1
|
Zheng Y, Meng L, Qu L, Zhao C, Wang L, Ma J, Liu C, Shou C. Co-targeting TMEM16A with a novel monoclonal antibody and EGFR with Cetuximab inhibits the growth and metastasis of esophageal squamous cell carcinoma. J Transl Med 2024; 22:1046. [PMID: 39563381 DOI: 10.1186/s12967-024-05830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
The chloride channel transmembrane protein 16A (TMEM16A) possesses a calcium-activated property linked to tumor-promoting malignant phenotype and electrophysiological stability. Numerous studies have shown that TMEM16A exhibits aberrant amplification in various squamous cell carcinomas such as esophageal squamous cell carcinoma (ESCC) and is correlated with unfavorable outcomes of ESCC patients. Therefore, TMEM16A is considered as a promising therapeutic target for ESCC. Because of its intricate structure, the development of therapeutic antibodies directed against TMEM16A has not been documented. In this study, we produced a series of novel monoclonal antibodies targeting TMEM16A and identified mT16#5 as an antibody capable of inhibiting ESCC cells migration, invasion and TMEM16A ion channel activity. Additionally, based on the validation that TMEM16A was positively correlated with expression of EGFR and the interaction between them, the mT16#5 exhibited a synergistic inhibitory effect on ESCC metastasis and growth when administered in combination with Cetuximab in vivo. In terms of mechanism, we found that mT16A#5 inhibited the phosphorylation of PI3K, AKT and JNK. These results highlight the anti-growth and anti-metastasis capacity of the combination of mT16A#5 and Cetuximab in the treatment of ESCC by targeting TMEM16A and EGFR, and provide a reference for combinational antibody treatment in ESCC.
Collapse
Affiliation(s)
- Yutian Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Pathology, National Center for Children's Health (NCCH), Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lixin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayi Ma
- Beijing National Day School, Beijing, 100039, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Ji J, Zhou Z, Luo Q, Zhu Y, Wang R, Liu Y. TMEM16A enhances the activity of the Cdc42-NWASP signaling pathway to promote invasion and metastasis in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:161-171. [PMID: 38155002 DOI: 10.1016/j.oooo.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE We explored the relationship between TMEM16A and metastasis and development in oral squamous cell carcinoma (OSCC). STUDY DESIGN The University of Alabama at Birmingham and Gene Expression Profiling Interactive Analysis Databases were employed to analyze the relationship between the expression of TMEM16A and the survival of patients with OSCC. TMEM16A was knocked down and overexpressed in CAL27 and SCC-4 cells, respectively, and the malignant behavior and expression of key proteins were detected. The Cdc42-NWASP pathway was inhibited, and the effects of TMEM16A and the Cdc42-NWASP pathway on promoting the malignant behavior of cancer cells were verified. A xenograft tumor model was constructed, and tumor growth, cell proliferation index, apoptosis, and Cdc42-NWASP signal pathway activity were detected. RESULTS The expression of TMEM16A in oral cancer tissues was significantly higher than in adjacent tissues, and mice with high expression of TMEM16A had shorter survival. Overexpression of TMTM16A could significantly promote the occurrence of cancer and reduce the apoptosis of cancer cells, whereas the activity of the Cdc42 pathway was higher. Knocking down TMEM16A or inhibiting the Cdc42-NWASP pathway could reverse these results. CONCLUSION The activation of the Cdc42-NWASP pathway by high TMEM16A expression is closely related to OSCC and may become a new therapeutic target to prevent OSCC metastasis.
Collapse
Affiliation(s)
- Juanjuan Ji
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Zhi Zhou
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Qi Luo
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yaling Zhu
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Rui Wang
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yali Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Abstract
Ion channels play a crucial role in cellular signaling, homeostasis, and generation of electrical and chemical signals. Aberrant expression and dysregulation of ion channels have been associated with cancer development and resistance to conventional cancer treatment such as chemotherapy. Several molecular mechanisms have been proposed to explain this phenomenon. Including evasion of apoptosis, decreased drug accumulation in cancer cells, detoxifying and activation of alternative escape pathways such as autophagy. Each of these mechanisms leads to a reduction of the therapeutic efficacy of administered drugs, causing more difficulty in cancer treatment. This review highlights the linkages between ion channels and resistance to chemotherapy. Furthermore, it elaborates their molecular mechanisms and the potential of being therapeutic targets in clinical management.
Collapse
|
4
|
Li S, Wang Z, Geng R, Zhang W, Wan H, Kang X, Guo S. TMEM16A ion channel: A novel target for cancer treatment. Life Sci 2023; 331:122034. [PMID: 37611692 DOI: 10.1016/j.lfs.2023.122034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Cancer draws attention owing to the high morbidity and mortality. It is urgent to develop safe and effective cancer therapeutics. The calcium-activated chloride channel TMEM16A is widely distributed in various tissues and regulates physiological functions. TMEM16A is abnormally expressed in several cancers and associate with tumorigenesis, metastasis, and prognosis. Knockdown or inhibition of TMEM16A in cancer cells significantly inhibits cancer development. Therefore, TMEM16A is considered as a biomarker and therapeutic target for some cancers. This work reviews the cancers associated with TMEM16A. Then, the molecular mechanism of TMEM16A overexpression in cancer was analyzed, and the possible signal transduction mechanism of TMEM16A regulating cancer development was summarized. Finally, TMEM16A inhibitors with anticancer effect and their anticancer mechanism were concluded. We hope to provide new ideas for pharmacological studies on TMEM16A in cancer.
Collapse
Affiliation(s)
- Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhichen Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
5
|
Kulkarni S, Li Q, Singhi AD, Liu S, Monga SP, Feranchak AP. TMEM16A partners with mTOR to influence pathways of cell survival, proliferation, and migration in cholangiocarcinoma. Am J Physiol Gastrointest Liver Physiol 2023; 325:G122-G134. [PMID: 37219012 PMCID: PMC10390053 DOI: 10.1152/ajpgi.00270.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Expression of transmembrane protein 16 A (TMEM16A), a calcium activated chloride channel, is elevated in some human cancers and impacts tumor cell proliferation, metastasis, and patient outcome. Evidence presented here uncovers a molecular synergy between TMEM16A and mechanistic/mammalian target of rapamycin (mTOR), a serine-threonine kinase that is known to promote cell survival and proliferation in cholangiocarcinoma (CCA), a lethal cancer of the secretory cells of bile ducts. Analysis of gene and protein expression in human CCA tissue and CCA cell line detected elevated TMEM16A expression and Cl- channel activity. The Cl- channel activity of TMEM16A impacted the actin cytoskeleton and the ability of cells to survive, proliferate, and migrate as revealed by pharmacological inhibition studies. The basal activity of mTOR, too, was elevated in the CCA cell line compared with the normal cholangiocytes. Molecular inhibition studies provided further evidence that TMEM16A and mTOR were each able to influence the regulation of the other's activity or expression respectively. Consistent with this reciprocal regulation, combined TMEM16A and mTOR inhibition produced a greater loss of CCA cell survival and migration than their individual inhibition alone. Together these data reveal that the aberrant TMEM16A expression and cooperation with mTOR contribute to a certain advantage in CCA.NEW & NOTEWORTHY This study points to the dysregulation of transmembrane protein 16 A (TMEM16A) expression and activity in cholangiocarcinoma (CCA), the inhibition of which has functional consequences. Dysregulated TMEM16A exerts an influence on the regulation of mechanistic/mammalian target of rapamycin (mTOR) activity. Moreover, the reciprocal regulation of TMEM16A by mTOR demonstrates a novel connection between these two protein families. These findings support a model in which TMEM16A intersects the mTOR pathway to regulate cell cytoskeleton, survival, proliferation, and migration in CCA.
Collapse
Affiliation(s)
- Sucheta Kulkarni
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Qin Li
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Aatur D Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Satdarshan P Monga
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Andrew P Feranchak
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
6
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
7
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Li B, Fan Q, Zheng L, Liu P, Fang N. Significance of Anoctamin 6 in progression and prognostic prediction of gastric adenocarcinoma. Histol Histopathol 2022; 37:1007-1017. [PMID: 35548923 DOI: 10.14670/hh-18-469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gastric cancer is one of the most lethal malignancies worldwide with surgery as the only curative therapy. However, postoperative overall survival of gastric cancer is far from satisfactory although significant improvement has been made in adjuvant therapies. Gastric cancer is characterized as highly heterogeneous and illustrating the molecular mechanisms is invaluable for both identification of novel prognostic biomarkers and development of therapeutic drugs. Here we aimed to investigate the participation of Anoctamin 6 (ANO6) in gastric adenocarcinoma. METHODS Immunohistochemical (IHC) staining was used to explore the expression pattern of ANO6 in tumor tissues from gastric adenocarcinoma patients (n=108). Clinicopathological data was subjected to Kaplan-Meier survival and Cox multivariate analyses to evaluate prognostic predictors. Overexpression and silencing procedures were performed on gastric cancer cell lines to investigate the functional mechanisms of ANO6 in regulating tumor development. RESULTS Higher ANO6 expression showed a positive correlation with advanced tumor stage of gastric cancer. Univariate and multivariate analyses revealed that ANO6 was an independent prognostic factor for overall survival of gastric cancer. An in vitro study demonstrated that ANO6 can promote cell proliferation while silencing ANO6 significantly downregulated cell viability. CONCLUSION High ANO6 expression in gastric cancer indicates poor clinical outcomes, and ANO6 may act as a potential target for novel therapy development targeting gastric cancer.
Collapse
Affiliation(s)
- Bin Li
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China
| | - Qiong Fan
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China
| | - Li Zheng
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China
| | - Peng Liu
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China
| | - Nian Fang
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China.
| |
Collapse
|
9
|
Jansen K, Kluth M, Blessin NC, Hube-Magg C, Neipp M, Mofid H, Lárusson H, Daniels T, Isbert C, Coerper S, Ditterich D, Rupprecht H, Goetz A, Bernreuther C, Sauter G, Uhlig R, Wilczak W, Simon R, Steurer S, Burandt E, Perez D, Izbicki JR, Jacobsen F, Clauditz TS, Marx AH, Krech T. DOG1 overexpression is associated with mismatch repair deficiency and BRAF mutations but unrelated to cancer progression in colorectal cancer. Histol Histopathol 2022; 37:739-748. [PMID: 35642329 DOI: 10.14670/hh-18-475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The transmembrane channel protein DOG1 (Discovered on GIST1) is normally expressed in the gastrointestinal interstitial cells of Cajal and also in gastrointestinal stroma tumors arising from these cells. However, there is also evidence for a relevant role of DOG1 expression in colorectal cancers. This study was undertaken to search for associations between DOG1 expression and colon cancer phenotype and key molecular alterations. METHODS A tissue microarray containing samples from more than 1,800 colorectal cancer patients was analyzed by immunohistochemistry. RESULTS DOG1 immunostaining was detected in 503 (30.2%) of 1,666 analyzable colorectal cancers and considered weak in 360 (21.6%), moderate in 78 (4.7%), and strong in 65 (3.9%). Strong DOG1 immunostaining was associated with advanced pT stage (p=0.0367) and nodal metastases (p=0.0145) but these associations were not retained in subgroups of 1,135 mismatch repair proficient and 86 mismatch repair deficient tumors. DOG1 positivity was significantly linked to several molecular tumor features including mismatch repair deficiency (p=0.0034), BRAF mutations (p<0.0001), nuclear p53 accumulation (p=0.0157), and PD-L1 expression (p=0.0199) but unrelated to KRAS mutations and the density of tumor infiltrating CD8 positive lymphocytes. CONCLUSION Elevated DOG1 expression is frequent in colorectal cancer and significantly linked to important molecular alterations. However, DOG1 overexpression is largely unrelated to histopathological parameters of cancer aggressiveness and may thus not serve as a prognostic parameter for this tumor entity.
Collapse
Affiliation(s)
- Kristina Jansen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Neipp
- General, Vascular and Visceral Surgery Clinic, Itzehoe Medical Center, Itzehoe, Germany
| | - Hamid Mofid
- General, Visceral Thoracic and Vascular Surgery Clinic, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Hannes Lárusson
- General, Visceral Thoracic and Vascular Surgery Clinic, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Thies Daniels
- General, Visceral and Tumor Surgery Clinic, Albertinen Hospital, Hamburg, Germany
| | - Christoph Isbert
- Department of General, Gastrointestinal and Colorectal Surgery, Amalie Sieveking Hospital, Hamburg, Germany
| | - Stephan Coerper
- Department of Surgery, General Hospital Martha-Maria Hospital Nuernberg, Nuernberg, Germany
| | - Daniel Ditterich
- Department of Surgery, General Hospital Neustadt/Aisch, Neustadt an der Aisch, Germany
| | - Holger Rupprecht
- Department of Thoracic Surgery, Academic Hospital Neumarkt, Neumarkt/Oberpfalz, Germany
| | - Albert Goetz
- Department of Surgery, General Hospital Roth, Roth, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Perez
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| |
Collapse
|
10
|
TMEM16A as a potential treatment target for head and neck cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:196. [PMID: 35668455 PMCID: PMC9172006 DOI: 10.1186/s13046-022-02405-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
Transmembrane protein 16A (TMEM16A) forms a plasma membrane-localized Ca2+-activated Cl- channel. Its gene has been mapped to an area on chromosome 11q13, which is amplified in head and neck squamous cell carcinoma (HNSCC). In HNSCC, TMEM16A overexpression is associated with not only high tumor grade, metastasis, low survival, and poor prognosis, but also deterioration of clinical outcomes following platinum-based chemotherapy. Recent study revealed the interaction between TMEM16A and transforming growth factor-β (TGF-β) has an indirect crosstalk in clarifying the mechanism of TMEM16A-induced epithelial-mesenchymal transition. Moreover, human papillomavirus (HPV) infection can modulate TMEM16A expression along with epidermal growth factor receptor (EGFR), whose phosphorylation has been reported as a potential co-biomarker of HPV-positive cancers. Considering that EGFR forms a functional complex with TMEM16A and is a co-biomarker of HPV, there may be crosstalk between TMEM16A expression and HPV-induced HNSCC. EGFR activation can induce programmed death ligand 1 (PD-L1) synthesis via activation of the nuclear factor kappa B pathway and JAK/STAT3 pathway. Here, we describe an interplay among EGFR, PD-L1, and TMEM16A. Combination therapy using TMEM16A and PD-L1 inhibitors may improve the survival rate of HNSCC patients, especially those resistant to anti-EGFR inhibitor treatment. To the best of our knowledge, this is the first review to propose a biological validation that combines immune checkpoint inhibition with TMEM16A inhibition.
Collapse
|
11
|
Djamgoz MBA. Combinatorial Therapy of Cancer: Possible Advantages of Involving Modulators of Ionic Mechanisms. Cancers (Basel) 2022; 14:2703. [PMID: 35681682 PMCID: PMC9179511 DOI: 10.3390/cancers14112703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer is a global health problem that 1 in 2-3 people can expect to experience during their lifetime. Several different modalities exist for cancer management, but all of these suffer from significant shortcomings in both diagnosis and therapy. Apart from developing completely new therapies, a viable way forward is to improve the efficacy of the existing modalities. One way is to combine these with each other or with other complementary approaches. An emerging latter approach is derived from ionic mechanisms, mainly ion channels and exchangers. We evaluate the evidence for this systematically for the main treatment methods: surgery, chemotherapy, radiotherapy and targeted therapies (including monoclonal antibodies, steroid hormones, tyrosine kinase inhibitors and immunotherapy). In surgery, the possible systemic use of local anesthetics to suppress subsequent relapse is still being discussed. For all the other methods, there is significant positive evidence for several cancers and a range of modulators of ionic mechanisms. This applies also to some of the undesirable side effects of the treatments. In chemotherapy, for example, there is evidence for co-treatment with modulators of the potassium channel (Kv11.1), pH regulation (sodium-hydrogen exchanger) and Na+-K+-ATPase (digoxin). Voltage-gated sodium channels, shown previously to promote metastasis, appear to be particularly useful for co-targeting with inhibitors of tyrosine kinases, especially epidermal growth factor. It is concluded that combining current orthodox treatment modalities with modulators of ionic mechanisms can produce beneficial effects including (i) making the treatment more effective, e.g., by lowering doses; (ii) avoiding the onset of resistance to therapy; (iii) reducing undesirable side effects. However, in many cases, prospective clinical trials are needed to put the findings firmly into clinical context.
Collapse
Affiliation(s)
- Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; ; Tel.: +44-796-181-6959
- Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, Turkey
| |
Collapse
|
12
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
13
|
Ion Channel Involvement in Tumor Drug Resistance. J Pers Med 2022; 12:jpm12020210. [PMID: 35207698 PMCID: PMC8878471 DOI: 10.3390/jpm12020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Over 90% of deaths in cancer patients are attributed to tumor drug resistance. Resistance to therapeutic agents can be due to an innate property of cancer cells or can be acquired during chemotherapy. In recent years, it has become increasingly clear that regulation of membrane ion channels is an important mechanism in the development of chemoresistance. Here, we review the contribution of ion channels in drug resistance of various types of cancers, evaluating their potential in clinical management. Several molecular mechanisms have been proposed, including evasion of apoptosis, cell cycle arrest, decreased drug accumulation in cancer cells, and activation of alternative escape pathways such as autophagy. Each of these mechanisms leads to a reduction of the therapeutic efficacy of administered drugs, causing more difficulty in cancer treatment. Thus, targeting ion channels might represent a good option for adjuvant therapies in order to counteract chemoresistance development.
Collapse
|
14
|
Zhou Z, Zhang C, Ma Z, Wang H, Tuo B, Cheng X, Liu X, Li T. Pathophysiological role of ion channels and transporters in HER2-positive breast cancer. Cancer Gene Ther 2022; 29:1097-1104. [PMID: 34997219 DOI: 10.1038/s41417-021-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
The incidence of breast cancer (BC) has been increasing each year, and BC is now the most common malignant tumor in women. Among the numerous BC subtypes, HER2-positive BC can be treated with a variety of strategies based on targeting HER2. Although there has been great progress in the treatment of HER2-positive BC, recurrence, metastasis and drug resistance remain considerable challenges. The dysfunction of ion channels and transporters can affect the development and progression of HER2-positive BC, so these entities are expected to be new therapeutic targets. This review summarizes various ion channels and transporters associated with HER2-positive BC and suggests potential targets for the development of new and effective therapies.
Collapse
Affiliation(s)
- Zhengxing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Chengmin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
15
|
Kessler L, Malik S, Leoni M, Burrows F. Potential of Farnesyl Transferase Inhibitors in Combination Regimens in Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215310. [PMID: 34771475 PMCID: PMC8582567 DOI: 10.3390/cancers13215310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Current therapies for recurrent and metastatic SCC are associated with poor outcomes, and options for later lines of treatment are limited. Insights into potential therapeutic targets, as well as mechanisms of resistance to available therapies, have begun to be elucidated, creating the basis for exploration of combination approaches to drive better patient outcomes. Tipifarnib, a farnesyl transferase inhibitor (FTI), is a small molecule drug that has demonstrated encouraging clinical activity in a genetically-defined subset of head and neck squamous cell carcinoma (HNSCC)-specifically, tumors that express a mutation in the HRAS protooncogene. More recently, bioinformatic analyses and results from patient-derived xenograft modeling indicate that HRAS pathway dependency may extend to a broader subpopulation of SCCs beyond HRAS mutants in the context of combination with agents such as cisplatin, cetuximab, or alpelisib. In addition, tipifarnib can also inactivate additional farnesylated proteins implicated in resistance to approved therapies, including immunotherapies, through a variety of distinct mechanisms, suggesting that tipifarnib could serve as an anchor for combination regimens in SCCs and other tumor types.
Collapse
|
16
|
Jansen K, Farahi N, Büscheck F, Lennartz M, Luebke AM, Burandt E, Menz A, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Lebok P, Sauter G, Simon R, Uhlig R, Wilczak W, Jacobsen F, Minner S, Krech R, Clauditz T, Bernreuther C, Dum D, Krech T, Marx A, Steurer S. DOG1 expression is common in human tumors: A tissue microarray study on more than 15,000 tissue samples. Pathol Res Pract 2021; 228:153663. [PMID: 34717148 DOI: 10.1016/j.prp.2021.153663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023]
Abstract
DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n = 1002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p < 0.0001) and absence of HPV infection in squamous cell carcinomas (p = 0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.
Collapse
Affiliation(s)
- Kristina Jansen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagina Farahi
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Bai W, Liu M, Xiao Q. The diverse roles of TMEM16A Ca 2+-activated Cl - channels in inflammation. J Adv Res 2021; 33:53-68. [PMID: 34603778 PMCID: PMC8463915 DOI: 10.1016/j.jare.2021.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl- channels have diverse physiological functions, such as epithelial secretion of Cl- and fluid and sensation of pain. Recent studies have demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflammatory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated. Aim of review In this review, we aimed to provide comprehensive information regarding the roles of TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and activation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling pathways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-dependent manner. Key scientific concepts of review Multiple inflammatory mediators, including cytokines (e.g., interleukin (IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-κB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhesion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore, TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the disease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
18
|
Luo S, Wang H, Bai L, Chen Y, Chen S, Gao K, Wang H, Wu S, Song H, Ma K, Liu M, Yao F, Fang Y, Xiao Q. Activation of TMEM16A Ca 2+-activated Cl - channels by ROCK1/moesin promotes breast cancer metastasis. J Adv Res 2021; 33:253-264. [PMID: 34603794 PMCID: PMC8463928 DOI: 10.1016/j.jare.2021.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 03/13/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction Transmembrane protein 16A (TMEM16A) is a Ca2+-activated chloride channel that plays a role in cancer cell proliferation, migration, invasion, and metastasis. However, whether TMEM16A contributes to breast cancer metastasis remains unknown. Objective In this study, we investigated whether TMEM16A channel activation by ROCK1/moesin promotes breast cancer metastasis. Methods Wound healing assays and transwell migration and invasion assays were performed to study the migration and invasion of MCF-7 and T47D breast cancer cells. Western blotting was performed to evaluate the protein expression, and whole-cell patch clamp recordings were used to record TMEM16A Cl− currents. A mouse model of breast cancer lung metastasis was generated by injecting MCF-7 cells via the tail vein. Metastatic nodules in the lung were assessed by hematoxylin and eosin staining. Lymph node metastasis, overall survival, and metastasis-free survival of breast cancer patients were assessed using immunohistochemistry and The Cancer Genome Atlas dataset. Results TMEM16A activation promoted breast cancer cell migration and invasion in vitro as well as breast cancer metastasis in mice. Patients with breast cancer who had higher TMEM16A levels showed greater lymph node metastasis and shorter survival. Mechanistically, TMEM16A promoted migration and invasion by activating EGFR/STAT3/ROCK1 signaling, and the role of the TMEM16A channel activity was important in this respect. ROCK1 activation by RhoA enhanced the TMEM16A channel activity via the phosphorylation of moesin at T558. The cooperative action of TMEM16A and ROCK1 was supported through clinical findings indicating that breast cancer patients with high levels of TMEM16A/ROCK1 expression showed greater lymph node metastasis and poor survival. Conclusion Our findings revealed a novel mechanism underlying TMEM16A-mediated breast cancer metastasis, in which ROCK1 increased TMEM16A channel activity via moesin phosphorylation and the increase in TMEM16A channel activities promoted cell migration and invasion. TMEM16A inhibition may be a novel strategy for treating breast cancer metastasis.
Collapse
Key Words
- Cl− channel
- EGFR, epidermal growth factor receptor
- ER, estrogen receptor
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- HNSCC, head and neck squamous cell carcinoma
- IHC, immunohistochemical
- MFS, metastasis-free survival
- Metastasis
- Moesin
- OS, overall survival
- PR, progesterone receptor
- ROCK1
- ROCK1, Rho-associated, coiled-coil containing protein kinase 1
- STAT3, signal transducers and activators of transcription 3
- TCGA, The Cancer Genome Atlas
- TMEM16A
- shRNAs, small hairpin RNAs
Collapse
Affiliation(s)
- Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yiwen Chen
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Kuan Gao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huijie Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuwei Wu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hanbin Song
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
19
|
Koteluk O, Bielicka A, Lemańska Ż, Jóźwiak K, Klawiter W, Mackiewicz A, Kazimierczak U, Kolenda T. The Landscape of Transmembrane Protein Family Members in Head and Neck Cancers: Their Biological Role and Diagnostic Utility. Cancers (Basel) 2021; 13:cancers13194737. [PMID: 34638224 PMCID: PMC8507526 DOI: 10.3390/cancers13194737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transmembrane proteins (TMEM) are a large group of integral membrane proteins whose molecular and biological functions are not fully understood. It is known that some of them are involved in tumor formation and metastasis. Here, we performed a panel of TCGA data analyses to investigate the role of different TMEM genes in head and neck squamous cell carcinoma (HNSCC) and define their potential as biomarkers. Based on changes in the expression levels in HNSCC tumors, we selected four TMEM genes: ANO1, TMEM156, TMEM173, and TMEM213 and associated them with patient survival. We also demonstrated that the expression of those TMEMs highly correlates with the enrichment of genes involved in numerous biological processes, especially metastasis formation and immune response. Thus, we propose ANO1, TMEM156, TMEM173, and TMEM213 as new biomarkers and potential targets for personalized therapy of HNSCC. Abstract Background: Transmembrane proteins (TMEM) constitute a large family of proteins spanning the entirety of the lipid bilayer. However, there is still a lack of knowledge about their function or mechanism of action. In this study, we analyzed the expression of selected TMEM genes in patients with head and neck squamous cell carcinoma (HNSCC) to learn their role in tumor formation and metastasis. Materials and Methods: Using TCGA data, we analyzed the expression levels of different TMEMs in both normal and tumor samples and compared those two groups depending on clinical-pathological parameters. We selected four TMEMs whose expression was highly correlated with patient survival status and subjected them to further analysis. The pathway analysis using REACTOME and the gene set enrichment analysis (GSEA) were performed to evaluate the association of those TMEMs with genes involved in hallmarks of cancer as well as in oncogenic and immune-related pathways. In addition, the fractions of different immune cell subpopulations depending on TMEM expression were estimated in analyzed patients. The results for selected TMEMs were validated using GEO data. All analyses were performed using the R package, Statistica, and Graphpad Prism. Results: We demonstrated that 73% of the analyzed TMEMs were dysregulated in HNSCC and depended on tumor localization, smoking, alcohol consumption, or HPV infection. The expression levels of ANO1, TMEM156, TMEM173, and TMEM213 correlated with patient survival. The four TMEMs were also upregulated in HPV-positive patients. The elevated expression of those TMEMs correlated with the enrichment of genes involved in cancer-related processes, including immune response. Specifically, overexpression of TMEM156 and TMEM173 was associated with immune cell mobilization and better survival rates, while the elevated ANO1 expression was linked with metastasis formation and worse survival. Conclusions: In this work, we performed a panel of in silico analyses to discover the role of TMEMs in head and neck squamous cell carcinoma. We found that ANO1, TMEM156, TMEM173, and TMEM213 correlated with clinical status and immune responses in HNSCC patients, pointing them as biomarkers for a better prognosis and treatment. This is the first study describing such the role of TMEMs in HNSCC. Future clinical trials should confirm the potential of those genes as targets for personalized therapy of HNSCC.
Collapse
Affiliation(s)
- Oliwia Koteluk
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Correspondence: (O.K.); (A.B.)
| | - Antonina Bielicka
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Correspondence: (O.K.); (A.B.)
| | - Żaneta Lemańska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Kacper Jóźwiak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Weronika Klawiter
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
20
|
Jansen K, Büscheck F, Moeller K, Kluth M, Hube-Magg C, Blessin NC, Perez D, Izbicki J, Neipp M, Mofid H, Daniels T, Nahrstedt U, Fraune C, Jacobsen F, Bernreuther C, Lebok P, Sauter G, Uhlig R, Wilczak W, Simon R, Steurer S, Burandt E, Marx A, Krech T, Clauditz T. DOG1 is commonly expressed in pancreatic adenocarcinoma but unrelated to cancer aggressiveness. PeerJ 2021; 9:e11905. [PMID: 34414034 PMCID: PMC8344676 DOI: 10.7717/peerj.11905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND DOG1 (ANO1; TMEM16A) is a voltage-gated calcium-activated chloride and bicarbonate channel. DOG1 is physiologically expressed in Cajal cells, where it plays an important role in regulating intestinal motility and its expression is a diagnostic hallmark of gastrointestinal stromal tumors (GIST). Data on a possible role of DOG1 in pancreatic cancer are rare and controversial. The aim of our study was to clarify the prevalence of DOG1 expression in pancreatic cancer and to study its association with parameters of cancer aggressiveness. METHODS DOG1 expression was analyzed by immunohistochemistry in 599 pancreatic cancers in a tissue microarray format and in 12 cases of pancreatitis on large tissue sections. RESULTS DOG1 expression was always absent in normal pancreas but a focal weak expression was seen in four of 12 cases of pancreatitis. DOG1 expression was, however, common in pancreatic cancer. Membranous and cytoplasmic DOG1 expression in tumor cells was highest in pancreatic ductal adenocarcinomas (61% of 444 interpretable cases), followed by cancers of the ampulla Vateri (43% of 51 interpretable cases), and absent in 6 acinus cell carcinomas. DOG1 expression in tumor associated stroma cells was seen in 76 of 444 (17%) pancreatic ductal adenocarcinomas and in seven of 51 (14%) cancers of the ampulla Vateri. Both tumoral and stromal DOG1 expression were unrelated to tumor stage, grade, lymph node and distant metastasis, mismatch repair protein deficiency and the density of CD8 positive cytotoxic T-lymphocytes in the subgroups of ductal adenocarcinomas and cancers of ampulla Vateri. Overall, the results of our study indicate that DOG1 may represent a potential biomarker for pancreatic cancer diagnosis and a putative therapeutic target in pancreatic cancer. However, DOG1 expression is unrelated to pancreatic cancer aggressiveness.
Collapse
Affiliation(s)
- Kristina Jansen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Martina Kluth
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Daniel Perez
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Izbicki
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | - Frank Jacobsen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Patrick Lebok
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ronald Simon
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Marx
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Academic Hospital Fuerth, Fuerth, Germany
| | - Till Krech
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrück, Germany
| | - Till Clauditz
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Wang T, Wang H, Yang F, Gao K, Luo S, Bai L, Ma K, Liu M, Wu S, Wang H, Chen Z, Xiao Q. Honokiol inhibits proliferation of colorectal cancer cells by targeting anoctamin 1/TMEM16A Ca 2+ -activated Cl - channels. Br J Pharmacol 2021; 178:4137-4154. [PMID: 34192810 DOI: 10.1111/bph.15606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ -activated Cl- channels (Ano1 channels) contribute to the pathogenesis of colorectal cancer. Honokiol is known to inhibit cell proliferation and tumour growth in colorectal cancer. However, the molecular target of honokiol remains unclear. This study aimed to investigate whether honokiol inhibited cell proliferation of colorectal cancer by targeting Ano1 channels. EXPERIMENTAL APPROACH Patch-clamp techniques were performed to study the effect of honokiol on Ca2+ -activated Cl- currents in HEK293 cells overexpressing Ano1- or Ano2-containing plasmids or in human colorectal carcinoma SW620 cells. Site-directed mutagenesis was used to identify the critical residues for honokiol-induced Ano1 inhibition. Proliferation of SW620 cells or human intestinal epithelial NCM460 cells by CCK-8 assays. KEY RESULTS Honokiol blocked Ano1 currents in Ano1-overexpressing HEK293 cells and SW620 cells. Honokiol more potently inhibited Ano1 currents than Ano2 currents. Three amino acids (R429, K430 and N435) were critical for honokiol-induced Ano1 inhibition. The R429A/K430L/N435G mutation reduced the sensitivity of Ano1 to honokiol. Honokiol inhibited SW620 cell proliferation, and this effect was reduced by Ano1-shRNAs. Furthermore, Ano1 overexpression promoted proliferation in NCM460 cells with low Ano1 endogenous expression and resulted in an increased sensitivity to honokiol. Overexpression of the R429A/K430L/N435G mutation reduced WT Ano1-induced increase in the sensitivity of NCM460 cells to honokiol. CONCLUSION AND IMPLICATIONS We identified a new anticancer mechanism of honokiol, through the inhibition of cell proliferation, by targeting Ano1 Ca2+ -activated Cl- channels.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Kuan Gao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuwei Wu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Huijie Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zaixing Chen
- Pharmaceutical Teaching and Experimental Center, School of Pharmacy, China Medical University, Shenyang, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
23
|
Lin H, Hu C, Zheng S, Zhang X, Chen R, Zhou Q. A novel gene signature for prognosis prediction and chemotherapy response in patients with pancreatic cancer. Aging (Albany NY) 2021; 13:12493-12513. [PMID: 33901011 PMCID: PMC8148498 DOI: 10.18632/aging.202922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a lethal disease. Chemoresistance is one of the characteristics of pancreatic cancer and leads to a poor prognosis. This study built an effective predictive model for personalized treatment and explored the molecular mechanism of chemoresistance. A four-gene signature, including serine peptidase inhibitor Kazal type 1 (SPINK1), anoctamin 1 (ANO1), desmoglein 3 (DSG3) and GTPase, IMAP family member 1 (GIMAP1) was identified and associated with prognosis and chemoresistance in the training group. An internal testing dataset and the external dataset, GSE57495, were used for validation and showed a good performance of the gene signature. The high-risk group was enriched with multiple oncological pathways related to immunosuppression and was correlated with epidermal growth factor receptor (EGFR) expression, a target molecule of Erlotinib. In conclusion, this study identified a four-gene signature and established two nomograms for predicting prognosis and chemotherapy responses in patients with pancreatic cancer. The clinical value of the nomogram was evaluated by decision curve analysis (DCA). It showed that these may be helpful for clinical treatment decision-making and the discovery of the potential molecular mechanism and therapy targets for pancreatic cancer.
Collapse
Affiliation(s)
- Hongcao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Department of Pancreatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chonghui Hu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Shangyou Zheng
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Xiang Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Department of Pancreatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Quanbo Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Department of Pancreatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
24
|
Wang H, Wang T, Zhang Z, Fan Y, Zhang L, Gao K, Luo S, Xiao Q, Sun C. Simvastatin inhibits oral squamous cell carcinoma by targeting TMEM16A Ca 2+-activated chloride channel. J Cancer Res Clin Oncol 2021; 147:1699-1711. [PMID: 33755783 DOI: 10.1007/s00432-021-03575-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Ca2+-activated chloride channel TMEM16A has been found to be overexpressed in many cancers including head and neck squamous cell carcinoma (HNSCC). Nevertheless, the role of TMEM16A in oral squamous cell carcinoma (OSCC) remains unclear. Although simvastatin is known to produce anti-tumor effect, the mechanisms by which simvastatin inhibits cancer remain unclear. METHODS In this study, we explored the role of TMEM16A expression in human OSCC tissues using both TCGA dataset and immunohistochemistry. CCK-8 assay was applied to evaluate cell proliferation. Patch clamp technique was applied to record TMEM16A Cl- currents. RESULTS We found that high TMEM16A expression is related with large tumor size, lymph node metastasis, and poor clinical outcome in patients with OSCC. In addition, TMEM16A overexpression could promote cell proliferation, and inhibition of TMEM16A channel activities could suppress cell proliferation in OSCC cells. Furthermore, simvastatin could suppress TMEM16A channel activities, and inhibited cell proliferation in OSCC cells via TMEM16A. CONCLUSION Our findings identify a novel anti-tumor mechanism of simvastatin by targeting TMEM16A. Simvastatin may represent an innovative strategy for treating OSCC with high TMEM16A expression.
Collapse
Affiliation(s)
- Hechen Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China.,Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Zeying Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China
| | - Yu Fan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Hospital Infection Management Office, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kuan Gao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China.
| | - Changfu Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, 117 Nanjing Bei Jie, Heping District, Shenyang,, 110002, Liaoning, China.
| |
Collapse
|
25
|
Li H, Yang Q, Huo S, Du Z, Wu F, Zhao H, Chen S, Yang L, Ma Z, Sui Y. Expression of TMEM16A in Colorectal Cancer and Its Correlation With Clinical and Pathological Parameters. Front Oncol 2021; 11:652262. [PMID: 33816307 PMCID: PMC8017291 DOI: 10.3389/fonc.2021.652262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
TMEM16A is a recently identified calcium-activated chloride channel (CaCC) and its overexpression contributes to tumorigenesis and progression in several human malignancies. However, little is known about expression of TMEM16A and its clinical significance in colorectal cancer (CRC). TMEM16A mRNA expression was determined by quantitative real time-PCR (qRT-PCR) in 67 CRC tissues and 24 para-carcinoma tissues. TMEM16A protein expression was performed by immunohistochemistry in 80 CRC tissues. The correlation between TMEM16A expression and clinicopathological parameters, and known genes and proteins involved in CRC was analyzed. The results showed that TMEM16A mRNA expression was frequently detected in 51 CRC tissues (76%), whereas TMEM16A protein expression was determined at a relatively lower frequency (26%). TMEM16A mRNA expression in tumor tissues was higher than its expression in normal para-carcinoma tissues (P < 0.05). TMEM16A mRNA expression was significantly correlated with TNM stage (p = 0.039) and status of lymph node metastasis (p = 0.047). In addition, there was a strong positive correlation between TMEM16A mRNA expression and MSH2 protein. More importantly, TMEM16A protein expression was positively associated with KRAS mutation, and negatively correlated with mutant p53 protein. Logistic regression analysis demonstrated that TMEM16A mRNA expression was an important independent predictive factor of lymph node metastasis (OR = 16.38, CI: 1.91–140.27, p = 0.01). TMEM16A mRNA and protein expression was not significantly related with patient survival. Our findings provide original evidence demonstrating TMEM16A mRNA expression can be a novel predictive marker of lymph node metastasis and TMEM16A protein expression may be an important regulator of tumor proliferation and metastasis in CRC.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Dermatology, First Hospital of Jilin University, Changchun, China
| | - Qiwei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| | - Sibo Huo
- Department of Gastrointestinal Nutrition and Hernia Surgery, Second Hospital of Jilin University, Changchun, China.,Department of General Surgery, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Zhenwu Du
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Fei Wu
- Department of Gynecology and Obstetrics, Second Hospital of Jilin University, Changchun, China
| | - Haiyue Zhao
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Shifan Chen
- Department of Pathology, Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, Second Hospital of Jilin University, Changchun, China
| | - Yujie Sui
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Filippou A, Pehkonen H, Karhemo PR, Väänänen J, Nieminen AI, Klefström J, Grénman R, Mäkitie AA, Joensuu H, Monni O. ANO1 Expression Orchestrates p27Kip1/MCL1-Mediated Signaling in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13051170. [PMID: 33803266 PMCID: PMC7967175 DOI: 10.3390/cancers13051170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our aim was to elucidate the molecular mechanisms of how ANO1 contributes to oncogenic processes in squamous cell carcinoma of the head and neck (HNSCC). We explored transcriptional programs influenced by ANO1 knockdown in patient-derived UT-SCC cell lines with 11q13 amplification and ANO1 overexpression. ANO1 depletion led to downregulation of broad pro-survival BCL2 family protein members, including MCL1, and simultaneously induced upregulation of the cell cycle inhibitor p27Kip1 and its redistribution from the cytoplasm into the nucleus in the studied HNSCC cells. Gene set enrichment analysis highlighted pathways associated with perturbed cell cycle and apoptosis in the ANO1-depleted samples. Silencing of ANO1 and application of an ANO1-targeting small-molecule inhibitor led to ANO1 degradation and reduction of cell viability. These findings suggest that ANO1 has drug target potential that deserves further evaluation in preclinical in vivo models. Abstract Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that derive from the mucosal epithelium of the upper aerodigestive tract and present high mortality rate. Lack of efficient targeted-therapies and biomarkers towards patients’ stratification are caveats in the disease treatment. Anoctamin 1 (ANO1) gene is amplified in 30% of HNSCC cases. Evidence suggests involvement of ANO1 in proliferation, migration, and evasion of apoptosis; however, the exact mechanisms remain elusive. Aim of this study was to unravel the ANO1-dependent transcriptional programs and expand the existing knowledge of ANO1 contribution to oncogenesis and drug response in HNSCC. We cultured two HNSCC cell lines established from primary tumors harboring amplification and high expression of ANO1 in three-dimensional collagen. Differential expression analysis of ANO1-depleted HNSCC cells demonstrated downregulation of MCL1 and simultaneous upregulation of p27Kip1 expression. Suppressing ANO1 expression led to redistribution of p27Kip1 from the cytoplasm to the nucleus and associated with a cell cycle arrested phenotype. ANO1 silencing or pharmacological inhibition resulted in reduction of cell viability and ANO1 protein levels, as well as suppression of pro-survival BCL2 family proteins. Collectively, these data provide insights of ANO1 involvement in HNSCC carcinogenesis and support the rationale that ANO1 is an actionable drug target.
Collapse
Affiliation(s)
- Artemis Filippou
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
| | - Henna Pehkonen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
| | - Piia-Riitta Karhemo
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
| | - Anni I. Nieminen
- Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, 20520 Turku, Finland;
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00130 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (A.F.); (H.P.); (P.-R.K.); (J.V.)
- Department of Oncology, Clinicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-407639302
| |
Collapse
|
27
|
Chen W, Gu M, Gao C, Chen B, Yang J, Xie X, Wang X, Sun J, Wang J. The Prognostic Value and Mechanisms of TMEM16A in Human Cancer. Front Mol Biosci 2021; 8:542156. [PMID: 33681289 PMCID: PMC7930745 DOI: 10.3389/fmolb.2021.542156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
As a calcium ion-dependent chloride channel transmembrane protein 16A (TMEM16A) locates on the cell membrane. Numerous research results have shown that TMEM16A is abnormally expressed in many cancers. Mechanically, TMEM16A participates in cancer proliferation and migration by affecting the MAPK and CAMK signaling pathways. Additionally, it is well documented that TMEM16A exerts a regulative impact on the hyperplasia of cancer cells by interacting with EGFR in head and neck squamous cell carcinoma (HNSCC), an epithelial growth factor receptor in head and neck squamous cell carcinoma respectively. Meanwhile, as an EGFR activator, TMEM16A is considered as an oncogene or a tumor-promoting factor. More and more experimental data showed that down-regulation of TMEM16A or gene targeted therapy may be an effective treatment for cancer. This review summarized its role in various cancers and research advances related to its clinical application included treatment and diagnosis.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - Meng Gu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chaobing Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Bangjie Chen
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Junfa Yang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaoli Xie
- Anhui Medicine Centralized Procurement Service Center, Hefei, China
| | - Xinyi Wang
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jinian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Wang Q, Bai L, Luo S, Wang T, Yang F, Xia J, Wang H, Ma K, Liu M, Wu S, Wang H, Guo S, Sun X, Xiao Q. TMEM16A Ca 2+-activated Cl - channel inhibition ameliorates acute pancreatitis via the IP 3R/Ca 2+/NFκB/IL-6 signaling pathway. J Adv Res 2020; 23:25-35. [PMID: 32071789 PMCID: PMC7016042 DOI: 10.1016/j.jare.2020.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/08/2023] Open
Abstract
TMEM16A Ca2+-activated Cl- channels are expressed in pancreatic acinar cells and participate in inflammation-associated diseases. Whether TMEM16A contributes to the pathogenesis of acute pancreatitis (AP) remains unknown. Here, we found that increased TMEM16A expression in the pancreatic tissue was correlated with the interleukin-6 (IL-6) level in the pancreatic tissue and in the serum of a cerulein-induced AP mouse model. IL-6 treatment promoted TMEM16A expression in AR42J pancreatic acinar cells via the IL-6 receptor (IL-6R)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. In addition, TMEM16A was co-immunoprecipitated with the inositol 1,4,5-trisphosphate receptor (IP3R) and was activated by IP3R-mediated Ca2+ release. TMEM16A inhibition reduced the IP3R-mediated Ca2+ release induced by cerulein. Furthermore, TMEM16A overexpression activated nuclear factor-κB (NFκB) and increased IL-6 release by increasing intracellular Ca2+. TMEM16A knockdown by shRNAs reduced the cerulein-induced NFκB activation by Ca2+. TMEM16A inhibitors inhibited NFκB activation by decreasing channel activity and reducing TMEM16A protein levels in AR42J cells, and it ameliorated pancreatic damage in cerulein-induced AP mice. This study identifies a novel mechanism underlying the pathogenesis of AP by which IL-6 promotes TMEM16A expression via IL-6R/STAT3 signaling activation, and TMEM16A overexpression increases IL-6 secretion via IP3R/Ca2+/NFκB signaling activation in pancreatic acinar cells. TMEM16A inhibition may be a new potential strategy for treating AP.
Collapse
Key Words
- AP, acute pancreatitis
- Acute pancreatitis
- BAPTA-AM, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-acetyloxymethyl ester
- CCK, cholesystokinin
- CFBE, cystic fibrosis bronchial epithelial
- CaCCinh-A01, Ca2+-activated Cl− channel inhibitor-A01
- EDTA, ethylenediaminetetraacetic acid
- EGF, epidermal growth factor
- EGFP, green fluorescent protein
- EGFR, epidermal growth factor receptor
- EGTA, ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid
- ELISA, enzyme-linked immunosorbent assay
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- HEPES, N-2-hydroxyethil-piperazine-N'-2-ethanesulfonic acid
- IL-6, interleukin 6
- IL-6R, interleukin 6 receptor
- IP3R, inositol 1,4,5-trisphosphate receptor
- Inositol 1,4,5-trisphosphate receptor
- Interleukin-6
- NFκB
- NFκB, nuclear factor-κB
- NMDG, N-methyl-D-glucamine
- NP-40, Nonidet P-40
- PACs, pancreatic acinar cells
- RIPA, radio immunoprecipitation assay
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- STAT3, signal transducers and activators of transcription 3
- T16Ainh-A01, TMEM16A inhibitor-A01
- TMEM16A
- Tris, tris(hydroxymethyl)aminomethane
- WT, wild type
- shRNAs, short hairpin RNAs
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Department of Experimental Center, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fan Yang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jialin Xia
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuwei Wu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huijie Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shibin Guo
- Department of Gastroenterological Endoscopy, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
29
|
Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application. Rev Physiol Biochem Pharmacol 2020; 181:375-427. [PMID: 32789787 DOI: 10.1007/112_2020_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (Kv) channels (i.e. Kv3.4, Kv10.1 and Kv11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.
Collapse
|
30
|
Crottès D, Jan LY. The multifaceted role of TMEM16A in cancer. Cell Calcium 2019; 82:102050. [PMID: 31279157 PMCID: PMC6711484 DOI: 10.1016/j.ceca.2019.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers. In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.
Collapse
Affiliation(s)
- David Crottès
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
31
|
TMEM16A controls EGF-induced calcium signaling implicated in pancreatic cancer prognosis. Proc Natl Acad Sci U S A 2019; 116:13026-13035. [PMID: 31182586 DOI: 10.1073/pnas.1900703116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer typically spreads rapidly and has poor survival rates. Here, we report that the calcium-activated chloride channel TMEM16A is a biomarker for pancreatic cancer with a poor prognosis. TMEM16A is up-regulated in 75% of cases of pancreatic cancer and high levels of TMEM16A expression are correlated with low patient survival probability. TMEM16A up-regulation is associated with the ligand-dependent EGFR signaling pathway. In vitro, TMEM16A is required for EGF-induced store-operated calcium entry essential for pancreatic cancer cell migration. TMEM16A also has a profound impact on phosphoproteome remodeling upon EGF stimulation. Moreover, molecular actors identified in this TMEM16A-dependent EGFR-induced calcium signaling pathway form a gene set that makes it possible not only to distinguish neuro-endocrine tumors from other forms of pancreatic cancer, but also to subdivide the latter into three clusters with distinct genetic profiles that could reflect their molecular underpinning.
Collapse
|
32
|
Wang H, Yao F, Luo S, Ma K, Liu M, Bai L, Chen S, Song C, Wang T, Du Q, Wu H, Wei M, Fang Y, Xiao Q. A mutual activation loop between the Ca 2+-activated chloride channel TMEM16A and EGFR/STAT3 signaling promotes breast cancer tumorigenesis. Cancer Lett 2019; 455:48-59. [PMID: 31042586 DOI: 10.1016/j.canlet.2019.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
The Ca2+-activated chloride channel TMEM16A (anoctamin 1) is overexpressed in breast cancer. It remains unclear how TMEM16A overexpression plays a role in carcinogenesis in breast cancer. In this study, we found that high TMEM16A expression in combination with high EGFR or STAT3 expression was significantly associated with shorter overall survival in ER-positive breast cancer patients without tamoxifen treatment, and longer overall survival in patients with tamoxifen treatment. EGFR/STAT3 signaling activation by EGF promoted TMEM16A expression, and TMEM16A overexpression activated EGFR/STAT3 signaling in breast cancer cells. Both in vitro and in animal studies showed that TMEM16A overexpression promoted, and TMEM16A knockdown inhibited breast cancer cell proliferation and tumor growth. In addition, TMEM16A overexpression-induced cell proliferation was blocked by EGFR/STAT3 inhibitors, and TMEM16A knockdown reduced EGF-induced proliferation and tumorigenesis in breast cancer. Furthermore, inhibition of TMEM16A channel function effectively reduced breast cancer cell proliferation, especially in combination with EGFR inhibitors. Our findings identify a mutual activation loop between TMEM16A and EGFR/STAT3 signaling, which is important for breast cancer proliferation and growth. TMEM16A inhibition may represent a novel therapy for EGFR-expressing breast cancer.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chang Song
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Tianyu Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qiang Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
33
|
Fujimoto M, Kito H, Kajikuri J, Ohya S. Transcriptional repression of human epidermal growth factor receptor 2 by ClC-3 Cl - /H + transporter inhibition in human breast cancer cells. Cancer Sci 2018; 109:2781-2791. [PMID: 29949674 PMCID: PMC6125433 DOI: 10.1111/cas.13715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that the intracellular concentration of chloride ions (Cl−) regulates gene expression in several types of cells and that Cl− modulators positively or negatively regulate the PI3K/AKT/mammalian target of rapamycin (mTOR) and signal transducer and activator of transcription (STAT)3 signaling pathways. We previously reported that the Ca2+‐activated Cl− channel anoctamine (ANO)1 regulated human epidermal growth factor receptor 2 (HER2) transcription in breast cancer YMB‐1 cells. However, the mechanisms underlying ANO1‐regulated HER2 gene expression have not yet been elucidated. In the present study, we showed the involvement of intracellular organelle ClC‐3 Cl−/H+ transporter in HER2 transcription in breast cancer MDA‐MB‐453 cells. The siRNA‐mediated inhibition of ClC‐3, but not ANO1, markedly repressed HER2 transcription in MDA‐MB‐453 cells. Subsequently, treatments with the AKT inhibitor AZD 5363 and mTOR inhibitor everolimus significantly enhanced HER2 transcription in MDA‐MB‐453 cells, whereas that with the STAT3 inhibitor 5,15‐diphenylporphyrin (5,15‐DPP) inhibited it. AKT and mTOR inhibitors also significantly enhanced HER2 transcription in YMB‐1 cells. The siRNA‐mediated inhibition of ClC‐3 and ANO1 resulted in increased AKT phosphorylation and decreased STAT3 phosphorylation in MDA‐MB‐453 and YMB‐1 cells, respectively. The intracellular Cl− channel protein CLIC1 was expressed in both cells; however, its siRNA‐mediated inhibition did not elicit the transcriptional repression of HER2. Collectively, our results demonstrate that intracellular Cl− regulation by ANO1/ClC‐3 participates in HER2 transcription, mediating the PI3K/AKT/mTOR and/or STAT3 signaling pathway(s) in HER2‐positive breast cancer cells, and support the potential of ANO1/ClC‐3 blockers as therapeutic options for patients with resistance to anti‐HER2 therapies.
Collapse
Affiliation(s)
- Mayu Fujimoto
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
34
|
Godse NR, Khan N, Yochum ZA, Gomez-Casal R, Kemp C, Shiwarski DJ, Seethala RS, Kulich S, Seshadri M, Burns TF, Duvvuri U. TMEM16A/ANO1 Inhibits Apoptosis Via Downregulation of Bim Expression. Clin Cancer Res 2017; 23:7324-7332. [PMID: 28899969 DOI: 10.1158/1078-0432.ccr-17-1561] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/27/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
Abstract
Purpose: TMEM16A is a calcium-activated chloride channel that is amplified in a variety of cancers, including 30% of head and neck squamous cell carcinomas (HNSCCs), raising the possibility of an anti-apoptotic role in malignant cells. This study investigated this using a multimodal, translational investigation.Experimental Design: Combination of (i) in vitro HNSCC cell culture experiments assessing cell viability, apoptotic activation, and protein expression (ii) in vivo studies assessing similar outcomes, and (iii) molecular and staining analysis of human HNSCC samples.Results: TMEM16A expression was found to correlate with greater tumor size, increased Erk 1/2 activity, less Bim expression, and less apoptotic activity overall in human HNSCC. These findings were corroborated in subsequent in vitro and in vivo studies and expanded to include a cisplatin-resistant phenotype with TMEM16A overexpression. A cohort of 41 patients with laryngeal cancer demonstrated that cases that recurred after chemoradiation failure were associated with a greater TMEM16A overexpression rate than HNSCC that did not recur.Conclusions: Ultimately, this study implicates TMEM16A as a contributor to tumor progression by limiting apoptosis and as a potential biomarker of more aggressive disease. Clin Cancer Res; 23(23); 7324-32. ©2017 AACR.
Collapse
Affiliation(s)
- Neal R Godse
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Nayel Khan
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Zachary A Yochum
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roberto Gomez-Casal
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Carolyn Kemp
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Daniel J Shiwarski
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,VA Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Raja S Seethala
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott Kulich
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mukund Seshadri
- Department of Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, New York
| | - Timothy F Burns
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,VA Pittsburgh Health System, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, Xiao Q. Cell-specific mechanisms of TMEM16A Ca 2+-activated chloride channel in cancer. Mol Cancer 2017; 16:152. [PMID: 28893247 PMCID: PMC5594453 DOI: 10.1186/s12943-017-0720-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
TMEM16A (known as anoctamin 1) Ca2+-activated chloride channel is overexpressed in many tumors. TMEM16A overexpression can be caused by gene amplification in many tumors harboring 11q13 amplification. TMEM16A expression is also controlled in many cancer cells via transcriptional regulation, epigenetic regulation and microRNAs. In addition, TMEM16A activates different signaling pathways in different cancers, e.g. the EGFR and CAMKII signaling in breast cancer, the p38 and ERK1/2 signaling in hepatoma, the Ras-Raf-MEK-ERK1/2 signaling in head and neck squamous cell carcinoma and bladder cancer, and the NFκB signaling in glioma. Furthermore, TMEM16A overexpression has been reported to promote, inhibit, or produce no effects on cell proliferation and migration in different cancer cells. Since TMEM16A exerts different roles in different cancer cells via activation of distinct signaling pathways, we try to develop the idea that TMEM16A regulates cancer cell proliferation and migration in a cell-dependent mechanism. The cell-specific role of TMEM16A may depend on the cellular environment that is predetermined by TMEM16A overexpression mechanisms specific for a particular cancer type. TMEM16A may exert its cell-specific role via its associated protein networks, phosphorylation by different kinases, and involvement of different signaling pathways. In addition, we discuss the role of TMEM16A channel activity in cancer, and its clinical use as a prognostic and predictive marker in different cancers. This review highlights the cell-type specific mechanisms of TMEM16A in cancer, and envisions the promising use of TMEM16A inhibitors as a potential treatment for TMEM16A-overexpressing cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| |
Collapse
|