1
|
Wang G, Ren X, Li J, Cui R, Zhao X, Sui F, Liu J, Chen P, Yang Q, Ji M, Hou P, Gao K, Qu Y. High expression of RTEL1 predicates worse progression in gliomas and promotes tumorigenesis through JNK/ELK1 cascade. BMC Cancer 2024; 24:385. [PMID: 38532312 DOI: 10.1186/s12885-024-12134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
- Department of Oncology, Xi'an Central Hospital, 710061, Xi'an, P.R. China
| | - Xiaojuan Ren
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Jianying Li
- Department of Respiratory Disease, Xi'an Central Hospital, 710061, Xi'an, P.R. China
| | - Rongrong Cui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Xumin Zhao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Fang Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Juan Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Pu Chen
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| | - Yiping Qu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China.
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| |
Collapse
|
2
|
Liu M, Lan Y, Zhang H, Zhang X, Wu M, Yang L, Zhou J, Tong M, Leng L, Zheng H, Li J, Mi X. Telomere length is associated with increased risk of cutaneous melanoma: a Mendelian randomization study. Melanoma Res 2023; 33:475-481. [PMID: 37650705 DOI: 10.1097/cmr.0000000000000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
RESULTS The MR analysis using two TL GWAS datasets revealed strong and consistent evidence that long TL is causally associated with an increased risk of CM. The analysis of the Codd et al. dataset found that long TL significantly predicted an elevated risk of CM (IVW OR = 2.411, 95% CI 2.092-2.780, P = 8.05E-34). Similarly, the analysis of the Li et al. dataset yielded consistent positive results across all MR methods, providing further robustness to the causal relationship (IVW OR = 2.324, 95% CI 1.516-3.565, P = 1.11E-04). The study provides evidence for a causal association between TL and CM susceptibility, indicating that longer TL increases the risk of developing CM and providing insight into the unique telomere biology in melanoma pathogenesis. Telomere maintenance pathways may be a potential target for preventing and treating CM.
Collapse
Affiliation(s)
- Mingjuan Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- 4 + 4 M.D. Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yining Lan
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xinyi Zhang
- Departments of Internal Medicine
- Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mengyin Wu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Leyan Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Jia Zhou
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Meiyi Tong
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Ling Leng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Jun Li
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xia Mi
- Department of Dermatology, Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
3
|
Oh KS, Mahalingam M. Melanoma and Glioblastoma-Not a Serendipitous Association. Adv Anat Pathol 2023; 30:00125480-990000000-00051. [PMID: 36624550 DOI: 10.1097/pap.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, we came across a patient with malignant melanoma and primary glioblastoma. Given this, we parsed the literature to ascertain the relationship, if any, between these 2 malignancies. We begin with a brief overview of melanoma and glioma in isolation followed by a chronologic overview of case reports and epidemiologic studies documenting both neoplasms. This is followed by studies detailing genetic abnormalities common to both malignancies with a view to identifying unifying genetic targets for therapeutic strategies as well as to explore the possibility of a putative association and an inherited cancer susceptibility trait. From a scientific perspective, we believe we have provided evidence favoring an association between melanoma and glioma. Future studies that include documentation of additional cases, as well as a detailed molecular analyses, will lend credence to our hypothesis that the co-occurrence of these 2 conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kei Shing Oh
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA-Integrated-Service-Network-1 (VISN1), West Roxbury, MA
| |
Collapse
|
4
|
Del Fiore P, Cavallin F, Mazza M, Benna C, Monico AD, Tadiotto G, Russo I, Ferrazzi B, Tropea S, Buja A, Cozzolino C, Cappellesso R, Nicolè L, Piccin L, Pigozzo J, Chiarion-Sileni V, Vecchiato A, Menin C, Bassetto F, Tos APD, Alaibac M, Mocellin S. Per- and polyfluoroalkyl substances (PFAS) exposure in melanoma patients: a retrospective study on prognosis and histological features. Environ Health 2022; 21:126. [PMID: 36482443 PMCID: PMC9743017 DOI: 10.1186/s12940-022-00944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disrupting chemicals which could be associated with cancer development, such as kidney and testicular cancers, pancreatic and hepatocellular carcinoma and thyroid tumor. Available scientific literature offers no information on the role of PFAS in melanoma development/progression. Since 1965, a massive environmental contamination by PFAS has occurred in northeastern Italy. This study compared histopathology and prognosis between melanoma patients exposed (n = 194) and unexposed (n = 488) to PFAS. All patients were diagnosed and/or treated for melanoma at the Veneto Oncological Institute and the University Hospital of Padua (Italy) in 1998-2014. Patients were categorized in exposed or unexposed groups according to their home address and the geographical classification of municipalities affected by PFAS contamination as provided by Veneto Government in 2018. Presence of mitoses was found in 70.5% of exposed patients and 58.7% of unexposed patients (p = 0.005). Median follow-up was 90 months (IQR 59-136). 5-year overall survival was 83.7% in exposed patients and 88.0% in unexposed patients (p = 0.20); 5-year disease-specific survival was 88.0% in exposed patients and 90.9% in unexposed patients (p = 0.50); 5-year disease-free survival was 83.8% in exposed patients and 87.3% in unexposed patients (p = 0.20). Adjusting for imbalanced characteristics at baseline (presence of mitoses), survival was not statistically different between exposed and unexposed patients (overall survival: HR 1.10, 95% CI 0.77 to 1.58, p = 0.57; disease-specific survival: HR 0.99, 95% CI 0.62 to 1.59, p = 0.99; disease-free survival: HR 1.10, 95% CI 0.74 to 1.64, p = 0.62). Although the magnitude of PFAS exposure was not quantifiable, our findings suggested that exposure to PFAS was associated with higher level of mitosis in melanoma patients, but this did not translate into a survival difference. Further studies are required to investigate this relationship and all effects of PFAS on prognosis.
Collapse
Affiliation(s)
- Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | | | - Marcodomenico Mazza
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padua, Italy
| | - Alessandro Dal Monico
- Division of Dermatology, Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Giulia Tadiotto
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Irene Russo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Division of Dermatology, Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Beatrice Ferrazzi
- Postgraduate School of Occupational Medicine, University of Verona, 37129 Verona, Italy
| | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Alessandra Buja
- Department of Cardiological, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy
| | - Claudia Cozzolino
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Rocco Cappellesso
- Pathological Anatomy Unit, University Hospital of Padova, 35128 Padua, Italy
| | - Lorenzo Nicolè
- Department of Medicine (DIMED), Unit of Pathology & Cytopathology, University of Padova, 35128 Padua, Italy
- Unit of Surgical Pathology & Cytopathology, Ospedale Dell’Angelo, 30174 Mestre, Italy
| | - Luisa Piccin
- Melanoma Unit, Oncology 2, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Jacopo Pigozzo
- Melanoma Unit, Oncology 2, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Vanna Chiarion-Sileni
- Melanoma Unit, Oncology 2, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Franco Bassetto
- Clinic of Plastic Surgery, Department of Neuroscience, Padua University Hospital, University of Padova, Padua, Italy
| | - Angelo Paolo Dei Tos
- Pathological Anatomy Unit, University Hospital of Padova, 35128 Padua, Italy
- Department of Medicine- DIMED, University of Padova, 35128 Padua, Italy
| | - Mauro Alaibac
- Division of Dermatology, Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padua, Italy
| |
Collapse
|
5
|
Udrea AM, Dinache A, Staicu A, Avram S. Target Prediction of 5,10,15,20-Tetrakis(4'-Sulfonatophenyl)-Porphyrin Using Molecular Docking. Pharmaceutics 2022; 14:2390. [PMID: 36365208 PMCID: PMC9692331 DOI: 10.3390/pharmaceutics14112390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2024] Open
Abstract
Photodynamic therapy has the potential to be a new and effective cancer treatment. Even if in vitro and in vivo research show promise, the molecular mechanism remains unclear. In this study, molecular docking simulations predict the binding affinity of the 5,10,15,20-tetrakis(4'-sulfonatophenyl)-porphyrin tetraammonium photosensitizer on several potential targets in photodynamic treatment. Our results indicate that this photosensitizer binds to several receptor targets, including B-cell lymphoma 2 (BCL-2) and other related proteins BCL-xL, MCL-1, or A1. The binding affinity of the porphyrin derivative with human serum albumin was determined using UV-vis absorption spectroscopy and predicted using molecular docking. We conclude that the studied porphyrin photosensitizer binds to human serum albumin and may inhibit the cancer cell line through its interactions with HIS and MET AA residues from BCL-2, MCL-1, and β-catenin receptors or through its low estimated free energy of binding when interacting with A1 and BCL-B receptors.
Collapse
Affiliation(s)
- Ana-Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Andra Dinache
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Romania
| | - Angela Staicu
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Romania
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
6
|
TERT Promoter Mutations and Telomerase in Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:6300329. [PMID: 35903534 PMCID: PMC9325578 DOI: 10.1155/2022/6300329] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Malignant melanoma is an extremely malignant tumor with a high mortality rate and an increasing incidence with a high mutation load. The frequency of mutations in the TERT promoter exceeds the frequency of any known noncoding mutations in melanoma. A growing number of recent studies suggest that the most common mutations in the TERT promoter (ATG start site −124C>T and −146C>T) are associated with increased TERT mRNA expression, telomerase activity, telomere length, and poor prognosis. Recently, it has been shown that TERT promoter mutations are more correlated with the occurrence, development, invasion, and metastasis of melanoma, as well as emerging approaches such as the therapeutic potential of chemical inhibition of TERT promoter mutations, direct telomerase inhibitors, combined targeted therapy, and immunotherapies. In this review, we describe the latest advances in the role of TERT promoter mutations and telomerase in promoting the occurrence, development, and poor prognosis of melanoma and discuss the clinical significance of the TERT promoter and telomerase in the treatment of melanoma.
Collapse
|
7
|
Markozannes G, Kanellopoulou A, Dimopoulou O, Kosmidis D, Zhang X, Wang L, Theodoratou E, Gill D, Burgess S, Tsilidis KK. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med 2022; 20:41. [PMID: 35105367 PMCID: PMC8809022 DOI: 10.1186/s12916-022-02246-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to map and describe the current state of Mendelian randomization (MR) literature on cancer risk and to identify associations supported by robust evidence. METHODS We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive, and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the MR-Egger, weighed median, MRPRESSO, and multivariable MR analyses. Associations not presenting any of the aforementioned sensitivity analyses were not graded. RESULTS We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer. CONCLUSIONS Despite the large amount of research on genetically predicted risk factors for cancer risk, limited associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR analyses and on more transparent reporting.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Afroditi Kanellopoulou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Dimitrios Kosmidis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Xiaomeng Zhang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
8
|
Popa LG, Giurcaneanu C, Nitipir C, Popa AM, Stoica C, Beiu C, Tebeica T, Negoita S, Mihai MM. Dysplastic nevus syndrome and pancreatic cancer: A case report. Exp Ther Med 2021; 23:31. [PMID: 34824639 DOI: 10.3892/etm.2021.10953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/06/2022] Open
Abstract
Multiple primary cancers may occur in the same patient, with a prevalence that follows an ascendant trend. Their development is dictated by a complex interplay between a variety of factors, both patient-dependent and external. The case of a 38-year-old female patient diagnosed and treated for pancreatic cancer (PC) is presented in whom the digital dermoscopic monitoring of melanocytic nevi revealed a marked change of two nevi that acquired rapidly highly atypical features. They were surgically excised and the histopathological examination revealed two completely excised dysplastic compound nevi. Clinicians should be aware of the strong association between dysplastic nevus syndrome and PC, a malignancy associated with an extremely poor prognosis. Familial atypical multiple mole melanoma syndrome (FAMMM) predisposes to the development of melanoma, pancreatic cancer and other neoplasms. The common genetic background of PC and hereditary melanoma is discussed and the importance of regular skin checkup and screening for PC in these patients is underlined.
Collapse
Affiliation(s)
- Liliana Gabriela Popa
- Department of Dermatology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania.,Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Dermatology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania.,Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cornelia Nitipir
- Department of Oncology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania.,Department of Oncology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ana Maria Popa
- Department of Oncology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania
| | - Cristiana Stoica
- Department of Dermatology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Tiberiu Tebeica
- Department of Dermatopathology, 'Dr. Leventer' Centre, 011216 Bucharest, Romania
| | - Silvius Negoita
- Department of Anaesthesiology and Intensive Care, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Anaesthesiology and Intensive Care, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania
| | - Mara Madalina Mihai
- Department of Dermatology, 'Elias' Emergency University Hospital, 011461 Bucharest, Romania.,Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
9
|
TERT Promoter Mutations Increase Sense and Antisense Transcription from the TERT Promoter. Biomedicines 2021; 9:biomedicines9121773. [PMID: 34944589 PMCID: PMC8698883 DOI: 10.3390/biomedicines9121773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Chief among mechanisms of telomerase reverse transcriptase (TERT) reactivation is the appearance of mutations in the TERT promoter. The two main TERT promoter mutations are C>T transitions located −146C>T and −124C>T upstream from the translational start site. They generate a novel Ets/TCF binding site. Both mutations are mutually exclusive and −124C>T is strikingly overrepresented in most cancers. We investigated whether this mutational bias and mutual exclusion could be due to transcriptional constraints. Methods: We compared sense and antisense transcription of a panel of TERT promoter-luciferase vectors harboring the −124C>T and -146C>T mutations alone or together. lncRNA TAPAS levels were measured by RT-PCR. Results: Both mutations generally increased TERT transcription by 2–4-fold regardless of upstream and downstream regulatory elements. The double mutant increased transcription in an additive fashion, arguing against a direct transcriptional constraint. The −146C>T mutation, alone or in combination with −124C>T, also unleashed antisense transcription. In line with this finding, lncRNA TAPAS was higher in cells with mutated TERT promoter (T98G and U87) than in cells with wild-type promoter, suggesting that lncRNA TAPAS may balance the effect of TERT promoter mutations. Conclusions: −146C>T and −124C>T TERT promoter mutations increase TERT sense and antisense transcription, and the double mutant features higher transcription levels. Increased antisense transcription may contain TERT expression within sustainable levels.
Collapse
|
10
|
Rachakonda S, Hoheisel JD, Kumar R. Occurrence, functionality and abundance of the TERT promoter mutations. Int J Cancer 2021; 149:1852-1862. [PMID: 34313327 DOI: 10.1002/ijc.33750] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Telomere shortening at chromosomal ends due to the constraints of the DNA replication process acts as a tumor suppressor by restricting the replicative potential in primary cells. Cancers evade that limitation primarily through the reactivation of telomerase via different mechanisms. Mutations within the promoter of the telomerase reverse transcriptase (TERT) gene represent a definite mechanism for the ribonucleic enzyme regeneration predominantly in cancers that arise from tissues with low rates of self-renewal. The promoter mutations cause a moderate increase in TERT transcription and consequent telomerase upregulation to the levels sufficient to delay replicative senescence but not prevent bulk telomere shortening and genomic instability. Since the discovery, a staggering number of studies have resolved the discrete aspects, effects and clinical relevance of the TERT promoter mutations. The promoter mutations link transcription of TERT with oncogenic pathways, associate with markers of poor outcome and define patients with reduced survivals in several cancers. In this review, we discuss the occurrence and impact of the promoter mutations and highlight the mechanism of TERT activation. We further deliberate on the foundational question of the abundance of the TERT promoter mutations and a general dearth of functional mutations within noncoding sequences, as evident from pan-cancer analysis of the whole-genomes. We posit that the favorable genomic constellation within the TERT promoter may be less than a common occurrence in other noncoding functional elements. Besides, the evolutionary constraints limit the functional fraction within the human genome, hence the lack of abundant mutations outside the coding sequences.
Collapse
Affiliation(s)
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Liu Y, Wang J, Huang Z, Liang J, Xia Q, Xia Q, Liu X. Environmental pollutants exposure: A potential contributor for aging and age-related diseases. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103575. [PMID: 33385577 DOI: 10.1016/j.etap.2020.103575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Telomeres are "protective messengers" at the ends of eukaryotic chromosomes that protect them from degradation, end to end fusion and recombination. Admittedly, telomeres progressively shorten with age that can also be significantly accelerated by pathological conditions, which are often considered as potential contributors for cellular senescence. It is commonly believed that constant accumulation of senescent cells may lead to dysfunctional tissues and organs, thereby accelerating aging process and subsequent occurrence of age-related diseases. In particular, epidemiological data has indicated a significant association between environmental pollutants exposure and a high incidence of age-related diseases. Moreover, there is growing evidence that environmental toxicity has a detrimental impact on telomere length. Overall, a consensus is emerging that environmental pollutants exposure could lead to accelerated telomere erosion and further induce premature senescence, which may be responsible for the acceleration of aging and the high morbidity and mortality rates of age-related diseases.
Collapse
Affiliation(s)
- Yaru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China
| | - Jiequan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Zhaogang Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Qingrong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui, 230000, China; Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui, 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, Anhui, 230000, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, 230022, China.
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Kroupa M, Rachakonda S, Vymetalkova V, Tomasova K, Liska V, Vodenkova S, Cumova A, Rossnerova A, Vodickova L, Hemminki K, Soucek P, Kumar R, Vodicka P. Telomere length in peripheral blood lymphocytes related to genetic variation in telomerase, prognosis and clinicopathological features in breast cancer patients. Mutagenesis 2020; 35:491-497. [PMID: 33367858 DOI: 10.1093/mutage/geaa030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/06/2020] [Indexed: 11/15/2022] Open
Abstract
Disruption of telomere length (TL) homeostasis in peripheral blood lymphocytes has been previously assessed as a potential biomarker of breast cancer (BC) risk. The present study addressed the relationship between lymphocyte TL (LTL), prognosis and clinicopathological features in the BC patients since these associations are insufficiently explored at present. LTL was measured in 611 BC patients and 154 healthy controls using the monochrome multiplex quantitative Polymerase Chain Reaction assay. In addition, we genotyped nine TL-associated single-nucleotide polymorphisms that had been identified through genome-wide association studies. Our results showed that the patients had significantly (P = 0.001, Mann-Whitney U-test) longer LTL [median (interquartile range); 1.48 (1.22-1.78)] than the healthy controls [1.27 (0.97-1.82)]. Patients homozygous (CC) for the common allele of hTERT rs2736108 or the variant allele (CC) of hTERC rs16847897 had longer LTL. The latter association remained statistically significant in the recessive genetic model after the Bonferroni correction (P = 0.004, Wilcoxon two-sample test). We observed no association between LTL and overall survival or relapse-free survival of the patients. LTL did not correlate with cancer staging based on Union for International Cancer Control (UICC), The tumor node metastasis (TNM) staging system classification, tumour grade or molecular BC subtypes. Overall, we observed an association between long LTL and BC disease and an association of the hTERC rs16847897 CC genotype with increased LTL. However, no association between LTL, clinicopathological features and survival of the patients was found.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
| | - Sivaramakrishna Rachakonda
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic
| | - Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
| | - Vaclav Liska
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska, Prague, Czech Republic
| | - Andrea Cumova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic
| | - Kari Hemminki
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Pavel Soucek
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Husova, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic
| |
Collapse
|
13
|
Tod BM, Schneider JW, Bowcock AM, Visser WI, Kotze MJ. The tumor genetics of acral melanoma: What should a dermatologist know? JAAD Int 2020; 1:135-147. [PMID: 34355205 PMCID: PMC8329760 DOI: 10.1016/j.jdin.2020.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Dermatologists stand at the gateway of individualization of classification, treatment, and outcomes of acral melanoma patients. The acral melanoma genetic landscape differs in vital ways from that of other cutaneous melanomas. These differences have important implications in understanding pathogenesis, treatment, and prognosis. The selection of molecularly targeted therapy must be adapted for acral melanoma. It is also critical to recognize that tumor development is far more complex than an isolated event, reliably treated by a medication acting on a single target. Tumors exhibit intratumor genetic heterogeneity, metastasis may have different genetic or epigenetic features than primary tumors, and tumor resistance may develop because of the activation of alternative genetic pathways. Microenvironmental, immune, and epigenetic events contribute and sustain tumors in complex ways. Treatment strategies with multiple targets are required to effectively disrupt the tumor ecosystem. This review attempts to translate the current molecular understanding of acral melanoma into digestible concepts relevant to the practice of dermatology. The focus is tumor genetics defining potentially treatable cancer pathways, contextualized within the relevant pathologic and molecular features.
Collapse
Affiliation(s)
- Bianca M. Tod
- Division of Dermatology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Johann W. Schneider
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Anne M. Bowcock
- Departments of Dermatology, Oncological Sciences and Genetics and Genome Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Willem I. Visser
- Division of Dermatology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Maritha J. Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Tygerberg Academic Hospital, Cape Town, South Africa
| |
Collapse
|
14
|
Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem 2020; 476:599-607. [PMID: 33001374 DOI: 10.1007/s11010-020-03929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Telomeres are protective structures that are shortened during the lifetime, resulting in aging and degenerative diseases. Subjects experiencing aging and degenerative disorders present smaller telomeres than young and healthy ones. The size of these structures can be stabilized by telomerase, an enzyme which is inactive in adult tissues but functional in fetal and newborn tissues and adult testes and ovaries. The aim of this study was to perform a systematic review to evaluate the effect of telomerase activation in the treatment of degenerative and aging disorders. We accomplished the search using the Pubmed interface for papers published from September 1985 to April 16th, 2020. We found twenty one studies that matched our eligibility criteria. I concluded that telomerase is probably a potential and safe treatment for aging and degenerative diseases, demonstrating neither side effects nor risk of cancer in the selected studies. Further studies in humans are needed to confirm safety and efficiency of this treatment.
Collapse
Affiliation(s)
- P Prieto-Oliveira
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Pedro de Toledo Street 781, 16th Floor, Retrovirology, Vila Clementino, São Paulo, SP, CEP: 04039-032, Brazil.
| |
Collapse
|
15
|
Dratwa M, Wysoczanska B, Turlej E, Anisiewicz A, Maciejewska M, Wietrzyk J, Bogunia-Kubik K. Heterogeneity of telomerase reverse transcriptase mutation and expression, telomerase activity and telomere length across human cancer cell lines cultured in vitro. Exp Cell Res 2020; 396:112298. [PMID: 32971118 DOI: 10.1016/j.yexcr.2020.112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022]
Abstract
Promoter region of the telomerase reverse transcriptase gene (TERTp) constitutes a regulatory element capable to affect TERT expression (TE), telomerase activity (TA) and telomere length (TL). TERTp mutation status, TL, TA and TE were assessed in 27 in vitro cultured human cell lines, including 11 solid tumour, 13 haematological and 3 normal cell lines. C228T and C250T TERTp mutations were detected in 5 solid tumour and none of haematological cell lines (p = 0.0100). As compared to other solid tumour cell lines, those with the presence of somatic mutations were characterized by: shorter TL, lower TA and TE. Furthermore, cell lines carrying TERTp mutations showed a linear correlation between TE and TA (R = 0.9708, p = 0.0021). Moreover, haematological cell lines exhibited higher TE compared to solid tumour cell lines (p = 0.0007). TL and TA were correlated in both solid tumour (R = 0.4875, p = 0.0169) and haematological (R = 0.4719, p = 0.0095) cell lines. Our results based on the in vitro model suggest that oncogenic processes may differ between solid tumours and haematological malignancies with regard to their TERT gene regulation mechanisms.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
16
|
Wang P, Hu L, Fu G, Lu J, Zheng Y, Li Y, Jia L. LncRNA MALAT1 Promotes the Proliferation, Migration, and Invasion of Melanoma Cells by Downregulating miR-23a. Cancer Manag Res 2020; 12:6553-6562. [PMID: 32801893 PMCID: PMC7397564 DOI: 10.2147/cmar.s249348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose This study was designed to investigate the relationship between long-chain non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1)/miR-23a-23a and melanoma. Patients and Methods Fifty-two cases of corresponding non-tumor normal tissues and 109 cases (including 62 cases of primary melanoma and 47 cases of metastatic melanoma) were collected. Real-time fluorescent PCR quantified lncRNA MALAT1 and miR-23a, and counted the 3-year survival of high/low miR-23 and high/low lncRNA MALAT1 populations. We predicted the binding site according to the sequence information of lncRNA MALAT1 and miR-23a. lncRNA MALAT1 siRNA and miR-23a mimics vectors were constructed and transfected into melanoma cell lines respectively to observe their effects on cells. Results Compared with corresponding non-tumor normal tissues, lncRNA MALAT1 in melanoma tissue increased while miR-23a decreased. Compared with primary melanoma, metastatic melanoma was higher and miR-23a was lower. Downregulation of lncRNA MALAT1 caused upregulation of miR-23a, and lncRNA MALAT1 could bind to miR-23a. Downregulating lncRNA MALAT1 or upregulating miR-23a inhibited cell proliferation, migration and invasion and promoted apoptosis. Rescue experiments revealed that downregulation of miR-23a could offset cell changes caused by downregulation of lncRNA MALAT1. Conclusion lncRNA MALAT1 promotes malignant proliferation of melanoma cells through miR-23a.
Collapse
Affiliation(s)
- Pan Wang
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, Hubei Province, People's Republic of China
| | - Liu Hu
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Guili Fu
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, Hubei Province, People's Republic of China
| | - Jingjing Lu
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, Hubei Province, People's Republic of China
| | - Yuanquan Zheng
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430015, Hubei Province, People's Republic of China
| | - Ying Li
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Lin Jia
- Department of Nephrology, The Central Hosptial of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, Hubei Province, People's Republic of China
| |
Collapse
|
17
|
Lavelle TJ, Alver TN, Heintz KM, Wernhoff P, Nygaard V, Nakken S, Øy GF, Bøe SL, Urbanucci A, Hovig E. Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes. Cancers (Basel) 2020; 12:cancers12071719. [PMID: 32605315 PMCID: PMC7408466 DOI: 10.3390/cancers12071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C. The transformed HA-tagged MITF-M transduced Hermes 4C cells form colonies in soft agar and tumors in mice. Further, Hermes 4C cells display increased MITF chromatin binding, and transcriptional reprogramming consistent with an invasive melanoma phenotype. Mechanistically, forced expression of MITF-M drives the upregulation of the AXL tyrosine receptor kinase (AXL), with concomitant downregulation of phosphatase and tensin homolog (PTEN), leading to increased activation of the PI3K/AKT pathway. Treatment with AXL inhibitors reduces growth of the transformed cells by reverting AKT activation. In conclusion, we present a model system of melanoma development, driven by MITF-M in the context of MC1R loss of function, and independent of UV exposure. This model provides a basis for further studies of critical changes in the melanocyte transformation process.
Collapse
Affiliation(s)
- Timothy J. Lavelle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Karen-Marie Heintz
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Patrik Wernhoff
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Vegard Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigurd Leinæs Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, 0424 Oslo, Norway;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Correspondence: (A.U.); (E.H.)
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
- Correspondence: (A.U.); (E.H.)
| |
Collapse
|
18
|
Coding and noncoding somatic mutations in candidate genes in basal cell carcinoma. Sci Rep 2020; 10:8005. [PMID: 32409749 PMCID: PMC7224188 DOI: 10.1038/s41598-020-65057-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/26/2020] [Indexed: 12/14/2022] Open
Abstract
Basal cell carcinoma (BCC) represents the most commonly diagnosed human cancer among persons of European ancestry with etiology mainly attributed to sun-exposure. In this study we investigated mutations in coding and flanking regions of PTCH1 and TP53 and noncoding alterations in the TERT and DPH3 promoters in 191 BCC tumors. In addition, we measured CpG methylation within the TERT hypermethylated oncological region (THOR) and transcription levels of the reverse transcriptase subunit. We observed mutations in PTCH1 in 58.6% and TP53 in 31.4% of the tumors. Noncoding mutations in TERT and DPH3 promoters were detected in 59.2% and 38.2% of the tumors, respectively. We observed a statistically significant co-occurrence of mutations at the four investigated loci. While PTCH1 mutations tended to associate with decreased patient age at diagnosis; TP53 mutations were associated with light skin color and increased number of nevi; TERT and DPH3 promoter with history of cutaneous neoplasms in BCC patients. Increased reverse transcriptase subunit expression was observed in tumors with TERT promoter mutations and not with THOR methylation. Our study signifies, in addition to the protein altering mutations in the PTCH1 and TP53 genes, the importance of noncoding mutations in BCC, particularly functional alterations in the TERT promoter.
Collapse
|
19
|
Srinivas N, Rachakonda S, Hielscher T, Calderazzo S, Rudnai P, Gurzau E, Koppova K, Fletcher T, Kumar R. Telomere length, arsenic exposure and risk of basal cell carcinoma of skin. Carcinogenesis 2020; 40:715-723. [PMID: 30874287 DOI: 10.1093/carcin/bgz059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 11/14/2022] Open
Abstract
Telomere length per se a heritable trait has been reported to be associated with different diseases including cancers. In this study, based on arsenic-exposed 528 cases with basal cell carcinoma (BCC) of skin and 533 healthy controls, we investigated effect of telomere length, measured by real-time PCR, on the disease risk. We observed a statistically significant association between decreased telomere length and increased BCC risk [odds ratio (OR) = 5.92, 95% confidence interval (CI) = 3.92 to 9.01, P < 0.0001]. Due to confounder effect of arsenic exposure, in a two-sample Mendelian randomization (MR), telomere length associated single-nucleotide polymorphisms as instrument variables violated valid assumptions; however, one-sample MR adjusted for arsenic exposure indicated an increased risk of BCC with short telomeres. The interaction between arsenic exposure and telomere length on BCC risk was statistically significant (P = 0.02). Within each tertile based on arsenic exposure, the individuals with shorter telomeres were at an increased risk of BCC, with highest risk being in the highest exposed group (OR = 16.13, 95% CI = 6.71 to 40.00, P < 0.0001), followed by those in medium exposure group and low exposure group. The combined effect of highest arsenic exposure and shortest telomeres on BCC risk (OR = 10.56, 95% CI = 5.14 to 21.70) showed a statistically significant departure from additivity (interaction contrast ratio 6.56, P = 0.03). Our results show that in the presence of arsenic exposure, decreased telomere length predisposes individuals to increased risk of BCC, with the effect being synergistic in individuals with highest arsenic exposure and shortest telomeres.
Collapse
Affiliation(s)
- Nalini Srinivas
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Silvia Calderazzo
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Peter Rudnai
- Department of Environmental Epidemiology, National Public Health Center, Budapest, Hungary
| | - Eugen Gurzau
- Health Department, Environmental Health Center, Babes Bolyai University, Cluj, Romania
| | - Kvetoslava Koppova
- Department of Environmental Health, Slovak Medical University Bratislava, Banska Bystrica, Slovakia
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.,German Consortium for Translational Research (DKTK), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
20
|
Landi MT, Bishop DT, MacGregor S, Machiela MJ, Stratigos AJ, Ghiorzo P, Brossard M, Calista D, Choi J, Fargnoli MC, Zhang T, Rodolfo M, Trower AJ, Menin C, Martinez J, Hadjisavvas A, Song L, Stefanaki I, Scolyer R, Yang R, Goldstein AM, Potrony M, Kypreou KP, Pastorino L, Queirolo P, Pellegrini C, Cattaneo L, Zawistowski M, Gimenez-Xavier P, Rodriguez A, Elefanti L, Manoukian S, Rivoltini L, Smith BH, Loizidou MA, Del Regno L, Massi D, Mandala M, Khosrotehrani K, Akslen LA, Amos CI, Andresen PA, Avril MF, Azizi E, Soyer HP, Bataille V, Dalmasso B, Bowdler LM, Burdon KP, Chen WV, Codd V, Craig JE, Dębniak T, Falchi M, Fang S, Friedman E, Simi S, Galan P, Garcia-Casado Z, Gillanders EM, Gordon S, Green A, Gruis NA, Hansson J, Harland M, Harris J, Helsing P, Henders A, Hočevar M, Höiom V, Hunter D, Ingvar C, Kumar R, Lang J, Lathrop GM, Lee JE, Li X, Lubiński J, Mackie RM, Malt M, Malvehy J, McAloney K, Mohamdi H, Molven A, Moses EK, Neale RE, Novaković S, Nyholt DR, Olsson H, Orr N, Fritsche LG, Puig-Butille JA, Qureshi AA, Radford-Smith GL, Randerson-Moor J, Requena C, Rowe C, Samani NJ, Sanna M, Schadendorf D, Schulze HJ, Simms LA, Smithers M, Song F, Swerdlow AJ, van der Stoep N, Kukutsch NA, Visconti A, Wallace L, Ward SV, Wheeler L, Sturm RA, Hutchinson A, Jones K, Malasky M, Vogt A, Zhou W, Pooley KA, Elder DE, Han J, Hicks B, Hayward NK, Kanetsky PA, Brummett C, Montgomery GW, Olsen CM, Hayward C, Dunning AM, Martin NG, Evangelou E, Mann GJ, Long G, Pharoah PDP, Easton DF, Barrett JH, Cust AE, Abecasis G, Duffy DL, Whiteman DC, Gogas H, De Nicolo A, Tucker MA, Newton-Bishop JA, Peris K, Chanock SJ, Demenais F, Brown KM, Puig S, Nagore E, Shi J, Iles MM, Law MH. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat Genet 2020; 52:494-504. [PMID: 32341527 PMCID: PMC7255059 DOI: 10.1038/s41588-020-0611-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Most genetic susceptibility to cutaneous melanoma remains to be discovered. Meta-analysis genome-wide association study (GWAS) of 36,760 cases of melanoma (67% newly genotyped) and 375,188 controls identified 54 significant (P < 5 × 10-8) loci with 68 independent single nucleotide polymorphisms. Analysis of risk estimates across geographical regions and host factors suggests the acral melanoma subtype is uniquely unrelated to pigmentation. Combining this meta-analysis with GWAS of nevus count and hair color, and transcriptome association approaches, uncovered 31 potential secondary loci for a total of 85 cutaneous melanoma susceptibility loci. These findings provide insights into cutaneous melanoma genetic architecture, reinforcing the importance of nevogenesis, pigmentation and telomere maintenance, together with identifying potential new pathways for cutaneous melanoma pathogenesis.
Collapse
Affiliation(s)
- Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander J Stratigos
- Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paola Ghiorzo
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Myriam Brossard
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Donato Calista
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Concetta Fargnoli
- Department of Dermatology & Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Adam J Trower
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Venito Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Andreas Hadjisavvas
- Department of EM/Molecular Pathology & The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene Stefanaki
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Richard Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Rose Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Katerina P Kypreou
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Lorenza Pastorino
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Paola Queirolo
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Pellegrini
- Department of Dermatology & Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Cattaneo
- Pathology Unit, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Pol Gimenez-Xavier
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Arantxa Rodriguez
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Venito Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Maria A Loizidou
- Department of EM/Molecular Pathology & The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Laura Del Regno
- Institute of Dermatology, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Mario Mandala
- Department of Oncology, Giovanni XXIII Hospital, Bergamo, Italy
| | - Kiarash Khosrotehrani
- UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Christopher I Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Per A Andresen
- Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France
| | - Esther Azizi
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel
- Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Peter Soyer
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Bruna Dalmasso
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Lisa M Bowdler
- Sample Processing, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Wei V Chen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eitan Friedman
- Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Simi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pilar Galan
- Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Institut National de la Santé et de la Recherche Médicale (INSERM U1153), Institut National de la Recherche Agronomique (INRA U1125), Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, Bobigny, France
| | - Zaida Garcia-Casado
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Elizabeth M Gillanders
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Adele Green
- Cancer and Population Studies, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- CRUK Manchester Institute, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jessica Harris
- Translational Research Institute, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Per Helsing
- Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anjali Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marko Hočevar
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Julie Lang
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
| | - G Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Jan Lubiński
- International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rona M Mackie
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
- Department of Public Health, University of Glasgow, Glasgow, UK
| | - Maryrose Malt
- Cancer and Population Studies, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Josep Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Kerrie McAloney
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hamida Mohamdi
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Anders Molven
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eric K Moses
- Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rachel E Neale
- Cancer Aetiology & Prevention, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Dale R Nyholt
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Håkan Olsson
- Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund, Sweden
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nicholas Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Lars G Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Joan Anton Puig-Butille
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona,CIBERER, Barcelona, Spain
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Graham L Radford-Smith
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology and Hepatology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- University of Queensland School of Medicine, Herston Campus, Brisbane, Queensland, Australia
| | | | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Casey Rowe
- UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Marianna Sanna
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Consortium Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Hans-Joachim Schulze
- Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin, University of Münster, Münster, Germany
| | - Lisa A Simms
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark Smithers
- Queensland Melanoma Project, Princess Alexandra Hospital, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Fengju Song
- Departments of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Nienke van der Stoep
- Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicole A Kukutsch
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah V Ward
- Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrie Wheeler
- Translational Research Institute, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Michael Malasky
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Karen A Pooley
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Nicholas K Hayward
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chad Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Catherine M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, Sydney, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Georgina Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, Australia
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | | | - Anne E Cust
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Epidemiology and Prevention Research, Sydney School of Public Health, Sydney, Australia
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - David L Duffy
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David C Whiteman
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital Greece, National and Kapodistrian University of Athens, Athens, Greece
| | - Arcangela De Nicolo
- Cancer Genomics Program, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ketty Peris
- Institute of Dermatology, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Florence Demenais
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK.
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
21
|
Gala H, Tomlinson I. The use of Mendelian randomisation to identify causal cancer risk factors: promise and limitations. J Pathol 2020; 250:541-554. [PMID: 32154591 DOI: 10.1002/path.5421] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
The use of observational analyses, such as classical epidemiological studies or randomised controlled trials (RCTs), to infer causality in cancer may be problematic due to both ethical reasons and technical issues, such as confounding variables and reverse causation. Mendelian randomisation (MR) is an epidemiological technique that uses genetic variants as proxies for exposures in an attempt to determine whether there is a causal link between an exposure and an outcome. Given that genetic variants are randomly assigned during meiosis according to Mendel's first and second laws of heritability, MR may be thought of as a 'natural' RCT and is therefore less vulnerable to the aforementioned problems. MR has the potential to help identify new, and validate or disprove previously implicated, modifiable risk factors in cancer, but it is not without limitations. This review provides a brief description of the history and principles of MR, as well as a guide to basic MR methodology. The bulk of the review then examines various limitations of MR in more detail, discussing some of the proposed solutions to these problems. The review ends with a brief section detailing the practical implementation of MR, with examples of its use in the study of cancer, and an assessment of its utility in identifying cancer predisposition traits. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Harvinder Gala
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
The Solo Play of TERT Promoter Mutations. Cells 2020; 9:cells9030749. [PMID: 32204305 PMCID: PMC7140675 DOI: 10.3390/cells9030749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
The reactivation of telomerase reverse transcriptase (TERT) protein is the principal mechanism of telomere maintenance in cancer cells. Mutations in the TERT promoter (TERTp) are a common mechanism of TERT reactivation in many solid cancers, particularly those originating from slow-replicating tissues. They are associated with increased TERT levels, telomere stabilization, and cell immortalization and proliferation. Much effort has been invested in recent years in characterizing their prevalence in different cancers and their potential as biomarkers for tumor stratification, as well as assessing their molecular mechanism of action, but much remains to be understood. Notably, they appear late in cell transformation and are mutually exclusive with each other as well as with other telomere maintenance mechanisms, indicative of overlapping selective advantages and of a strict regulation of TERT expression levels. In this review, we summarized the latest literature on the role and prevalence of TERTp mutations across different cancer types, highlighting their biased distribution. We then discussed the need to maintain TERT levels at sufficient levels to immortalize cells and promote proliferation while remaining within cell sustainability levels. A better understanding of TERT regulation is crucial when considering its use as a possible target in antitumor strategies.
Collapse
|
23
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
24
|
Palazzo E, Morasso MI, Pincelli C. Molecular Approach to Cutaneous Squamous Cell Carcinoma: From Pathways to Therapy. Int J Mol Sci 2020; 21:ijms21041211. [PMID: 32059344 PMCID: PMC7072792 DOI: 10.3390/ijms21041211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Elisabetta Palazzo
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy;
- Correspondence:
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
25
|
Nersisyan L, Nikoghosyan M, Arakelyan A. WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene. Sci Rep 2019; 9:18758. [PMID: 31822713 PMCID: PMC6904582 DOI: 10.1038/s41598-019-55109-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother's, and, to a lesser extent, with father's TL having the strongest influence on the offspring. In this cohort, mother's, but not father's age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait.
Collapse
Affiliation(s)
- Lilit Nersisyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, 7 Hasratyan str., 0014, Yerevan, Armenia.
| | - Maria Nikoghosyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, 7 Hasratyan str., 0014, Yerevan, Armenia
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 123 Hovsep Emin St, 0051, Yerevan, Armenia
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, 7 Hasratyan str., 0014, Yerevan, Armenia
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 123 Hovsep Emin St, 0051, Yerevan, Armenia
| |
Collapse
|
26
|
McNally EJ, Luncsford PJ, Armanios M. Long telomeres and cancer risk: the price of cellular immortality. J Clin Invest 2019; 129:3474-3481. [PMID: 31380804 PMCID: PMC6715353 DOI: 10.1172/jci120851] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The distribution of telomere length in humans is broad, but it has finite upper and lower boundaries. Growing evidence shows that there are disease processes that are caused by both short and long telomere length extremes. The genetic basis of these short and long telomere syndromes may be linked to mutations in the same genes, such as the telomerase reverse transcriptase (TERT), but through differential effects on telomere length. Short telomere syndromes have a predominant degenerative phenotype marked by organ failure that most commonly manifests as pulmonary fibrosis and are associated with a relatively low cancer incidence. In contrast, insights from studies of cancer-prone families as well as genome-wide association studies (GWAS) have identified both rare and common variants that lengthen telomeres as being strongly associated with cancer risk. We have hypothesized that these cancers represent a long telomere syndrome that is associated with a high penetrance of cutaneous melanoma and chronic lymphocytic leukemia. In this Review, we will synthesize the clinical and human genetic observations with data from mouse models to define the role of telomeres in cancer etiology and biology.
Collapse
Affiliation(s)
| | | | - Mary Armanios
- Department of Oncology
- Telomere Center
- Sidney Kimmel Comprehensive Cancer Center, and
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Kroupa M, Rachakonda SK, Liska V, Srinivas N, Urbanova M, Jiraskova K, Schneiderova M, Vycital O, Vymetalkova V, Vodickova L, Kumar R, Vodicka P. Relationship of telomere length in colorectal cancer patients with cancer phenotype and patient prognosis. Br J Cancer 2019; 121:344-350. [PMID: 31312029 PMCID: PMC6738117 DOI: 10.1038/s41416-019-0525-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Telomeres, repetitive DNA capping ends of eukaryotic chromosomes, are important in the maintenance of genomic integrity. Perturbed telomeres are common features of many human malignancies, including colorectal cancer. METHODS Telomere length (TL), measured by a Monochrome Multiplex Real-Time qPCR, was investigated in tumour tissues, adjacent mucosa, and blood from patients with colorectal cancer with different clinicopathological features and its impact on patient survival. TL was also measured in a limited number of liver metastases, non-cancerous liver tissues or corresponding tissues from the same patients. RESULTS TL in tumour tissues was shorter than in the adjacent mucosa (P < 0.0001). Shorter TL was observed in tumours with lower stage than in those with advanced stages (P = 0.001). TL was shorter in tumours at the proximal than at the distal sites of the colon (P < 0.0001). Shorter TL was also associated with microsatellite instability (P = 0.001) and mucinous tumour histology (P < 0.0001). Patients with a smaller TL ratio between tumour tissues and the adjacent mucosa were associated with increased overall survival (P = 0.022). Metastasised tumours had shorter telomeres than the adjacent non-cancerous liver tissues (P = 0.0005). CONCLUSIONS Overall, the results demonstrate differences in TL between tumours and the adjacent mucosa, between tumours located at different sites and association with patient survival.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic. .,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | | | - Vaclav Liska
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Nalini Srinivas
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Marketa Urbanova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, Prague, Czech Republic
| | - Ondrej Vycital
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic. .,Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic. .,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
28
|
Christodoulou E, Visser M, Potjer TP, van der Stoep N, Rodríguez-Girondo M, van Doorn R, Gruis N. Assessing a single SNP located at TERT/CLPTM1L multi-cancer risk region as a genetic modifier for risk of pancreatic cancer and melanoma in Dutch CDKN2A mutation carriers. Fam Cancer 2019; 18:439-444. [PMID: 31203567 PMCID: PMC6784815 DOI: 10.1007/s10689-019-00137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carriers of pathogenic variants in CDKN2A have a 70% life-time risk of developing melanoma and 15–20% risk of developing pancreatic cancer (PC). In the Netherlands, a 19-bp deletion in exon 2 of CDKN2A (p16-Leiden mutation) accounts for most hereditary melanoma cases. Clinical experience suggests variability in occurrence of melanoma and PC in p16-Leiden families. Thereby, the risk of developing cancer could be modified by both environmental and genetic contributors, suggesting that identification of genetic modifiers could improve patients’ surveillance. In a recent genome-wide association study (GWAS), rs36115365-C was found to significantly modify risk of PC and melanoma in the European population. This SNP is located on chr5p15.33 and has allele-specific regulatory activities on TERT expression. Herein, we investigated the modifying capacities of rs36115365-C on PC and melanoma in a cohort of 283 p16-Leiden carriers including 29 diagnosed with PC, 171 diagnosed with melanoma, 21 diagnosed with both PC and melanoma and 62 with neither PC nor melanoma. In contrast to previously reported findings, we did not find a significant association of PC risk with risk variant presence as determined by Generalized Estimating Equations (GEE) modelling. Interestingly, carrier-ship of the risk variant had a significant protective effect for melanoma (OR − 0.703 [95% CI − 1.201 to − 0.205], p = 0.006); however, the observed association was no longer significant after exclusion of probands to assess possible influence of ascertainment. Collectively, genetic modifiers for the prediction of PC and melanoma risk in p16-Leiden carriers remain to be determined.
Collapse
Affiliation(s)
- E Christodoulou
- Department of Dermatology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - M Visser
- Department of Dermatology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - T P Potjer
- Department of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - N van der Stoep
- Department of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - M Rodríguez-Girondo
- Section of Medical Statistics, Department of Biomedical Data Sciences, LUMC, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - R van Doorn
- Department of Dermatology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - N Gruis
- Department of Dermatology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
29
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
30
|
Støer NC, Botteri E, Ghiasvand R, Busund M, Vangen S, Lund E, Veierød MB, Weiderpass E. Reproductive factors and risk of melanoma: a population-based cohort study. Br J Dermatol 2019; 181:282-289. [PMID: 30748007 DOI: 10.1111/bjd.17771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The association between reproductive factors and risk of cutaneous melanoma (CM) is unclear. We investigated this issue in the Norwegian Women and Cancer cohort study. OBJECTIVES To examine the association between the reproductive factors age at menarche, menstrual cycle length, parity, age at first and last birth, menopausal status, breastfeeding duration and length of ovulatory life, and CM risk, overall and by histological subtypes and anatomical site. METHODS We followed 165 712 women aged 30-75 years at inclusion from 1991-2007 to the end of 2015. Multivariable Cox regression was used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). RESULTS The mean age at cohort enrolment was 49 years. During a median follow-up of 18 years, 1347 cases of CM were identified. No reproductive factors were clearly associated with CM risk. When stratifying by histological subtype we observed significant heterogeneity (P = 0·01) in the effect of length of ovulatory life on the risk of superficial spreading melanoma (HR 1·02, 95% CI 1·01-1·04 per year increase) and nodular melanoma (HR 0·97, 95% CI 0·94-1·01 per year increase). When stratifying by anatomical site, menopausal status (HR 0·54, 95% CI 0·31-0·92, postmenopausal vs. premenopausal) and menstrual cycle length (HR 1·07, 95% CI 1·01-1·13, per day increase) were associated with CM of the trunk, and significant heterogeneity between anatomical sites was observed for menopausal status (P = 0·04). CONCLUSIONS In this large population-based Norwegian cohort study, we did not find convincing evidence of an association between reproductive factors and risk of CM.
Collapse
Affiliation(s)
- N C Støer
- Norwegian National Advisory Unit on Women's Health, Women's Clinic, Oslo University Hospital, Oslo, Norway
| | - E Botteri
- Norwegian National Advisory Unit on Women's Health, Women's Clinic, Oslo University Hospital, Oslo, Norway.,Department of Bowel Cancer Screening, Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo University Hospital, Oslo, Norway
| | - R Ghiasvand
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - M Busund
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - S Vangen
- Norwegian National Advisory Unit on Women's Health, Women's Clinic, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - E Lund
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway.,Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo University Hospital, Oslo, Norway
| | - M B Veierød
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - E Weiderpass
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway.,Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Genetic Epidemiology Group, Folkhälsan Research Center, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Ventura A, Pellegrini C, Cardelli L, Rocco T, Ciciarelli V, Peris K, Fargnoli MC. Telomeres and Telomerase in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20061333. [PMID: 30884806 PMCID: PMC6470499 DOI: 10.3390/ijms20061333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
The role of telomere biology and telomerase activation in skin cancers has been investigated in melanoma and basal cell carcinoma but limited evidence is available for cutaneous squamous cell carcinoma (cSCC). We will review the current knowledge on the role of telomere and telomerase pathway in cSCC pathogenesis. At the somatic level, both long and short telomere lengths have been described in cSCC. This telomere dichotomy is probably related to two different mechanisms of tumour initiation which determines two tumour subtypes. Telomere shortening is observed during the invasive progression from in situ forms of cSCC, such as Bowen's disease (BD) and actinic keratosis (AK), to invasive cSCC. At the germline level, controversial results have been reported on the association between constitutive telomere length and risk of cSCC. Approximately 75⁻85% of cSCC tumours are characterized by a high level of telomerase activity. Telomerase activation has been also reported in AKs and BD and in sun-damaged skin, thus supporting the hypothesis that UV modulates telomerase activity in the skin. Activating TERT promoter mutations have been identified in 32⁻70% of cSCCs, with the majority showing the UV-signature. No significant correlation was observed between TERT promoter mutations and cSCC clinico-pathological features. However, TERT promoter mutations have been recently suggested to be independent predictors of an adverse outcome. The attention on telomere biology and telomerase activity in cSCC is increasing for the potential implications in the development of effective tools for prognostic assessment and of therapeutic strategies in patients with cutaneous cSCC.
Collapse
Affiliation(s)
- Alessandra Ventura
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cristina Pellegrini
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Ludovica Cardelli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Tea Rocco
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Valeria Ciciarelli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Ketty Peris
- Institute of Dermatology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00186 Rome, Italy.
| | - Maria Concetta Fargnoli
- Department of Dermatology, Department of Applied Clinical Sciences and Biotechnologies, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|