1
|
Chen Y, Qiu Q, She J, Yu J. Extrachromosomal circular DNA in colorectal cancer: biogenesis, function and potential as therapeutic target. Oncogene 2023; 42:941-951. [PMID: 36859558 PMCID: PMC10038807 DOI: 10.1038/s41388-023-02640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Extrachromosomal circular DNA (ecDNA) has gained renewed interest since its discovery more than half a century ago, emerging as critical driver of tumor evolution. ecDNA is highly prevalent in many types of cancers, including colorectal cancer (CRC), which is one of the most deadly cancers worldwide. ecDNAs play an essential role in regulating oncogene expression, intratumor heterogeneity, and resistance to therapy independently of canonical chromosomal alterations in CRC. Furthermore, the existence of ecDNAs is attributed to the patient's prognosis, since ecDNA-based oncogene amplification adversely affects clinical outcomes. Recent understanding of ecDNA put an extra layer of complexity in the pathogenesis of CRC. In this review, we will discuss the current understanding on mechanisms of biogenesis, and distinctive features of ecDNA in CRC. In addition, we will examine how ecDNAs mediate oncogene overexpression, gene regulation, and topological interactions with active chromatin, which facilitates genetic heterogeneity, accelerates CRC malignancy, and enhances rapid adaptation to therapy resistance. Finally, we will discuss the potential diagnostic and therapeutic implications of ecDNAs in CRC.
Collapse
Affiliation(s)
- Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanpeng Qiu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jun Yu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Wang M, Chen X, Yu F, Ding H, Zhang Y, Wang K. Extrachromosomal Circular DNAs: Origin, formation and emerging function in Cancer. Int J Biol Sci 2021; 17:1010-1025. [PMID: 33867825 PMCID: PMC8040306 DOI: 10.7150/ijbs.54614] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of cellular DNAs in eukaryotes are organized into linear chromosomes. In addition to chromosome DNAs, genes also reside on extrachromosomal elements. The extrachromosomal DNAs are commonly found to be circular, and they are referred to as extrachromosomal circular DNAs (eccDNAs). Recent technological advances have enriched our knowledge of eccDNA biology. There is currently increasing concern about the connection between eccDNA and cancer. Gene amplification on eccDNAs is prevalent in cancer. Moreover, eccDNAs commonly harbor oncogenes or drug resistance genes, hence providing a growth or survival advantage to cancer cells. eccDNAs play an important role in tumor heterogeneity and evolution, facilitating tumor adaptation to challenging circumstances. In addition, eccDNAs have recently been identified as cell-free DNAs in circulating system. The altered level of eccDNAs is observed in cancer patients relative to healthy controls. Particularly, eccDNAs are associated with cancer progression and poor outcomes. Thus, eccDNAs could be useful as novel biomarkers for the diagnosis and prognosis of cancer. In this review, we summarize current knowledge regarding the formation, characteristics and biological importance of eccDNAs, with a focus on the molecular mechanisms associated with their roles in cancer progression. We also discuss their potential applications in the detection and treatment of cancer. A better understanding of the functional role of eccDNAs in cancer would facilitate the comprehensive analysis of molecular mechanisms involved in cancer pathogenesis.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
3
|
King LE, Zhang HH, Gould CM, Thomas DW, Whitehead LW, Simpson KJ, Burgess AW, Faux MC. Genes regulating membrane-associated E-cadherin and proliferation in adenomatous polyposis coli mutant colon cancer cells: High content siRNA screen. PLoS One 2020; 15:e0240746. [PMID: 33057364 PMCID: PMC7561197 DOI: 10.1371/journal.pone.0240746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/01/2020] [Indexed: 01/17/2023] Open
Abstract
Truncating mutations in the tumour suppressor gene APC occur frequently in colorectal cancers and result in the deregulation of Wnt signalling as well as changes in cell-cell adhesion. Using quantitative imaging based on the detection of membrane-associated E-cadherin, we undertook a protein coding genome-wide siRNA screen to identify genes that regulate cell surface E-cadherin in the APC-defective colorectal cancer cell line SW480. We identified a diverse set of regulators of E-cadherin that offer new insights into the regulation of cell-cell adhesion, junction formation and genes that regulate proliferation or survival of SW480 cells. Among the genes whose depletion promotes membrane-associated E-cadherin, we identified ZEB1, the microRNA200 family, and proteins such as a ubiquitin ligase UBE2E3, CDK8, sorting nexin 27 (SNX27) and the matrix metalloproteinases, MMP14 and MMP19. The screen also identified 167 proteins required for maintaining E-cadherin at cell-cell adherens junctions, including known junctional proteins, CTNND1 and CTNNA1, as well as signalling enzymes, DUSP4 and MARK2, and transcription factors, TEAD3, RUNX2 and TRAM2. A better understanding of the post-translational regulation of E-cadherin provides new opportunities for restoring cell-cell adhesion in APC-defective cells.
Collapse
Affiliation(s)
- Lauren E. King
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Hui-Hua Zhang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cathryn M. Gould
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Daniel W. Thomas
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lachlan W. Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kaylene J. Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Antony W. Burgess
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, RMH, University of Melbourne, Parkville, VIC, Australia
- * E-mail: (MCF); (AWB)
| | - Maree C. Faux
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- * E-mail: (MCF); (AWB)
| |
Collapse
|
4
|
Klein CH, Truxius DC, Vogel HA, Harizanova J, Murarka S, Martín-Gago P, Bastiaens PIH. PDEδ inhibition impedes the proliferation and survival of human colorectal cancer cell lines harboring oncogenic KRas. Int J Cancer 2018; 144:767-776. [PMID: 30194764 PMCID: PMC6519276 DOI: 10.1002/ijc.31859] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/03/2018] [Indexed: 01/08/2023]
Abstract
Ras proteins, most notably KRas, are prevalent oncogenes in human cancer. Plasma membrane localization and thereby signaling of KRas is regulated by the prenyl‐binding protein PDEδ. Recently, we have reported the specific anti‐proliferative effects of PDEδ inhibition in KRas‐dependent human pancreatic ductal adenocarcinoma cell lines. Here, we investigated the proliferative dependence on the solubilizing activity of PDEδ of human colorectal cancer (CRC) cell lines with or without oncogenic KRas mutations. Our results show that genetic and pharmacologic interference with PDEδ specifically inhibits proliferation and survival of CRC cell lines harboring oncogenic KRas mutations whereas isogenic cell lines in which the KRas oncogene has been removed, or cell lines with oncogenic BRaf mutations or EGFR overexpression are not dependent on PDEδ. Pharmacological PDEδ inhibition is therefore a possible new avenue to target oncogenic KRas bearing CRC. What's new? Oncogenic KRas mutations are present in about 45% of colorectal cancers (CRCs), where they are associated with poor prognosis. While KRas is an appealing therapeutic target, it has repeatedly eluded small‐molecule inhibitors. Here, the authors chose instead to target PDEδ, a prenyl‐binding protein that regulates the plasma membrane localization of KRas. In experiments in human colorectal cancer cells, PDEδ inhibition limited proliferation and survival in cells harboring KRas mutations, with no effect on wild‐type KRas cells, providing a new therapeutiv opportunity for CRC harbouring oncogenic KRas. In addition, PDEδ protein expression was correlated with oncogenic KRas activity within the CRC cell panel, suggesting that PDEδ protein‐level determination may be of prognostic relevance for CRC patients.
Collapse
Affiliation(s)
- Christian H Klein
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Dina C Truxius
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Holger A Vogel
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Jana Harizanova
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| | - Sandip Murarka
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Pablo Martín-Gago
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| |
Collapse
|
5
|
Sei-1 promotes double minute chromosomes formation through activation of the PI3K/Akt/BRCA1-Abraxas pathway and induces double-strand breaks in NIH-3T3 fibroblasts. Cell Death Dis 2018; 9:341. [PMID: 29497033 PMCID: PMC5832785 DOI: 10.1038/s41419-018-0362-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/29/2022]
Abstract
Sei-1 is a potential oncogene that plays an important role in promoting genomic instability. Double minute chromosomes (DMs) are hallmarks of gene amplification and contribute to tumorigenesis. Defects in the DNA double-strand break (DSB) repairing pathways can lead to gene amplification. To date, the mechanisms governing the formation of DMs induced by Sei-1 are not fully understood. We established DMs induced by Sei-1 in the NIH-3T3 cell line. RNA-sequencing was used to identify key characteristics of differentially expressed genes. Metaphase spreads were used to calculate DM numbers. Immunofluorescence was employed to detect γH2AX foci. Western blot and Akt pathway inhibition experiments were performed to reveal the role of the PI3K/Akt/BRCA1-Abraxas pathway in Sei-1-induced DMs. Luciferase reporter assay was employed to explore the regulatory mechanisms between Sei-1 and BRCA1. DM formation was associated with a deficiency in DSB repair. Based on this finding, activation of the PI3K/Akt/BRCA1-Abraxas pathway was found to increase the DM population with passage in vivo, and inhibition resulted in a reduction of DMs. Apart from this, it was shown for the first time that Sei-1 could directly regulate the expression of BRCA1. Our results suggest that the PI3K/Akt/BRCA1-Abraxas pathway is responsible for the formation of DMs induced by Sei-1.
Collapse
|
6
|
Mozzi A, Forcella M, Riva A, Difrancesco C, Molinari F, Martin V, Papini N, Bernasconi B, Nonnis S, Tedeschi G, Mazzucchelli L, Monti E, Fusi P, Frattini M. NEU3 activity enhances EGFR activation without affecting EGFR expression and acts on its sialylation levels. Glycobiology 2015; 25:855-68. [DOI: 10.1093/glycob/cwv026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
|
7
|
Wong TW, Lee FY, Emanuel S, Fairchild C, Fargnoli J, Fink B, Gavai A, Hammell A, Henley B, Hilt C, Hunt JT, Krishnan B, Kukral D, Lewin A, Malone H, Norris D, Oppenheimer S, Vite G, Yu C. Antitumor and Antiangiogenic Activities of BMS-690514, an Inhibitor of Human EGF and VEGF Receptor Kinase Families. Clin Cancer Res 2011; 17:4031-41. [DOI: 10.1158/1078-0432.ccr-10-3417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM. Ror1 is a pseudokinase that is crucial for Met-driven tumorigenesis. Cancer Res 2011; 71:3132-41. [PMID: 21487037 DOI: 10.1158/0008-5472.can-10-2662] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human kinome includes Ror1, a poorly characterized orphan receptor. Here we report the findings of an investigation of Ror1 contributions to cancer, undertaken through an integrated screening of 43 cancer cell lines where we measured protein expression, tyrosine phosphorylation, and growth response following RNAi-mediated Ror1 suppression. Ror1 was expressed in approximately 75% of the cancer cell lines without apparent histotype distribution. Gastric carcinoma cells (HS746T) and non-small cell lung carcinoma cells (NCI-H1993) exhibited high levels of Ror1 tyrosine phosphorylation, and Ror1 suppression caused growth inhibition. Biochemical assays revealed unexpectedly that Ror1 is a pseudokinase that is devoid of catalytic activity. Intriguingly, the two cell lines featuring tyrosine-phosphorylated Ror1 both exhibited amplification and activation of the Met oncogene. Ror1 phosphorylation was abrogated by Met inhibition, indicating Met-dependent transphosphorylation of Ror1. Conversely, Ror1 was not transphosphorylated by other constitutively active tyrosine kinases, including EGFR and ErbB2. Constitutive silencing of Ror1 in HS746T and NCI-H1993 carcinoma cells impaired proliferation in vitro and induced a dramatic inhibition of tumorigenesis in vivo. Together, our findings suggest a critical role for Ror1 in malignant phenotypes sustained by the Met oncogene.
Collapse
Affiliation(s)
- Alessandra Gentile
- Exploratory Research Laboratory, Institute for Cancer Research and Treatment, University of Turin Medical School, Candiolo, Turin, Italy
| | | | | | | | | |
Collapse
|
9
|
Benvenuti S, Lazzari L, Arnesano A, Li Chiavi G, Gentile A, Comoglio PM. Ron kinase transphosphorylation sustains MET oncogene addiction. Cancer Res 2011; 71:1945-55. [PMID: 21212418 DOI: 10.1158/0008-5472.can-10-2100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Receptors for the scatter factors HGF and MSP that are encoded by the MET and RON oncogenes are key players in invasive growth. Receptor cross-talk between Met and Ron occurs. Amplification of the MET oncogene results in kinase activation, deregulated expression of an invasive growth phenotype, and addiction to MET oncogene signaling (i.e., dependency on sustained Met signaling for survival and proliferation). Here we show that cancer cells addicted to MET also display constitutive activation of the Ron kinase. In human cancer cell lines coexpressing the 2 oncogenes, Ron is specifically transphosphorylated by activated Met. In contrast, Ron phosphorylation is not triggered in cells harboring constitutively active kinase receptors other than Met, including Egfr or Her2. Furthermore, Ron phosphorylation is suppressed by Met-specific kinase inhibitors (PHA-665752 or JNJ-38877605). Last, Ron phosphorylation is quenched by reducing cell surface expression of Met proteins by antibody-induced shedding. In MET-addicted cancer cells, short hairpin RNA-mediated silencing of RON expression resulted in decreased proliferation and clonogenic activity in vitro and tumorigenicity in vivo. Our findings establish that oncogene addiction to MET involves Ron transactivation, pointing to Ron kinase as a target for combinatorial cancer therapy.
Collapse
Affiliation(s)
- Silvia Benvenuti
- Exploratory Research Laboratory, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Zumpe C, Bachmann CL, Metzger AU, Wiedemann N. Comparison of potency assays using different read-out systems and their suitability for quality control. J Immunol Methods 2010; 360:129-40. [PMID: 20603126 DOI: 10.1016/j.jim.2010.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 11/16/2022]
Abstract
In this study, three of the most commonly used non-radioactive read-out systems for bioassays, the tetrazolium salt MTS/PMS, the fluorescent dye Alamar Blue and the ATP bioluminescence assay were compared regarding their suitability for quality control purposes. In this regard, three different potency assays using murine CTLL-2, as well as human DiFi and Kit 225 cells were performed. No major differences regarding accuracy and precision were detected between the different read-out systems. Both workload and hands-on time were similar for all three assays used. All read-out systems were suitable for use in quality control. However, luminescence and fluorescence techniques were much more sensitive than the colorimetric system. The first two could determine approximately ten times lower drug concentrations, and the assay could be performed by using considerably lower cell numbers. Moreover, in two of the three potency assays, the luminescence and fluorescence read-out systems provided higher signal to noise ratios leading to a higher precision of the assays. Regarding the comparison of the luminescence and fluorescence system, the ATP assay has the advantage to be much faster than the Alamar Blue assay. Consequently, in this study, the luminescence technique turned out to be the most advantageous of the three read-out systems.
Collapse
Affiliation(s)
- C Zumpe
- Analytical Development Biotech Products, Merck KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | | | | | | |
Collapse
|
11
|
Dobashi Y, Takei N, Suzuki S, Yoneyama H, Hanawa M, Ooi A. Aberration of epidermal growth factor receptor expression in bone and soft-tissue tumors: protein overexpression, gene amplification and activation of downstream molecules. Mod Pathol 2004; 17:1497-505. [PMID: 15254554 DOI: 10.1038/modpathol.3800218] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to evaluate the involvement of epidermal growth factor receptor, and to analyze the correlation between gene aberration and protein expression in mesenchymal tumors, we examined protein expression by immunohistochemistry in 125 cases of bone and soft-tissue tumors. Furthermore, amplification of epidermal growth factor receptor gene was determined by fluorescence in situ hybridization. Positive immunostaining was found in 23 cases (18.4%). Among these 23 cases, one of malignant fibrous histiocytoma showed the highest degree (3+) of protein overexpression and gene amplification as clusters of hybridization signals, indicating homogeneously staining regions. The second case of malignant fibrous histiocytoma also showed a higher degree (2+) of overexpression and coamplification of the epidermal growth factor receptor gene with the centromeric regions, indicating polysomy of chromosome 7. The levels of expression observed in immunohistochemistry were confirmed by immunoblotting and found to be comparable. Moreover, although expression of phosphorylated epidermal growth factor receptor was detected in those two cases of malignant fibrous histiocytoma, constitutive activation of extracellular signal-related protein kinase 1/2 was not observed, suggesting that activation of epidermal growth factor receptor does not necessarily and constantly lead to signal transduction to the downstream molecules. In the remaining 123 cases, including 21 cases exhibiting weak (1+) immunoreactivity, no gene amplification nor polysomy was found. Collectively, expression of epidermal growth factor receptor was observed not infrequently in mesenchymal tumors, but 'overexpression' is rare and can be attributed to an increase in gene copy number, resulting from amplification or polysomy. Although cases that scored positive for protein expression and/or gene amplification could be qualified candidates for antiepidermal growth factor receptor therapies, further examination of the status of downstream molecules in the signal cascade, such as phosphorylated epidermal growth factor receptor and extracellular signal-related protein kinase 1/2, may be required as the process of therapeutic strategy.
Collapse
Affiliation(s)
- Yoh Dobashi
- Department of Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Ooi A, Takehana T, Li X, Suzuki S, Kunitomo K, Iino H, Fujii H, Takeda Y, Dobashi Y. Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Mod Pathol 2004; 17:895-904. [PMID: 15143334 DOI: 10.1038/modpathol.3800137] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overexpression of HER-2 and the epidermal growth factor receptor (EGFR) has been observed in many cancers, sometimes accompanied by gene amplification. To assess whether novel chemotherapies targeting these overexpressed proteins may be effective for the treatment of colorectal cancers, we examined the exact frequency of HER-2 and EGFR overexpression, the relationship between gene amplification and protein expression, and the heterogeneity of gene amplification within and between primary and metastatic tumors. We evaluated 244 colorectal cancers immunohistochemically. All tumors found to overexpress HER-2 or EGFR were further analyzed for gene amplification by fluorescent in situ DNA hybridization. Overexpression of HER-2 and EGFR was found in 8 (3%) and 19 (8%) of the 244 colorectal carcinomas, respectively. Gene amplification was observed in 100 and 58% of the tumors exhibiting HER-2 and EGFR overexpression, respectively. HER-2 amplification in cancer cells was characterized by clusters of hybridization signals, suggesting amplicons in homogeneously staining regions that were predominant in most primary and metastatic tumors. EGFR amplification, observed as scattered signals reminiscent of amplicons in double minute chromosomes, or coamplification of EGFR with the centromeric regions was observed as a minor population within primary tumors, and found in variety of populations in metastatic tumors. Overexpression of HER-2 and EGFR were observed in only a small fraction of colorectal carcinomas, but were frequently accompanied by gene amplification.
Collapse
Affiliation(s)
- Akishi Ooi
- Department of Pathology, School of Medicine, University of Yamanashi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wei C, Amos CI, Rashid A, Sabripour M, Nations L, McGarrity TJ, Frazier ML. Correlation of staining for LKB1 and COX-2 in hamartomatous polyps and carcinomas from patients with Peutz-Jeghers syndrome. J Histochem Cytochem 2004; 51:1665-72. [PMID: 14623934 DOI: 10.1177/002215540305101210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Germline mutations of the LKB1 gene lead to Peutz-Jeghers syndrome (PJS), which is associated with a predisposition to gastrointestinal polyposis and cancer. In this study we tested for germline mutations of LKB1 in 11 patients with PJS from nine families and analyzed the expression patterns of the LKB1 and cyclo-oxygenase-2 (COX-2) proteins in 28 Peutz-Jeghers polyps (PJPs) and five carcinomas from these patients by immunohistochemical (IHC) analysis. In eight of those families we identified seven different mutations, which consisted of two splice site mutations, two nonsense mutations, one small in-frame deletion, one frame-shift mutation, and one silent mutation. Immunostaining revealed nuclear and cytoplasmic expression of LKB1 protein in 23 PJPs and five carcinomas, nuclear expression alone in one PJP, and loss of LKB1 protein expression in four PJPs, indicating a heterogeneous LKB1 expression pattern in PJPs. Overexpression of COX-2 was detected in 23 (82%) of 28 PJPs and in all carcinomas. Despite heterogeneity in staining of LKB1 among individuals and even among samples from the same individual, we found statistically significant correlations in staining of LKB1 relative to COX-2. These results suggest that COX-2 plays a role in tumorigenesis in PJS and may therefore be considered as a potential target for PJS chemoprevention.
Collapse
Affiliation(s)
- Chongjuan Wei
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang TL, Maierhofer C, Speicher MR, Lengauer C, Vogelstein B, Kinzler KW, Velculescu VE. Digital karyotyping. Proc Natl Acad Sci U S A 2002; 99:16156-61. [PMID: 12461184 PMCID: PMC138581 DOI: 10.1073/pnas.202610899] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alterations in the genetic content of a cell are the underlying cause of many human diseases, including cancers. We have developed a method, called digital karyotyping, that provides quantitative analysis of DNA copy number at high resolution. This approach involves the isolation and enumeration of short sequence tags from specific genomic loci. Analysis of human cancer cells by using this method identified gross chromosomal changes as well as amplifications and deletions, including regions not previously known to be altered. Foreign DNA sequences not present in the normal human genome could also be readily identified. Digital karyotyping provides a broadly applicable means for systematic detection of DNA copy number changes on a genomic scale.
Collapse
Affiliation(s)
- Tian-Li Wang
- The Howard Hughes Medical Institute and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Liu L, Ichimura K, Pettersson EH, Goike HM, Collins VP. The complexity of the 7p12 amplicon in human astrocytic gliomas: detailed mapping of 246 tumors. J Neuropathol Exp Neurol 2000; 59:1087-93. [PMID: 11138928 DOI: 10.1093/jnen/59.12.1087] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Approximately 30%-35% of human glioblastomas have epidermal growth factor receptor (EGFR) gene amplification. Amplicons containing the EGFR gene frequently include several unidentified adjacent genes. Amplification of adjacent genes in the absence of EGFR amplification has been documented. To define the region in detail, we produced a YAC contig map, determining the orientation of the EGFR gene and the general order of 11 STS and EST markers. Seventy-six tumors with amplification of the region were found in a series of 246 human astrocytic gliomas. The amplicons showed amplification of contiguous or noncontiguous loci both telomeric and centromeric to the EGFR gene. Six percent (12/190) of the glioblastomas and 1 anaplastic astrocytomas had amplicons excluding the EGFR gene. These amplicons commonly contain amplified loci telomeric to the EGFR gene. Some of the amplified loci were found to be consistently overexpressed. The findings suggest that there may be other gene target(s) for amplification in the 7p12 region in addition to EGFR.
Collapse
Affiliation(s)
- L Liu
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Canute GW, Longo SL, Longo JA, Winfield JA, Nevaldine BH, Hahn PJ. Hydroxyurea Accelerates the Loss of Epidermal Growth Factor Receptor Genes Amplified As Double-minute Chromosomes in Human Glioblastoma Multiforme. Neurosurgery 1996. [DOI: 10.1227/00006123-199611000-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Canute GW, Longo SL, Longo JA, Winfield JA, Nevaldine BH, Hahn PJ. Hydroxyurea accelerates the loss of epidermal growth factor receptor genes amplified as double-minute chromosomes in human glioblastoma multiforme. Neurosurgery 1996; 39:976-83. [PMID: 8905754 DOI: 10.1097/00006123-199611000-00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE We sought to determine whether hydroxyurea could accelerate the loss of amplified epidermal growth factor receptor (EGFR) genes from glioblastoma multiforme (GBM). There is good reason to think that elimination of amplified EGFR genes from GBMs will negatively impact tumor growth. Hydroxyurea has previously been shown to induce the loss of amplified genes from extrachromosomal double minutes (dmin) but not from chromosomal homogeneously staining regions. METHODS Pulsed-field gel electrophoresis and Southern blot hybridization were used to demonstrate EGFR genes amplified as dmin. Giemsa-stained metaphase spreads were prepared in an attempt to visualize dmin. A GBM cell line containing amplified EGFR genes was treated continuously in vitro with 0 to 150 mumol/L hydroxyurea, and slot blot analysis was used to show the loss of amplified EGFR genes. RESULTS Amplified EGFR genes were found on dmin in 4 of 11 (36%) fresh human GBM biopsy specimens. None of the GBMs contained EGFR genes amplified as homogeneously staining regions. Amplified dmin were not microscopically visible when stained with Giemsa because of their small size. Slot blot analysis showed that these low doses of hydroxyurea accelerated the loss of amplified EGFR genes in a dose- and time-dependent fashion. Pulsed-field gel electrophoresis and Southern blot analysis confirmed that EGFR gene loss was accompanied by amplified dmin loss in a dose-dependent fashion. CONCLUSION These studies suggest the potential use of low-dose hydroxyurea in the treatment of GBMs.
Collapse
Affiliation(s)
- G W Canute
- Department of Neurosurgery, State University of New York Health Science Center, Syracuse, USA
| | | | | | | | | | | |
Collapse
|
18
|
Xue BH. Differentiation arrest by autologously replicating DNA loops formed along differentiation pathway: an hypothesis of carcinogenesis. Med Hypotheses 1996; 47:129-35. [PMID: 8869929 DOI: 10.1016/s0306-9877(96)90452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The current hypothesis attempts to explain tumor development from the perspective of deoxyribonucleic acid structural changes rather than mutational alterations of single or multiple genes. The hypothesis postulates that stable deoxyribonucleic acid loops capable of autologous replication, translation and expression cause cell-differentiation arrest and contribute to the carcinogenesis and various abnormal biological behaviors of tumor. The formation of deoxyribonucleic acid loops at particular steps along the differentiation pathway determines tumor phenotype, grade and behavior. The outcome of deoxyribonucleic acid loop-formation in a cell is highly affected by the differentiation signals imposed by the cell's differentiation microenvironment which is considered as a very important regulatory factor during tumor development in this hypothesis. The incompatibility of adhesion molecules between tumor cells and surrounding normal cells is proposed in this hypothesis as a major reason for separation of tumor cells from primary lesions and thus metastasis. This hypothesis also postulates that tumor invasion is caused by the expression of proteins related to the transient invasive phenotype of normal cells in physiologic process that is controlled by the genes within autologous deoxyribonucleic acid loops.
Collapse
Affiliation(s)
- B H Xue
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
19
|
Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol 1996; 16:2002-14. [PMID: 8628266 PMCID: PMC231187 DOI: 10.1128/mcb.16.5.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Extrachromosomal circular DNA molecules are associated with genomic instability, and circles containing inverted repeats were suggested to be the early amplification products. Here we present for the first time the use of neutral-neutral two-dimensional (2D) gel electrophoresis as a technique for the identification, isolation, and characterization of heterogeneous populations of circular molecules. Using this technique, we demonstrated that in N-methyl-N'-nitro-N-nitrosoguanidine-treated simian virus 40-transformed Chinese hamster cells (CO60 cells), the viral sequences are amplified as circular molecules of various sizes. The supercoiled circular fraction was isolated and was shown to contain molecules with inverted repeats. 2D gel analysis of extrachromosomal DNA from CHO cells revealed circular molecules containing highly repetitive DNA which are similar in size to the simian virus 40-amplified molecules. Moreover, enhancement of the amount of circular DNA was observed upon N-methyl-N'-nitro-N-nitrosoguanidine treatment of CHO cells. The implications of these findings regarding the processes of gene amplification and genomic instability and the possible use of the 2D gel technique to study these phenomena are discussed.
Collapse
MESH Headings
- Animals
- CHO Cells
- Carcinogens/toxicity
- Cell Line
- Cell Line, Transformed
- Cell Transformation, Viral
- Cricetinae
- DNA Replication/drug effects
- DNA, Circular/biosynthesis
- DNA, Circular/chemistry
- DNA, Circular/ultrastructure
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- DNA, Viral/ultrastructure
- Methylnitronitrosoguanidine/toxicity
- Microscopy, Electron
- Models, Structural
- Nucleic Acid Conformation
- Repetitive Sequences, Nucleic Acid
- Simian virus 40/genetics
Collapse
Affiliation(s)
- S Cohen
- Department of Cell Research and Immunology, Tel Aviv University, Israel
| | | |
Collapse
|
20
|
Hammond DW, Hancock BW, Goyns MH. Identification of a subclass of double minute chromosomes containing centromere-associated DNA. Genes Chromosomes Cancer 1994; 10:139-42. [PMID: 7520268 DOI: 10.1002/gcc.2870100210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In a study of abnormal chromosomes in non-Hodgkin's lymphoma (NHL) cells we have identified one case which contained extrachromosomal chromatin bodies that, on the basis of their morphology and negative C-banding, appeared to be double minute chromosomes (dmin). However, fluorescence in-situ hybridization (FISH) analysis using an X-specific centromeric alphoid repeat probe and a pan-centromere probe, clearly demonstrated the presence of centromere-associated DNA in these dmin. FISH analysis with the pan-centromere probe of the dmin in neuroblastoma and sarcoma cells failed to reveal the presence of centromere-associated DNA, but analysis of two cases of acute myeloid leukemia cells revealed centromere-associated DNA in 25% of their dmin. These data indicate the existence of dmin that contain centromere-associated DNA and suggest that such dmin might represent a new class of extrachromosomal chromatin bodies.
Collapse
Affiliation(s)
- D W Hammond
- Department of Clinical Oncology, University Medical School, Sheffield, United Kingdom
| | | | | |
Collapse
|
21
|
Olive M, Untawale S, Coffey RJ, Siciliano MJ, Wildrick DM, Fritsche H, Pathak S, Cherry LM, Blick M, Lointier P. Characterization of the DiFi rectal carcinoma cell line derived from a familial adenomatous polyposis patient. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1993; 29A:239-48. [PMID: 8385096 DOI: 10.1007/bf02634191] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DiFi human colorectal cancer cell line was recently established from a familial adenomatous polyposis patient with extracolonic features characteristic of the Gardner syndrome. These cells have now been propagated for 150 passages in standard culture media and vessels without feeder layers or collagen coatings. They retain features of colonic epithelial cells such as surface microvilli, secretory vesicles, and desmosomes. Cytosol of DiFi cells contains a high level (502 U/mg protein) of the mucin CA 19-9. In addition, DiFi cells produce carcinoembryonic antigen, and induce tumors in athymic mice. Cytoskeleton analysis of DiFi cells by fluorescence microscopy showed a pronounced disorganization of actin cable structure. The isozyme genetic signature of DiFi cells is unique (0.01 probability of finding the same genetic signature in a different cell line), differs from that of HeLa cells, and has expressional features seen in other colorectal cell lines. The DiFi cell karyotype is tetraploid, contains many marker chromosomes, and shows numerous episomal particles. Two copies of chromosome 18 were absent, and only a single normal chromosome 17 was found. This parallels detection of allelic losses from DiFi cell DNA at loci on chromosomes 17p and 18 using molecular (cDNA) probes. DiFi cells clearly express transcripts for the c-myc proto-oncogene, the c-myb proto-oncogene, and the p53 tumor suppressor gene. Transforming growth factor beta inhibits DiFi cell growth in soft agar and suppresses c-myc expression in these cells. The value of this cell line in the study of genetic alterations in colorectal cancer is discussed.
Collapse
Affiliation(s)
- M Olive
- University of Texas M. D. Anderson Cancer Center, Section of Gastrointestinal Oncology and Digestive Diseases, Houston 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu P, Siciliano J, Seong D, Craig J, Zhao Y, de Jong PJ, Siciliano MJ. Dual Alu polymerase chain reaction primers and conditions for isolation of human chromosome painting probes from hybrid cells. CANCER GENETICS AND CYTOGENETICS 1993; 65:93-9. [PMID: 8453610 DOI: 10.1016/0165-4608(93)90213-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A method for rapid and efficient production of chromosome- and chromosome-region specific probes for fluorescent in situ hybridization (FISH) detectable by simple fluorescent microscopy is described. The procedure is based on simultaneous use of two inter-Alu-polymerase chain reaction (PCR) primers for extraction of highly heterogeneous human DNA from interspecific somatic cell hybrids containing the chromosome regions of interest. Probes so produced do not hybridize to centromeric sequences and simultaneously band the target chromosomes, making them useful for unambiguous identification of chromosomal elements and breakpoints associated with cancer.
Collapse
Affiliation(s)
- P Liu
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | | | |
Collapse
|
23
|
Montone KT, Tomaszewski JE. In situ hybridization for epidermal growth factor receptor (EGFR) external domain transcripts in prostatic adenocarcinoma. J Clin Lab Anal 1993; 7:188-95. [PMID: 7685381 DOI: 10.1002/jcla.1860070310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We examined prostatic adenocarcinomas from 19 formalin fixed radical prostatectomy specimens for EGFR by in situ hybridization employing a 24 base synthetic biotin-labeled oligonucleotide probe complementary to the 5' end of EGFR mRNA. All slides were examined by light microscopy using a 25x objective. Each field was given three values: 1) Gleason grade (1-5), 2) Nuclear grade [small (< 5.0 mu), intermediate (5-10 mu), large (> 10 mu)], and 3) EGFR staining intensity score (0, absent; 1, weak; 2+, moderate to strong). A total 851 25x fields of prostatic adenocarcinoma were studied. All cancers demonstrated at least some degree of cytoplasmic EGFR message. The EGFR intensity score correlated best with tumor nuclear size. No correlation with Gleason grade was observed. Cytoplasmic staining was also identified in the basal cell layer of benign glands, high grade prostatic intraepithelial neoplasia, stromal nodules, transitional epithelium, periurethral glands, and ganglion cells. Competitive hybridization experiments using an unlabeled EGFR probe showed markedly diminished hybridization signal, while in situ hybridization with a biotin-labeled EGFR sense probe was negative. Immunohistochemistry on 13 of the tumors with 2 monoclonal antibodies against EGFR showed staining in only 1/13 and 10/13 tumors. EGFR expression appears to be most prominent in tumors of high nuclear grade. Further studies will be necessary to explore this growth factor as a prognostic variable in this tumor.
Collapse
Affiliation(s)
- K T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia
| | | |
Collapse
|
24
|
Bar-Am I, Mor O, Yeger H, Shiloh Y, Avivi L. Detection of amplified DNA sequences in human tumor cell lines by fluorescence in situ hybridization. Genes Chromosomes Cancer 1992; 4:314-20. [PMID: 1377938 DOI: 10.1002/gcc.2870040407] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An unambiguous and rapid characterization of amplified DNA sequences in tumor cells is important for the understanding of neoplastic progression. This study was conducted to evaluate the potential of fluorescence in situ hybridization (FISH) to identify such amplified DNA sequences in human tumor cell lines. Applying this technique, we followed the metaphase location and interphase position of amplified DNA sequences corresponding to the SAMK, MYC, and MYCN genes in four cell lines derived from human tumors: two gastric carcinoma lines (KATO III and SNU-16), a neuroblastoma (NUB-7), and a neuroepithelioma (NUB-20) line. In metaphase cells of KATO III, NUB-7, and NUB-20 lines, the amplified regions were clearly visible and easily identified at an intrachromosomal location: in KATO III and NUB-7 at a terminal position and in NUB-20 at an interstitial position. In SNU-16, on the other hand, the amplified SAMK and MYC sequences were identified in extrachromosomal double minute chromosomes (DMs). In this line, the SAMK and MYC sequences were coamplified in the same cells and were colocated on the same DMs. FISH also allowed the identification of amplified DNA sequences in nondividing cells, enabling us to distinguish, at interphase, whether the amplification gave rise to intrachromosomal amplified regions (IARs) or to extrachromosomal DMs. The FISH technique also allowed us to determine at metaphase as well as at interphase the extent of amplification and the size of the IARs.
Collapse
Affiliation(s)
- I Bar-Am
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
25
|
Brook JD, Zemelman BV, Hadingham K, Siciliano MJ, Crow S, Harley HG, Rundle SA, Buxton J, Johnson K, Almond JW. Radiation-reduced hybrids for the myotonic dystrophy locus. Genomics 1992; 13:243-50. [PMID: 1612584 DOI: 10.1016/0888-7543(92)90238-n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The myotonic dystrophy (DM) gene maps to the long arm of human chromosome 19 and is flanked by markers ERCC1 and D19S51. Also mapping to this region is the polio virus receptor gene (PVS). To produce more markers for this interval, we have constructed radiation-reduced hybrids by selecting for the retention of ERCC1 and for the loss of PVS. One of the cell lines produced has been characterized extensively and contains about 2 Mb of human DNA derived exclusively from chromosome 19, and includes ERCC1 and D19S51. Phage libraries constructed from DNA of this cell line have been screened and several new markers identified, including two for which cDNAs have been isolated. These represent candidate genes for DM. The new markers have also been used to extend the long-range restriction map of this region.
Collapse
Affiliation(s)
- J D Brook
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02138
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shiloh Y, Mor O, Manor A, Bar-Am I, Rotman G, Eubanks J, Gutman M, Ranzani GN, Houldsworth J, Evans G. DNA sequences amplified in cancer cells: an interface between tumor biology and human genome analysis. Mutat Res 1992; 276:329-37. [PMID: 1374525 DOI: 10.1016/0165-1110(92)90019-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing evidence that amplification of specific genes is associated with tumor progression. While several proto-oncogenes are known to be activated by amplification, it is clear that not all the genes involved in DNA amplification in human tumors have been discovered. Our approach to the identification of such genes is based on the 'reverse genetics' methodology. Anonymous amplified DNA fragments are cloned by virtue of their amplification in a given tumor. These sequences are mapped in the normal genome and hence define a new genetic locus. The amplified domain is isolated by long-range cloning and analyzed along three lines of investigation: new genes are sought that can explain the biological significance of the amplification; the structure of the domain is studied in normal cells and in the amplification unit in the cancer cell; attempts are made to identify molecular probes of diagnostic value within the amplified domain. This application of genome technology to cancer biology is demonstrated in our study of a new genomic domain at chromosome 10q26 which is amplified specifically in human gastric carcinomas.
Collapse
Affiliation(s)
- Y Shiloh
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sen S, Rani S, Freireich EJ, Hewitt R, Stass SA. Detection of extrachromosomal circular DNA sequences from tumor cells by an alkaline lysis, Alu-polymerase chain reaction technique. Mol Carcinog 1992; 5:107-10. [PMID: 1554408 DOI: 10.1002/mc.2940050205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extrachromosomal circular DNAs ranging in size from submicroscopic molecules of approximately 100 kb to cytogenetically resolvable structures of 1000+ kb called minute and double-minute chromosomes have been shown to harbor amplified genes in primary tumor cells, tumor cell lines, and drug-resistant cells grown in vitro. The presence of these molecules in transformed and malignant cells trends to reflect genetic instability and also suggests that role in tumor progression. Using a colon carcinoma cell line, we developed a technique to detect extrachromosomal circular DNA-specific sequences by Alu-polymerase chain reaction. Circular DNA was enriched by selective alkaline denaturation of genomic DNA. We have successfully performed this procedure with a minimum of 5 x 10(5) cells. The technique does not require any prior knowledge of the sequences located on the covalent circular DNA molecules for their detection. The procedure should be useful as a routine screen of primary tumor cells for the presence of extrachromosomal circular DNA and should permit the preparation of specific probes ot aid in their detailed characterizations.
Collapse
Affiliation(s)
- S Sen
- Division of Laboratory Medicine, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | |
Collapse
|