminophen, or Tamoxifen are deemed useful for TNBC due to their ability to upregulate these miRNAs. In this review, by conducting an advanced search on PubMed, Embase, and Medline and selecting pertinent studies, we aimed to explore the potential applications of these microRNAs in controlling EMT and overcoming chemoresistance.
Collapse
Affiliation(s)
- Armia Ahmadi-Hadad
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | | | - Francesco Schettini
- Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain, University of Barcelona, Barcelona, Spain.
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Anilkumar KV, Rema LP, John MC, Vanesa John T, George A. miRNAs in the prognosis of triple-negative breast cancer: A review. Life Sci 2023; 333:122183. [PMID: 37858714 DOI: 10.1016/j.lfs.2023.122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer (BC) with high mortality rate wherein effective target medicaments are lacking. It is a very heterogeneous group with several subtypes that account for 10-20% of cancer among women globally, being negative for three most important receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), with an early and high recurrence resulting in poor survival rate. Therefore, a more thorough knowledge on carcinogenesis of TNBC is required for the development of personalized treatment options. miRNAs can either promote or suppress tumorigenesis and have been linked to a number of features of cancer progression, including proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition (EMT). Recent miRNA research shows that there is great potential for the development of novel biomarkers as they have emerged as drivers of tumorigenesis and provide opportunities to target various components involved in TNBC, thus helping to solve this difficult-to-treat disease. In this review, we summarize the most relevant miRNAs that play an essential role in TNBC biology. Their role with regard to molecular mechanisms underlying TNBC progression has been discussed, and their potential use as therapeutic or prognostic markers to unravel the intricacy of TNBC based on the pieces of evidence obtained from various works of literature has been briefly addressed.
Collapse
Affiliation(s)
- Kavya V Anilkumar
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India; Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - L P Rema
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India
| | - Mithun Chacko John
- Department of Medical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - T Vanesa John
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Alex George
- Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.
| |
Collapse
|
3
|
Jin S, Chen L, Wu J, Chen M, Wang H, Hu H, Yu L, Zeng S. MiR-183-5p promotes renal cell carcinoma metastasis by targeting TET1. Int J Immunopathol Pharmacol 2023; 37:3946320231184997. [PMID: 37584255 PMCID: PMC10434988 DOI: 10.1177/03946320231184997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/12/2023] [Indexed: 08/17/2023] Open
Abstract
Ten-eleven translocation 1 (TET1) is a member of the DNA demethylase family that regulates the methylation level of the genome. Dysregulation of TET1 in renal cell carcinoma (RCC) may be associated with RCC progression, but the mechanism of TET1 down-regulation in RCC is not yet known. MiR-183-5p is up-regulated in various tumor tissues and acts as an oncogene. We used Transwell and wound healing assays to test cell invasion and migration. To investigate DNA methylation, we used dot blot, which indicates TET1 enzyme activity. We verified the binding of miR-183-5p and TET1 3'-UTR (untranslated region) using dual-luciferase reporter assay. Our study demonstrated, for the first time, that miR-183-5p can directly repress TET1 expression in RCC. We observed a significant decrease in TET1 expression in RCC specimens, as reported in the literature, and a significant decrease in the concentration of 5hmC in RCC. By aligning the microRNA with a database and using the luciferase reporter gene method, we found that miR-183-5p can inhibit luciferase activity by binding to 453-459 bp of TET1 3'-UTR, leading to inhibition of TET1 expression. Furthermore, down-regulation of TET1 inhibited miR-200c expression and promoted RCC cell invasion and migration. Our findings suggest that in RCC, increased expression of miR-183-5p inhibits the expression of TET1, which in turn inhibits the expression of miR-200c and E-cadherin, both of which are associated with cell adhesion. This leads to the promotion of cell invasion and migration.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiayi Wu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Mengjiao Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Crosstalk between Methylation and ncRNAs in Breast Cancer: Therapeutic and Diagnostic Implications. Int J Mol Sci 2022; 23:ijms232415759. [PMID: 36555400 PMCID: PMC9779155 DOI: 10.3390/ijms232415759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer, as a highly heterogeneous malignant tumor, is one of the primary causes of death among females worldwide. The etiology of breast cancer involves aberrant epigenetic mechanisms and abnormal expression of certain non-coding RNA (ncRNAs). DNA methylation, N6-methyladenosine(m6A), and histone methylation are widely explored epigenetic regulation types in breast cancer. ncRNAs are a group of unique RNA transcripts, mainly including microRNA (miRNAs), long non-coding RNA (lncRNAs), circular RNA (circRNAs), small interfering RNA (siRNAs), piwi-interacting RNA (piRNAs), etc. Different types of methylation and ncRNAs mutually regulate and interact to form intricate networks to mediate precisely breast cancer genesis. In this review, we elaborate on the crosstalk between major methylation modifications and ncRNAs and discuss the role of their interaction in promoting breast cancer oncogenesis. This review can provide novel insights into establishing a new diagnostic marker system on methylation patterns of ncRNAs and therapeutic perspectives of combining ncRNA oligonucleotides and phytochemical drugs for breast cancer therapy.
Collapse
|
5
|
DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232314672. [PMID: 36499000 PMCID: PMC9735783 DOI: 10.3390/ijms232314672] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.
Collapse
|
6
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Navarro-Manzano E, Luengo-Gil G, González-Conejero R, García-Garre E, García-Martínez E, García-Torralba E, Chaves-Benito A, Vicente V, Ayala de la Peña F. Prognostic and Predictive Effects of Tumor and Plasma miR-200c-3p in Locally Advanced and Metastatic Breast Cancer. Cancers (Basel) 2022; 14:cancers14102390. [PMID: 35625994 PMCID: PMC9139340 DOI: 10.3390/cancers14102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
While the role of miR-200c in cancer progression has been established, its expression and prognostic role in breast cancer is not completely understood. The predictive role of miR-200c in response to chemotherapy has also been suggested by some studies, but only limited clinical evidence is available. The purpose of this study was to investigate miR-200c-3p in the plasma and primary tumor of BC patients. The study design included two cohorts involving women with locally advanced (LABC) and metastatic breast cancer. Tumor and plasma samples were obtained before and after treatment. We found that miR-200c-3p was significantly higher in the plasma of BC patients compared with the controls. No correlation of age with plasma miR-200c-3p was found for controls or for BC patients. MiR-200c-3p tumor expression was also associated with poor overall survival in LABC patients treated with neoadjuvant chemotherapy, independently of pathological complete response or clinical stage. Our findings suggest that plasmatic miR-200c-3p levels could be useful for BC staging, while the tumor expression of miR-200c-3p might provide further prognostic information beyond residual disease in BC treated with neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Esther Navarro-Manzano
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Ginés Luengo-Gil
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Elisa García-Garre
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
| | - Elena García-Martínez
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Medical School, Universidad Católica San Antonio, 30107 Murcia, Spain
| | - Esmeralda García-Torralba
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
| | - Asunción Chaves-Benito
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
- Department of Pathology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Centro Regional de Hemodonación, 30003 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
| | - Francisco Ayala de la Peña
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain; (E.N.-M.); (G.L.-G.); (R.G.-C.); (E.G.-G.); (E.G.-M.); (E.G.-T.); (V.V.)
- Instituto Murciano de Investigación Biosanitaria, IMIB, 30120 Murcia, Spain
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain;
- Correspondence: ; Tel.: +34-968360900
| |
Collapse
|
8
|
Breast Cancer Subtype-Specific miRNAs: Networks, Impacts, and the Potential for Intervention. Biomedicines 2022; 10:biomedicines10030651. [PMID: 35327452 PMCID: PMC8945552 DOI: 10.3390/biomedicines10030651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The regulatory and functional roles of non-coding RNAs are increasingly demonstrated as critical in cancer. Among non-coding RNAs, microRNAs (miRNAs) are the most well-studied with direct regulation of biological signals through post-transcriptional repression of mRNAs. Like the transcriptome, which varies between tissue type and disease condition, the miRNA landscape is also similarly altered and shows disease-specific changes. The importance of individual tumor-promoting or suppressing miRNAs is well documented in breast cancer; however, the implications of miRNA networks is less defined. Some evidence suggests that breast cancer subtype-specific cellular effects are influenced by distinct miRNAs and a comprehensive network of subtype-specific miRNAs and mRNAs would allow us to better understand breast cancer signaling. In this review, we discuss the altered miRNA landscape in the context of breast cancer and propose that breast cancer subtypes have distinct miRNA dysregulation. Further, given that miRNAs can be used as diagnostic and/or prognostic biomarkers, their impact as novel targets for subtype-specific therapy is also possible and suggest important implications for subtype-specific miRNAs.
Collapse
|
9
|
Safaei S, Amini M, Najjary S, Mokhtarzadeh A, Bolandi N, Saeedi H, Alizadeh N, Javadrashid D, Baradaran B. miR-200c increases the sensitivity of breast cancer cells to Doxorubicin through downregulating MDR1 gene. Exp Mol Pathol 2022; 125:104753. [DOI: 10.1016/j.yexmp.2022.104753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022]
|
10
|
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D’Agostino DM, Ciminale V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers (Basel) 2021; 13:5874. [PMID: 34884985 PMCID: PMC8656820 DOI: 10.3390/cancers13235874] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers. This review provides a summary of the role of miR-200 family members in EMT, factors that regulate their expression, and important targets for miR-200-mediated repression that are involved in EMT. The second part of the review discusses the potential utility of circulating miR-200 family members as diagnostic/prognostic biomarkers for breast, colorectal, lung, ovarian, prostate and bladder cancers.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Francesco Ciccarese
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Evgeniya Sharova
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Loredana Urso
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| | - Vittoria Raimondi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Micol Silic-Benussi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Donna M. D’Agostino
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| |
Collapse
|
11
|
Garinet S, Didelot A, Denize T, Perrier A, Beinse G, Leclere JB, Oudart JB, Gibault L, Badoual C, Le Pimpec-Barthes F, Laurent-Puig P, Legras A, Blons H. Clinical assessment of the miR-34, miR-200, ZEB1 and SNAIL EMT regulation hub underlines the differential prognostic value of EMT miRs to drive mesenchymal transition and prognosis in resected NSCLC. Br J Cancer 2021; 125:1544-1551. [PMID: 34642464 PMCID: PMC8609001 DOI: 10.1038/s41416-021-01568-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) receiving curative surgery have a risk of relapse, and adjuvant treatments only translate into a 5% increase in 5-year survival. We assessed the clinical significance of epithelial-mesenchymal transition (EMT) and explored its association with the [SNAIL/miR-34]:[ZEB/miR-200] regulation hub to refine prognostic information. METHODS We validated a 7-gene EMT score using a consecutive series of 176 resected NSCLC. We quantified EMT transcription factors, microRNAs (miRs) of the miR-200, miR-34 families and miR-200 promoter hypermethylation to identify outcome predictors. RESULTS Most tumours presented with an EMT-hybrid state and the EMT score was not predictive of outcome. Individually, all miR-200 were inversely associated with the EMT score, but only chromosome-1 miRs, miR-200a, b, 429, were associated with disease-free survival (p = 0.08, 0.05 and 0.025) and overall survival (p = 0.013, 0.003 and 0.006). We validated these associations on The Cancer Genome Atlas data. Tumour unsupervised clustering based on miR expression identified two good prognostic groups, unrelated to the EMT score, suggesting that miR profiling may have an important clinical value. CONCLUSION miR-200 family members do not have similar predictive value. Core EMT-miR, regulators and not EMT itself, identify NSCLC patients with a low risk of relapse after surgery.
Collapse
Affiliation(s)
- Simon Garinet
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Thomas Denize
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
| | - Alexandre Perrier
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Guillaume Beinse
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Jean-Baptiste Leclere
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Baptiste Oudart
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
| | - Laure Gibault
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Pathology, Paris Cancer Institute CARPEM, Paris, France
| | - Cecile Badoual
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Pathology, Paris Cancer Institute CARPEM, Paris, France
| | - Françoise Le Pimpec-Barthes
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Laurent-Puig
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
| | - Antoine Legras
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France
- Department of Thoracic Surgery, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Helene Blons
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
12
|
Filippova EA, Pronina IV, Lukina SS, Kazubskaya TP, Braga EA, Burdennyi AM, Loginov VI. Relationship of the Levels of microRNA Gene Methylation with the Level of Their Expression and Pathomorphological Characteristics of Breast Cancer. Bull Exp Biol Med 2021; 171:764-769. [PMID: 34705180 DOI: 10.1007/s10517-021-05312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/24/2022]
Abstract
We studied the relationship of the levels of microRNA group expression and methylation with clinical and pathomorphological parameters of breast cancer and its immunohistochemical status. Quantitative methylation specific PCR analysis showed a significant (p<0.001) increase in the methylation level of 4 microRNA genes (MIR127, MIR129-2, MIR132, and MIR148A) and a significant (p<0.001) decrease for gene MIR375 relative to paired histologically normal tissue. Real-time PCR analysis revealed a significant (p≤0.001) decrease in the expression of 4 microRNAs (miR-127-5p, miR-129-5p, miR-132-3p, and miR-148a-3p) and a significant (p≤0.001) increase in the expression of miR-375-3p. A significant (rs=-0.6--0.7, p≤0.001) relationship between changes in the expression level of miR-129-5p, miR-132-3p, miR-148a-3p, and miR-375-3p and the levels of methylation of the corresponding genes in breast cancer was showed by using Spearman's rank correlation test. Analysis of the samples with consideration of the pathophysiological characteristics of the tumor revealed two significant markers of tumor progression: MIR129-2/miR-129-5p and MIR375/miR-375-3p. Both factors, the increase in the level of MIR129-2 methylation (p<0.001) and a decrease in the expression level of miR-129-5p (p<0.001), are significantly associated (p<0.001) with stage III/IV and the absence of HER2 expression. For MIR375/miR-375-3p, on the contrary, an association of low methylation level and enhanced expression with increased Ki-67 level (>30%, p<0.05) was revealed. These findings are of interest for understanding the mechanisms of breast cancer development and can provide the basis for the diagnosis and prognosis of the course of this disease. Moreover, the revealed features can be useful for adjusting the course of treatment with consideration of the pathophysiological characteristics of the tumor.
Collapse
Affiliation(s)
- E A Filippova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I V Pronina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - S S Lukina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - T P Kazubskaya
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E A Braga
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - A M Burdennyi
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - V I Loginov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
13
|
The Role of WAVE2 Signaling in Cancer. Biomedicines 2021; 9:biomedicines9091217. [PMID: 34572403 PMCID: PMC8464821 DOI: 10.3390/biomedicines9091217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE)—WAVE1, WAVE2 and WAVE3 regulate rapid reorganization of cortical actin filaments and have been shown to form a key link between small GTPases and the actin cytoskeleton. Upon receiving upstream signals from Rho-family GTPases, the WASP and WAVE family proteins play a significant role in polymerization of actin cytoskeleton through activation of actin-related protein 2/3 complex (Arp2/3). The Arp2/3 complex, once activated, forms actin-based membrane protrusions essential for cell migration and cancer cell invasion. Thus, by activation of Arp2/3 complex, the WAVE and WASP family proteins, as part of the WAVE regulatory complex (WRC), have been shown to play a critical role in cancer cell invasion and metastasis, drawing significant research interest over recent years. Several studies have highlighted the potential for targeting the genes encoding either part of or a complete protein from the WASP/WAVE family as therapeutic strategies for preventing the invasion and metastasis of cancer cells. WAVE2 is well documented to be associated with the pathogenesis of several human cancers, including lung, liver, pancreatic, prostate, colorectal and breast cancer, as well as other hematologic malignancies. This review focuses mainly on the role of WAVE2 in the development, invasion and metastasis of different types of cancer. This review also summarizes the molecular mechanisms that regulate the activity of WAVE2, as well as those oncogenic pathways that are regulated by WAVE2 to promote the cancer phenotype. Finally, we discuss potential therapeutic strategies that target WAVE2 or the WAVE regulatory complex, aimed at preventing or inhibiting cancer invasion and metastasis.
Collapse
|
14
|
Wu HJ, Chu PY. Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22158113. [PMID: 34360879 PMCID: PMC8348144 DOI: 10.3390/ijms22158113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, breast cancer has remained the most commonly diagnosed cancer and the leading cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases, which require different selection of treatments. Breast cancer stem cells (BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies targeting these biomarkers will be presented.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-975611855; Fax: +886-47227116
| |
Collapse
|
15
|
Lin B, Liu C, Shi E, Jin Q, Zhao W, Wang J, Ji R. MiR-105-3p acts as an oncogene to promote the proliferation and metastasis of breast cancer cells by targeting GOLIM4. BMC Cancer 2021; 21:275. [PMID: 33722196 PMCID: PMC7962220 DOI: 10.1186/s12885-021-07909-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Dysregulated miRNAs are involved in carcinogenesis of the breast and may be used as prognostic biomarkers and therapeutic targets during the cancer process. The purpose of this study was to explore the effect of miR-105-3p on the tumourigenicity of breast cancer and its underlying molecular mechanisms. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to detect the expression of miR-105-3p in breast cancer tissues and cell lines. The impacts of miR-105-3p on the proliferation, migration, invasion and apoptosis of human breast cancer cells (MCF-7 and ZR-75-30) were evaluated by CCK-8 assays, Transwell chamber assays, TUNEL assays and western blot analyses. In addition, bioinformatics and luciferase reporter assays were used to determine the target genes of miR-105-3p. Results The expression of miR-105-3p was elevated in breast cancer tissues and increased with tumour severity. Downregulation of miR-105-3p could inhibit cell proliferation, suppress cell migration/invasion, and promote cell apoptosis in MCF-7 and ZR-75-30 cells. Furthermore, Golgi integral membrane protein 4 (GOLIM4) was identified as the direct target gene of miR-105-3p by bioinformatics and luciferase reporter assays. In addition, silencing GOLIM4 restored the anti-breast cancer effects induced by miR-105-3p downregulation. Conclusions MiR-105-3p acts as an oncogene to promote the proliferation and metastasis of breast cancer cells by targeting GOLIM4, which provides a new target for the prevention and treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07909-2.
Collapse
Affiliation(s)
- Bo Lin
- Department of Pathology, Huai'an Key Laboratory of Gastric Cancer, Jiangsu College of Nursing, No. 9 Keji Road, Huai'an, Jiangsu, 223001, P.R. China
| | - Chunhua Liu
- Office of Educational Administration, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Enyi Shi
- Department of Pathology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China
| | - Qiu Jin
- Department of Pathology, Huai'an Key Laboratory of Gastric Cancer, Jiangsu College of Nursing, No. 9 Keji Road, Huai'an, Jiangsu, 223001, P.R. China
| | - Wenhui Zhao
- Department of Pathology, Huai'an Key Laboratory of Gastric Cancer, Jiangsu College of Nursing, No. 9 Keji Road, Huai'an, Jiangsu, 223001, P.R. China
| | - Juan Wang
- Department of Pathology, Huai'an Key Laboratory of Gastric Cancer, Jiangsu College of Nursing, No. 9 Keji Road, Huai'an, Jiangsu, 223001, P.R. China
| | - Runyuan Ji
- Department of Pathology, Huai'an Key Laboratory of Gastric Cancer, Jiangsu College of Nursing, No. 9 Keji Road, Huai'an, Jiangsu, 223001, P.R. China.
| |
Collapse
|
16
|
Zolghadr F, Bakhshinejad B, Davuchbabny S, Sarrafpour B, Seyedasli N. Critical regulatory levels in tumor differentiation: Signaling pathways, epigenetics and non-coding transcripts. Bioessays 2021; 43:e2000190. [PMID: 33644880 DOI: 10.1002/bies.202000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Approaches to induce tumor differentiation often result in manageable and therapy-naïve cellular states in cancer cells. This transformation is achieved by activating pathways that drive tumor cells away from plasticity, a state that commonly correlates with enhanced aggression, metastasis and resistance to therapy. Here, we discuss signaling pathways, epigenetics and non-coding RNAs as three main regulatory levels with the potential to drive tumor differentiation and hence as potential targets in differentiation therapy approaches. The success of an effective therapeutic regimen in one cancer, however, does not necessarily sustain across cancer types; a phenomenon largely resulting from heterogeneity in the genetic and physiological landscapes of tumor types necessitating an approach designed for each cancer's unique genetic and phenotypic build-up.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sapir Davuchbabny
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Sarrafpour
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
17
|
Triple negative breast cancer in the era of miRNA. Crit Rev Oncol Hematol 2020; 157:103196. [PMID: 33307198 DOI: 10.1016/j.critrevonc.2020.103196] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this review is to elucidate the role of miRNAs in triple negative breast cancer (TNBC). To achieve our goal, we searched databases such as PubMed, ScienceDirect, Springer, Web of Science and Scopus. We retrieved up to 1233 articles, based a rigorous selection criterion, only 197 articles were extensively reviewed. We selected articles only addressing TNBC, but not other types of breast cancer, with the employed approach being miRNA analysis and/or profiling. Our extensive review resulted in grouping of miRNAs into categories in which specific members of miRNAs have roles in specific mechanism in TNBC i.e., carcinogenesis, invasion, metastasis, apoptosis, diagnosis, prognosis, and treatment. TNBC is an aggressive subtype of breast cancer; therefore, different approaches for accurate diagnosis, prognosis and treatment are needed. In this review we summarize the up-to-date miRNA profiling, prognostic, and therapeutic findings that add to the route of controlling TNBC.
Collapse
|
18
|
Angius A, Cossu-Rocca P, Arru C, Muroni MR, Rallo V, Carru C, Uva P, Pira G, Orrù S, De Miglio MR. Modulatory Role of microRNAs in Triple Negative Breast Cancer with Basal-Like Phenotype. Cancers (Basel) 2020; 12:E3298. [PMID: 33171872 PMCID: PMC7695196 DOI: 10.3390/cancers12113298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Development of new research, classification, and therapeutic options are urgently required due to the fact that TNBC is a heterogeneous malignancy. The expression of high molecular weight cytokeratins identifies a biologically and clinically distinct subgroup of TNBCs with a basal-like phenotype, representing about 75% of TNBCs, while the remaining 25% includes all other intrinsic subtypes. The triple negative phenotype in basal-like breast cancer (BLBC) makes it unresponsive to endocrine therapy, i.e., tamoxifen, aromatase inhibitors, and/or anti-HER2-targeted therapies; for this reason, only chemotherapy can be considered an approach available for systemic treatment even if it shows poor prognosis. Therefore, treatment for these subgroups of patients is a strong challenge for oncologists due to disease heterogeneity and the absence of unambiguous molecular targets. Dysregulation of the cellular miRNAome has been related to huge cellular process deregulations underlying human malignancy. Consequently, epigenetics is a field of great promise in cancer research. Increasing evidence suggests that specific miRNA clusters/signatures might be of clinical utility in TNBCs with basal-like phenotype. The epigenetic mechanisms behind tumorigenesis enable progress in the treatment, diagnosis, and prevention of cancer. This review intends to summarize the epigenetic findings related to miRNAome in TNBCs with basal-like phenotype.
Collapse
Affiliation(s)
- Andrea Angius
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (P.C.-R.); (M.R.M.)
- Department of Diagnostic Services, “Giovanni Paolo II” Hospital, ASSL Olbia-ATS Sardegna, 07026 Olbia, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (P.C.-R.); (M.R.M.)
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010 Pula, CA, Italy;
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Sandra Orrù
- Department of Pathology, “A. Businco” Oncologic Hospital, ASL Cagliari, 09121 Cagliari, Italy;
| | - Maria Rosaria De Miglio
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
19
|
Damiano V, Spessotto P, Vanin G, Perin T, Maestro R, Santarosa M. The Autophagy Machinery Contributes to E-cadherin Turnover in Breast Cancer. Front Cell Dev Biol 2020; 8:545. [PMID: 32714931 PMCID: PMC7344152 DOI: 10.3389/fcell.2020.00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an intracellular catabolic process that is increasingly being recognized as a crucial factor in several human diseases including cancers. Mounting evidence suggests that autophagy allows tumor cells to overcome otherwise fatal stresses and to increase dissemination. Nevertheless, how autophagy controls these processes and in particular how it impinges on cell-cell adhesion is still poorly understood. Here, we investigate the role of autophagy in the turnover of the epithelial adhesion molecule E-cadherin in the context of breast cancer. We demonstrated in breast cancer cell lines that autophagy impinges on E-cadherin expression and in the configuration of adherens junctions. Besides, we showed that E-cadherin colocalizes with LC3B and SQSTM1/p62, two components of the autophagosome machinery. Pull down and immunoprecipitation analyses provided evidence that E-cadherin and SQSTM1/p62 physically interact. Moreover, the physical closeness of E-cadherin and SQSTM1/p62 was demonstrated by proximity ligation assays in breast cancer cell lines and primary tumors. Finally, we proved that the silencing of SQSTM1/p62 diminished the E-cadherin/LC3B colocalization, further supporting the role of SQSTM1/p62 in E-cadherin delivery to autophagosomes. These findings suggest that the activation of autophagy, reported in breast cancers with poor prognosis and in dormant breast cancer cells, may contribute to the control of tumor progression via downmodulation of E-cadherin protein levels.
Collapse
Affiliation(s)
- Valentina Damiano
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Spessotto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giulia Vanin
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
20
|
Xia W, Gong D, Qin X, Cai Z. [MicroRNA-671-3p suppresses proliferation and invasion of breast cancer cells by targeting DEPTOR]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:42-48. [PMID: 32376551 DOI: 10.12122/j.issn.1673-4254.2020.01.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects of miR-671-3p on the proliferation and invasion of breast cancer cells and explore the possible mechanism. METHODS We examined the expressions of miR-671-3p in human normal epithelial cells (MCF-10A) and breast cancer cell lines (MCF-7, MDA-MB-231, and SK-BR3) using RT-PCR. The effects of transfection with a miR-671-3p mimic or inhibitor on the proliferation, migration and invasion of MCF-7 cells were evaluated using CCK-8 assay and Transwell chamber assay. The target gene of miR-671-3p was predicated with Targetscan and validated by a dual luciferase reporter system and Western blotting. RESULTS The expression of miR-671-3p was significantly lower in breast cancer cells than in normal breast epithelial cells. Compared with negative control group, MCF-7 cells with miR-671-3p overexpression exhibited significantly reduced proliferation and invasion, whereas inhibition of miR-671-3p obviously promoted the cell proliferation and invasion. Luciferase reporter assay demonstrated that DEPTOR was the target gene of miR-671-3p, and miR-671-3p overexpression caused significant down-regulation of the protein expression of DEPTOR. CONCLUSIONS MiR-671-3p suppresses the proliferation and invasion of breast cancer cell line MCF-7 by directly targeting DEPTOR protein.
Collapse
Affiliation(s)
- Wei Xia
- Department of Cell biology, Southern Medical University, Guangzhou 510515, China.,Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Degui Gong
- Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Xiaoping Qin
- Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Zhuo Cai
- Department of Pharmacy, Air Force Hospital of Southern Theater Command of PLA, Guangzhou 510602, China
| |
Collapse
|
21
|
UTMD inhibit EMT of breast cancer through the ROS/miR-200c/ZEB1 axis. Sci Rep 2020; 10:6657. [PMID: 32313093 PMCID: PMC7170845 DOI: 10.1038/s41598-020-63653-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
As a potential drug/gene delivery system, the ultrasound-targeted microbubble destruction (UTMD) system can be used as a vehicle as well as increasing the permeability of biological barriers to enhance the effect of tumor treatment. However, the effect of UTMD in the tumor EMT process is unknown. In this study, we aimed to investigate the potential and mechanism of UTMD induced oxidative stress in inhibiting EMT of breast cancer. Human breast MDA231 cells were treated with microbubble (MB), ultrasound (US) and UTMD, respectively. The generation of oxidative stress, the levels of miR-200c, ZEB1 and vimentin, and the numbers of migratory cells were evaluated quantitatively and qualitatively by the measurement of intracellular reactive oxygen species (ROS), qRT-PCR, western blot assay, and transwell assay. Then, to evaluate the role of UTMD-induced oxidative stress and miR-200c in the epithelial-mesenchymal transition (EMT) inhibition, the ROS scavenger N-acetyl-L-cysteine (NAC) and miR-200c inhibitor were used before UTMD treatment. We found that UTMD induced oxidative stress, upregulated the expression of miR-200c, downregulated the expression of ZEB1 and vimentin and suppressed the MDA231 cell migration. The addition of NAC and miR-200c inhibitor had an opposite impact on the expression of miR-200c and ZEB1, thus hindered the effects of UTMD on MDA231 cells EMT. In conclusion, UTMD can inhibit the EMT characteristics of MDA231 cells. The mechanism may be related to the regulation of the miR-200c/ZEB1 axis through the generation of ROS induced by UTMD, which may provide a new strategy to prevent the tumor cells EMT under UTMD treatment.
Collapse
|
22
|
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J, Cui Q. MicroRNAs Involved in Carcinogenesis, Prognosis, Therapeutic Resistance and Applications in Human Triple-Negative Breast Cancer. Cells 2019; 8:cells8121492. [PMID: 31766744 PMCID: PMC6953059 DOI: 10.3390/cells8121492] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive, prevalent, and distinct subtype of breast cancer characterized by high recurrence rates and poor clinical prognosis, devoid of both predictive markers and potential therapeutic targets. MicroRNAs (miRNA/miR) are a family of small, endogenous, non-coding, single-stranded regulatory RNAs that bind to the 3′-untranslated region (3′-UTR) complementary sequences and downregulate the translation of target mRNAs as post-transcriptional regulators. Dysregulation miRNAs are involved in broad spectrum cellular processes of TNBC, exerting their function as oncogenes or tumor suppressors depending on their cellular target involved in tumor initiation, promotion, malignant conversion, and metastasis. In this review, we emphasize on masses of miRNAs that act as oncogenes or tumor suppressors involved in epithelial–mesenchymal transition (EMT), maintenance of stemness, tumor invasion and metastasis, cell proliferation, and apoptosis. We also discuss miRNAs as the targets or as the regulators of dysregulation epigenetic modulation in the carcinogenesis process of TNBC. Furthermore, we show that miRNAs used as potential classification, prognostic, chemotherapy and radiotherapy resistance markers in TNBC. Finally, we present the perspective on miRNA therapeutics with mimics or antagonists, and focus on the challenges of miRNA therapy. This study offers an insight into the role of miRNA in pathology progression of TNBC.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Huan Gu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
23
|
Ljepoja B, Schreiber C, Gegenfurtner FA, García-Roman J, Köhler B, Zahler S, Rädler JO, Wagner E, Roidl A. Inducible microRNA-200c decreases motility of breast cancer cells and reduces filamin A. PLoS One 2019; 14:e0224314. [PMID: 31747409 PMCID: PMC6867627 DOI: 10.1371/journal.pone.0224314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer progression and metastases are frequently related to changes of cell motility. Amongst others, the microRNA-200c (miR-200c) was shown to maintain the epithelial state of cells and to hamper migration. Here, we describe two miR-200c inducible breast cancer cell lines, derived from miR-200c knock-out MCF7 cells as well as from the miR-200c-negative MDA-MB-231 cells and report on the emerging phenotypic effects after miR-200s induction. The induction of miR-200c expression seems to effect a rapid reduction of cell motility, as determined by 1D microlane migration assays. Sustained expression of miR200c leads to a changed morphology and reveals a novel mechanism by which miR-200c interferes with cytoskeletal components. We find that filamin A expression is attenuated by miRNA-200c induced downregulation of the transcription factors c-Jun and MRTF/SRF. This potentially novel pathway that is independent of the prominent ZEB axis could lead to a broader understanding of the role that miR200c plays in cancer metastasis.
Collapse
Affiliation(s)
- Bojan Ljepoja
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian A. Gegenfurtner
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan García-Roman
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bianca Köhler
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
24
|
Clinical Theragnostic Relationship between Drug-Resistance Specific miRNA Expressions, Chemotherapeutic Resistance, and Sensitivity in Breast Cancer: A Systematic Review and Meta-Analysis. Cells 2019; 8:cells8101250. [PMID: 31615089 PMCID: PMC6830093 DOI: 10.3390/cells8101250] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
Awareness of breast cancer has been increasing due to early detection, but the advanced disease has limited treatment options. There has been growing evidence on the role of miRNAs involved in regulating the resistance in several cancers. We performed a comprehensive systematic review and meta-analysis on the role of miRNAs in influencing the chemoresistance and sensitivity of breast cancer. A bibliographic search was performed in PubMed and Science Direct based on the search strategy, and studies published until December 2018 were retrieved. The eligible studies were included based on the selection criteria, and a detailed systematic review and meta-analysis were performed based on PRISMA guidelines. A random-effects model was utilised to evaluate the combined effect size of the obtained hazard ratio and 95% confidence intervals from the eligible studies. Publication bias was assessed with Cochran’s Q test, I2 statistic, Orwin and Classic fail-safe N test, Begg and Mazumdar rank correlation test, Duval and Tweedie trim and fill calculation and the Egger’s bias indicator. A total of 4584 potential studies were screened. Of these, 85 articles were eligible for our systematic review and meta-analysis. In the 85 studies, 188 different miRNAs were studied, of which 96 were upregulated, 87 were downregulated and 5 were not involved in regulation. Overall, 24 drugs were used for treatment, with doxorubicin being prominently reported in 15 studies followed by Paclitaxel in 11 studies, and 5 drugs were used in combinations. We found only two significant HR values from the studies (miR-125b and miR-4443) and our meta-analysis results yielded a combined HR value of 0.748 with a 95% confidence interval of 0.508–1.100; p-value of 0.140. In conclusion, our results suggest there are different miRNAs involved in the regulation of chemoresistance through diverse drug genetic targets. These biomarkers play a crucial role in guiding the effective diagnostic and prognostic efficiency of breast cancer. The screening of miRNAs as a theragnostic biomarker must be brought into regular practice for all diseases. We anticipate that our study serves as a reference in framing future studies and clinical trials for utilising miRNAs and their respective drug targets.
Collapse
|
25
|
Khaled N, Bidet Y. New Insights into the Implication of Epigenetic Alterations in the EMT of Triple Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11040559. [PMID: 31003528 PMCID: PMC6521131 DOI: 10.3390/cancers11040559] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer and leading cause of cancer death among women worldwide, encompassing a wide heterogeneity of subtypes with different clinical features. During the last two decades, the use of targeted therapies has emerged in clinical research in order to increase treatment efficiency, improve prognosis and reduce recurrence. However, the triple negative breast cancer (TNBC) subtype remains a clinical challenge, with poor prognosis since no therapeutic targets have been identified. This aggressive breast cancer entity lacks expression of oestrogen receptor (ER) and progesterone receptor (PR), and it does not overexpress human epidermal growth factor receptor 2 (HER2). The major reason for TNBC poor prognosis is early therapeutic escape from conventional treatments, leading to aggressive metastatic relapse. Metastases occur after an epithelial-mesenchymal transition EMT of epithelial cells, allowing them to break free from the primary tumour site and to colonize distant organs. Cancer-associated EMT consists not only of acquired migration and invasion ability, but involves complex and comprehensive reprogramming, including changes in metabolism, expression levels and epigenetic. Recently, many studies have considered epigenetic alterations as the primary initiator of cancer development and metastasis. This review builds a picture of the epigenetic modifications implicated in the EMT of breast cancer. It focuses on TNBC and allows comparisons with other subtypes. It emphasizes the role of the main epigenetic modifications lncRNAs, miRNAs, histone and DNA- modifications in tumour invasion and appearance of metastases. These epigenetic alterations can be considered biomarkers representing potential diagnostic and prognostic factors in order to define a global metastatic signature for TNBC.
Collapse
Affiliation(s)
| | - Yannick Bidet
- Laboratoire d'Oncologie Moléculaire, Centre Jean PERRIN et IMoST, UMR 1240, Inserm/Université Clermont Auvergne 58 rue Montalembert, 63000 Clermont-Ferrand, France.
| |
Collapse
|
26
|
Wang F, Zhang L, Xu H, Li R, Xu L, Qin Z, Zhong B. The Significance Role of microRNA-200c as a Prognostic Factor in Various Human Solid Malignant Neoplasms: A Meta-Analysis. J Cancer 2019; 10:277-286. [PMID: 30662548 PMCID: PMC6329861 DOI: 10.7150/jca.27536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: The aim of this study was to conduct a meta-analysis of 49 relevant studies to evaluate the prognostic value of miRNA-200c in various human malignant neoplasms. Methods: All relevant studies were identified by searching PubMed, Embase and Web of Science until August 15st, 2018. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of miRNA-200c for overall survival (OS) and progression-free survival (PFS)/recurrence-free survival (RFS)/disease-free survival (DFS) were calculated to investigate such associations. Results: Overall, 49 eligible studies were included in this meta-analysis. Our results showed that high expression of miRNA-200c was significantly correlated with a poor OS in cancer (pooled HR = 1.32, 95% CI: 1.06-1.65), but was not significantly correlated with PFS/RFS/DFS in cancer (pooled HR=1.05, 95% CI: 0.84-1.23). In our subgroup analysis, high miRNA-200c expression predicted a significantly worse OS (pooled HR = 1.50, 95% CI: 1.12-2.01) only in Caucasians. Moreover, high miRNA-200c expression even showed significantly poor OS (pooled HR = 1.88, 95% CI: 1.39-2.54) in blood samples. In addition, a significantly unfavorable OS (pooled HR = 2.69, 95% CI: 1.49-4.85) and (pooled HR = 2.66, 95% CI: 1.07-6.59) associated with up-regulated miRNA-200c expression were observed in breast cancer and endometrial cancer, respectively. Besides, high miRNA-200c expression also showed significantly poor PFS/RFS/DFS (pooled HR=1.66, 95% CI: 1.03-2.67) in breast cancer. Conclusions: Our findings indicated that high miRNA-200c expression was a promising biomarker for patient survival and disease progression in malignant tumors, especially in breast cancer and endometrial cancer. Considering the insufficient evidence, further large-scale researches and clinical studies were needed to verify these results.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ultrasound, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing, 210029, China
| | - Lei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Haoxiang Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.,Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
27
|
Temian DC, Pop LA, Irimie AI, Berindan-Neagoe I. The Epigenetics of Triple-Negative and Basal-Like Breast Cancer: Current Knowledge. J Breast Cancer 2018; 21:233-243. [PMID: 30275851 PMCID: PMC6158152 DOI: 10.4048/jbc.2018.21.e41] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer has the highest incidence among all malignancies diagnosed in women. Therapies have significantly improved over the years due to extensive molecular and clinical research; in a large number of cases, targeted therapies have provided better prognosis. However, one specific subtype remains elusive to targeted therapies–the triple-negative breast cancer. This immunohistochemically defined subtype is resistant to both endocrine and targeted therapies, leading to its poor prognosis. A field that is of great promise in current cancer research is epigenetics. By studying the epigenetic mechanisms underlying tumorigenesis–DNA methylation, histone modifications, and noncoding RNAs–advances in cancer treatment, diagnosis, and prevention are possible. This review aims to synthesize the epigenetic discoveries that have been made related to the triple-negative breast cancer.
Collapse
Affiliation(s)
- Daiana Cosmina Temian
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Division of Dental Propaedeutics, Aesthetic, Department of Prosthetic Dentistry and Dental Materials, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MedFUTURE Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
28
|
Phosphodiesterase 7B/microRNA-200c relationship regulates triple-negative breast cancer cell growth. Oncogene 2018; 38:1106-1120. [PMID: 30209363 PMCID: PMC7362578 DOI: 10.1038/s41388-018-0499-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022]
Abstract
Members of microRNA-200 (miRNA-200) family play a regulatory role in epithelial to mesenchymal transition (EMT) by suppressing Zeb1 and Zeb2 expression. Consistent with its role in suppressing EMT, Hsa-miR-200c-3p (miR-200c), a member of miR-200 family is poorly expressed in mesenchymal-like triple negative breast cancer (TNBC) cells and ectopic miR-200c expression suppresses cell migration. In this manuscript, we demonstrated that miR-200c potently inhibited TNBC cell growth and tumor development in a mechanism distinct from its ability to downregulate Zeb1 and Zeb2 expression because silencing them only marginally affected TNBC cell growth. We identified phosphodiesterase 7B (PDE7B) as a bona fide miR-200c target. Importantly, miR-200c-led inhibition in cell growth and tumor development was prevented by forcing PDE7B transgene expression while knockdown of PDE7B effectively inhibited cell growth. These results suggest that miR-200c inhibits cell growth by targeting PDE7B mRNA. To elucidate mechanism underlying miR-200c/PDE7B regulation of TNBC cell growth, we showed that cAMP concentration was lower in TNBC cells compared to estrogen receptor-positive (ER+) cells and that both miR-200c and PDE7B siRNAs were able to increase cAMP concentration in TNBC cells. High level of cellular cAMP has been shown to induce cell cycle arrest and apoptosis in TNBC cells. Our observation that ectopic expression of miR-200c triggered apoptosis indicates that it does so by elevating level of cellular cAMP. Analysis of breast tumor gene expression datasets revealed an inverse association between miR-200c and PDE7B expression. Especially, both low miR-200c and high PDE7B expression were correlated with poor survival of breast cancer patients. Our study supports a critical role of miR-200c/PDE7B relationship in TNBC tumorigenesis.
Collapse
|
29
|
Loginov VI, Filippova EA, Kurevlev SV, Fridman MV, Burdennyy AM, Braga EA. Suppressive and Hypermethylated MicroRNAs in the Pathogenesis of Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Nonredundant, Highly Connected MicroRNAs Control Functionality in Breast Cancer Networks. Int J Genomics 2018; 2018:9585383. [PMID: 30003085 PMCID: PMC5996465 DOI: 10.1155/2018/9585383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Alterations to transcriptional regulation are an important factor in breast cancer. Noncoding RNA, such as microRNA (miR), have very influential roles in the transcriptional regulation of genes. Transcriptional regulation can be successfully modeled and analyzed using complex network theory. Particularly, interactions between two distinct classes of biological elements, such as miR and genes, can be approached through the bipartite network formalism. Based on bipartite network properties, it is possible to identify highly influential miRs in the network, such as those that have a large number of connections indicating regulation of a large set of genes. Some miRs in a network are nonredundant, which indicates that they are solely responsible of the regulation of a particular set of genes, which in turn may be associated to a particular biological process. We hypothesize that highly influential, nonredundant miRs, which we call Commodore miRs (Cdre-miRs), have an important role on the control of biological functions through transcriptional networks. In this work, we analyze the regulation of gene expression by miRs in healthy and cancerous breast tissue using bipartite miR-gene networks inferred from the Cancer Genome Atlas (TCGA) expression data. We observe differences in the degree, clustering coefficient and redundancy distributions for miRs and genes in the network, indicating differences in the way that these elements interact with each other. Furthermore, we identify a small set of five Cdre-miRs in the breast cancer network: miR-190b, miR-let7i, miR-292-b, miR-511, and miR-141. The neighborhood of genes controlled by each of these miRs is involved in particular biological functions such as dynein structure-associated processes, immune response, angiogenesis, cytokine activity, and cell motility. We propose that these Cdre-miRs are important control elements of biological functions deregulated in breast cancer.
Collapse
|
31
|
Abstract
Loss of miR-200c is correlated to advanced cancer-subtypes due to increased EMT and decreased treatment efficacy by chemotherapeutics. As miRNAs regulate a multitude of targets, the analysis of differentially expressed proteins upon a genomic knock-out (KO) is of interest. In this study, we generated a TALENs KO of miR-200c in MCF7 breast cancer cells, excluded its compensation by family-members and evaluated the impact on the proteome by analyzing three individual KO-clones. We identified 26 key proteins and a variety of enrichments in metabolic and cytoskeletal pathways. In six of these targets (AGR2, FLNA/B, ALDH7A1, SCIN, GSTM3) the differential expression was additionally detected at mRNA level. Together, these alterations in protein abundance accounted for the observed biological phenotypes, i.e. increased migration and chemoresistance and altered metabolism, found in the miR-200c-KO clones. These findings provide novel insights into miR-200c and pave the way for further studies.
Collapse
|
32
|
di Gennaro A, Damiano V, Brisotto G, Armellin M, Perin T, Zucchetto A, Guardascione M, Spaink HP, Doglioni C, Snaar-Jagalska BE, Santarosa M, Maestro R. A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death Differ 2018; 25:2165-2180. [PMID: 29666469 PMCID: PMC6262018 DOI: 10.1038/s41418-018-0103-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
Inactivation of p53 contributes significantly to the dismal prognosis of breast tumors, most notably triple-negative breast cancers (TNBCs). How the relief from p53 tumor suppressive functions results in tumor cell aggressive behavior is only partially elucidated. In an attempt to shed light on the implication of microRNAs in this context, we discovered a new signaling axis involving p53, miR-30a and ZEB2. By an in silico approach we identified miR-30a as a putative p53 target and observed that in breast tumors reduced miR-30a expression correlated with p53 inactivation, lymph node positivity and poor prognosis. We demonstrate that p53 binds the MIR30A promoter and induces the transcription of both miRNA strands 5p and 3p. Both miR-30a-5p and -3p showed the capacity of targeting ZEB2, a transcription factor involved in epithelial–mesenchymal transition (EMT), tumor cell migration and drug resistance. Intriguingly, we found that p53 does restrain ZEB2 expression via miR-30a. Finally, we provide evidence that the new p53/miR-30a/ZEB2 axis controls tumor cell invasion and distal spreading and impinges upon miR-200c expression. Overall, this study highlights the existence of a novel axis linking p53 to EMT via miR-30a, and adds support to the notion that miRNAs represent key elements of the complex network whereby p53 inactivation affects TNBC clinical behavior.
Collapse
Affiliation(s)
- Alessandra di Gennaro
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Valentina Damiano
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Giulia Brisotto
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Michela Armellin
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Tiziana Perin
- Pathology Unit, CRO Aviano National Cancer Institute, Aviano (PN), via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Antonella Zucchetto
- Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, Aviano (PN) via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Michela Guardascione
- Medical Oncology Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Herman P Spaink
- Molecular Cell Biology Department, Institute of Biology, Leiden University, Leiden, 2333CC, The Netherlands
| | - Claudio Doglioni
- Ateneo Vita-Salute, Department of Pathology, IRCCS Scientific Institute San Raffaele, Milan, 20132, Italy
| | - B Ewa Snaar-Jagalska
- Molecular Cell Biology Department, Institute of Biology, Leiden University, Leiden, 2333CC, The Netherlands
| | - Manuela Santarosa
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Roberta Maestro
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| |
Collapse
|
33
|
Ding K, Tan S, Huang X, Wang X, Li X, Fan R, Zhu Y, Lobie PE, Wang W, Wu Z. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J Biol Chem 2018; 293:3949-3964. [PMID: 29367342 DOI: 10.1074/jbc.ra117.001103] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer remains a malignancy with poor survival outcome. We herein report that GSE1, a proline-rich protein, possesses a role in the progression of human gastric cancer. The expression of GSE1 was observed to be much higher in human gastric cancer tissues compared with normal gastric tissues, and GSE1 expression correlated positively with lymph node metastasis, histological grade, depth of invasion, and clinical stage in gastric cancer patients. Moreover, GSE1 expression was also associated with decreased post-operative relapse-free survival and overall survival in the cohort. The forced expression of GSE1 in gastric cancer cell lines resulted in increased cell proliferation, increased colony formation, enhanced cell migration, and invasion. Furthermore, forced expression of GSE1 also increased tumor size and enhanced lung metastasis in xenograft models. The depletion of endogenous GSE1 with shRNAs decreased the oncogenicity and invasiveness of gastric cancer cells both in vitro and in vivo In addition, GSE1 was determined to be a direct target of miR-200b and miR-200c. Furthermore, GSE1 positively regulated the downstream gene SLC7A5 (also known as LAT-1), which was scanned and verified from mRNA sequencing. GSE1 therefore possesses an oncogenic role in human gastric cancer, and targeted therapeutic approaches to inhibit GSE1 function in gastric cancer warrant further consideration.
Collapse
Affiliation(s)
- Keshuo Ding
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China.,the Department of Pathology and
| | - Sheng Tan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xing Huang
- the Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.,the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaonan Wang
- the Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | | | - Rong Fan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Zhu
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Peter E Lobie
- the Tsinghua-Berkeley Shenzhen Institute and Division of Life Sciences and Health, Tsinghua University Graduate School, Shenzhen 518055, China, and.,the Cancer Science Institute of Singapore and Department of Pharmacology, National University Health System, National University of Singapore, Singapore 117599
| | - Wenbin Wang
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China,
| | | |
Collapse
|
34
|
Kawaguchi T, Yan L, Qi Q, Peng X, Gabriel EM, Young J, Liu S, Takabe K. Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients. Sci Rep 2017; 7:15945. [PMID: 29162923 PMCID: PMC5698306 DOI: 10.1038/s41598-017-16112-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Some microRNAs (miRNAs) are known to suppress breast cancer. However, whether the expressions of these tumor suppressive miRNAs translate to patient survival were not investigated in large cohort. Nine miRNAs (miR-30a, miR-30c, miR-31, miR-126, miR-140, miR-146b, miR-200c, miR-206, and miR-335) known to be tumor suppressive miRNAs in breast cancer were investigated in Genomic Data Common data portal miRNA-Seq dataset and The Cancer Genome Atlas (TCGA) (n = 1052). Of the 9 miRNAs, miR-30a, miR-30c, miR-126, miR-140, miR-206, and miR-335 were found to have significantly lower expression in breast cancer tissues compared to paired normal breast tissue. High expression of miR-30a or miR-200c was associated with significantly better overall survival (OS). Gene Set Enrichment Analysis (GSEA) demonstrated that low expression levels of miR-30a had the tendency to associate with gene enrichment of EMT, while miR-200c did not, in TCGA cohort, and our findings support the need of validation using large cohort to use miRNA as prognostic biomarker for patients with breast cancer.
Collapse
Affiliation(s)
- Tsutomu Kawaguchi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Qianya Qi
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Xuan Peng
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Emmanuel M Gabriel
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Jessica Young
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
35
|
Zare M, Bastami M, Solali S, Alivand MR. Aberrant miRNA promoter methylation and EMT‐involving miRNAs in breast cancer metastasis: Diagnosis and therapeutic implications. J Cell Physiol 2017; 233:3729-3744. [DOI: 10.1002/jcp.26116] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Maryam Zare
- Department of BiologyPayame Noor UniversityTehranIran
| | - Milad Bastami
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Medical GeneticsFaculty of Medicine, Tabriz University of Medical SciencesTabrizIran
| | - Saeed Solali
- Department of HematologyFaculty of Medicine, Tabriz University of Medical SciencesTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Reza Alivand
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Medical GeneticsFaculty of Medicine, Tabriz University of Medical SciencesTabrizIran
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
36
|
Karamitopoulou E, Haemmig S, Baumgartner U, Schlup C, Wartenberg M, Vassella E. MicroRNA dysregulation in the tumor microenvironment influences the phenotype of pancreatic cancer. Mod Pathol 2017; 30:1116-1125. [PMID: 28548126 DOI: 10.1038/modpathol.2017.35] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Cellular interactions in the tumor microenvironment influence neoplastic progression in pancreatic ductal adenocarcinoma. One underlying mechanism is the induction of the prognostically unfavorable epithelial-mesenchymal-transition-like tumor budding. Our aim is to explore the expression of microRNAs implicated in the regulation of tumor budding focusing on the microenvironment of the invasive front. To this end, RNA from laser-capture-microdissected material of the main tumor, tumor buds, juxta-tumoral stroma, tumor-remote stroma, and non-neoplastic pancreatic parenchyma from pancreatic cancer cases with (n=7) and without (n=6) tumor budding was analyzed by qRT-PCR for the expression of a panel of miRNAs that are known to be implicated in the regulation of epithelial-mesenchymal transition, including miR-21, miR-183, miR-200b, miR-200c, miR-203, miR-205, miR-210, and miR-217. Here we show that at the invasive front of pancreatic ductal adenocarcinoma, specific microRNAs, are differentially expressed between tumor buds and main tumor cells and between cases with and without tumor budding, indicating their involvement in the regulation of the budding phenotype. Notably, miR-200b and miR-200c were significantly downregulated in the tumor buds. Consistent with this finding, they negatively correlated with the expression of epithelial-mesenchymal-transition-associated E-cadherin repressors ZEB1 and ZEB2 in the budding cells (P<0.001). Interestingly, many microRNAs were also dysregulated in juxta-tumoral compared to tumor-remote stroma suggesting that juxta-tumoral stroma contributes to microRNA dysregulation. Notably, miR-200b and miR-200c were strongly downregulated while miR-210 and miR-21 were upregulated in the juxta-tumoral vs tumor-remote stroma in carcinomas with tumor budding. In conclusion, microRNA targeting in both tumor and stromal cells could represent a treatment option for aggressive pancreatic cancer.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Stefan Haemmig
- Molecular Pathology Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ulrich Baumgartner
- Molecular Pathology Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cornelia Schlup
- Molecular Pathology Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Martin Wartenberg
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Erik Vassella
- Molecular Pathology Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Zhang J, Li G, Chen Y, Fang L, Guan C, Bai F, Ma M, Lyu J, Meng QH. Metformin Inhibits Tumorigenesis and Tumor Growth of Breast Cancer Cells by Upregulating miR-200c but Downregulating AKT2 Expression. J Cancer 2017; 8:1849-1864. [PMID: 28819383 PMCID: PMC5556649 DOI: 10.7150/jca.19858] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Metformin has been reported to inhibit the growth of various types of cancers, including breast cancer. Yet the mechanisms underlying the anticancer effects of metformin are not fully understood. Growing evidence suggests that metformin's anticancer effects are mediated at least in part by modulating microRNAs, including miR-200c, which has a tumor suppressive role in breast cancer. We hypothesized that miR-200c has a role in the antitumorigenic effects of metformin on breast cancer cells. Methods: To delineate the role of miR-200c in the effects of metformin on breast cancer, plasmids containing pre-miR-200c or miR-200c inhibitor were transfected into breast cancer cell lines. The MDA-MB-231, BT549, MCF-7, and T-47-D cells' proliferation, apoptosis, migration, and invasion were assessed. The antitumor role of metformin in vivo was investigated in a MDA-MB-231 xenograft tumor model in SCID mice. Results: Metformin significantly inhibited the growth, migration, and invasion of breast cancer cells, and induced their apoptosis; these effects were dependent on both dose and time. Metformin also suppressed MDA-MB-231 tumor growth in SCID mice in vivo. Metformin treatment was associated with increased miR-200c expression and decreased c-Myc and AKT2 protein expression in both breast cancer cells and tumor tissues. Overexpression of miR-200c exhibited effects on breast cancer cells similar to those of metformin treatment. In contrast, inhibiting the expression of miR-200c increased the growth, migration, and invasion of MCF-7 and MDA-MB-231 cells. Conclusion: Metformin inhibits the growth and invasiveness of breast cancer cells by upregulation of miR-200c expression by targeting AKT2. These findings provide novel insight into the molecular functions of metformin that suggest its potential as an anticancer agent.
Collapse
Affiliation(s)
- Jiali Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gefei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuan Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chen Guan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fumao Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengni Ma
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing H Meng
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Zhang G, Zhang W, Li B, Stringer-Reasor E, Chu C, Sun L, Bae S, Chen D, Wei S, Jiao K, Yang WH, Cui R, Liu R, Wang L. MicroRNA-200c and microRNA- 141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer. Breast Cancer Res 2017. [PMID: 28637482 PMCID: PMC5480201 DOI: 10.1186/s13058-017-0858-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Members of the microRNA (miR)-200 family, which are involved in tumor metastasis, have potential as cancer biomarkers, but their regulatory mechanisms remain elusive. Methods We investigated FOXP3-inducible breast cancer cells, Foxp3 heterozygous Scurfy mutant (Foxp3sf/+) female mice, and patients with breast cancer for characterization of the formation and regulation of the miR-200 family in breast cancer cells and circulation. Participants (259), including patients with breast cancer or benign breast tumors, members of breast cancer families, and healthy controls, were assessed for tumor and circulating levels of the miR-200 family. Results First, we identified a FOXP3-KAT2B-miR-200c/141 axis in breast cancer cells. Second, aging Foxp3sf/+ female mice developed spontaneous breast cancers and lung metastases. Levels of miR-200c and miR-141 were lower in Foxp3sf/+ tumor cells than in normal breast epithelial cells, but plasma levels of miR-200c and miR-141 in the Foxp3sf/+ mice increased during tumor progression and metastasis. Third, in patients with breast cancer, the levels of miR-200c and 141 were lower in FOXP3low relative to those with FOXP3high breast cancer cells, especially in late-stage and metastatic cancer cells. The levels of miR-200c and miR-141 were higher in plasma from patients with metastatic breast cancer than in plasma from those with localized breast cancer, with benign breast tumors, with a family history of breast cancer, or from healthy controls. Finally, in Foxp3sf/+ mice, plasma miR-200c and miR-141 appeared to be released from tumor cells. Conclusions miR-200c and miR-141 are regulated by a FOXP3-KAT2B axis in breast cancer cells, and circulating levels of miR-200c and miR-141 are potential biomarkers for early detection of breast cancer metastases. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0858-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangxin Zhang
- Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Wei Zhang
- Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Bingjin Li
- Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Erica Stringer-Reasor
- Hematology/Oncology Section, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chengjing Chu
- Department of Applied Psychology, Humanities and Management Colleges, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Liyan Sun
- Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Sejong Bae
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kenneth Jiao
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University, Savannah, GA, 31404, USA
| | - Ranji Cui
- Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
39
|
Jones R, Watson K, Bruce A, Nersesian S, Kitz J, Moorehead R. Re-expression of miR-200c suppresses proliferation, colony formation and in vivo tumor growth of murine claudin-low mammary tumor cells. Oncotarget 2017; 8:23727-23749. [PMID: 28423599 PMCID: PMC5410340 DOI: 10.18632/oncotarget.15829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Claudin-low breast cancer is a relatively rare breast cancer subtype. These cancers are typically ER-/PR-/HER2- and express high levels of mesenchymal genes as well as genes associated with inflammation, angiogenesis and stem cell function. In addition to alterations in gene expression, it was recently demonstrated that claudin-low breast cancers express very low levels of the miR-200 family of miRNAs. Given that each miRNA can regulate tens, hundreds or even thousands of genes, miRNAs are being evaluated as therapeutic targets. In this study we show that mammary tumors from MTB-IGFIR transgenic mice and cell lines derived from these tumors represent a model of human claudin-low breast cancer and murine claudin-low mammary tumors and cell lines express only very low levels of all five members of the miR-200 family. Reduced miR-200 family expression appears to be regulated via methylation as cells and tumors expressing low levels of miR-200 family members had higher levels of CpG methylation in a putative promoter region than tumors and cells expressing high levels of miR-200 family members. Re-expression of miR-200c in murine claudin-low mammary tumor cells inhibited tumor cell proliferation and colony formation in vitro and tumor growth in vivo. With respect to tumor growth in vivo, re-expression of miR-200c was associated with a reduction in tumor vasculature and expression of Flt1 and Vegfc. Therefore, miR-200c is an important regulator of mesenchymal tumor cell growth.
Collapse
Affiliation(s)
- Robert Jones
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Katrina Watson
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony Bruce
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah Nersesian
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jenna Kitz
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger Moorehead
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics 2017; 12:416-432. [PMID: 28358281 DOI: 10.1080/15592294.2017.1311434] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival.
Collapse
Affiliation(s)
- Gangning Liang
- a Department of Urology , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Daniel J Weisenberger
- b Department of Biochemistry and Molecular Medicine , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| |
Collapse
|