1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Acevedo Cintrón JA, Hunter DA, Schellhardt L, Pan D, Mackinnon SE, Wood MD. Limited Nerve Regeneration across Acellular Nerve Allografts (ANAs) Coincides with Changes in Blood Vessel Morphology and the Development of a Pro-Inflammatory Microenvironment. Int J Mol Sci 2024; 25:6413. [PMID: 38928119 PMCID: PMC11204013 DOI: 10.3390/ijms25126413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The use of acellular nerve allografts (ANAs) to reconstruct long nerve gaps (>3 cm) is associated with limited axon regeneration. To understand why ANA length might limit regeneration, we focused on identifying differences in the regenerative and vascular microenvironment that develop within ANAs based on their length. A rat sciatic nerve gap model was repaired with either short (2 cm) or long (4 cm) ANAs, and histomorphometry was used to measure myelinated axon regeneration and blood vessel morphology at various timepoints (2-, 4- and 8-weeks). Both groups demonstrated robust axonal regeneration within the proximal graft region, which continued across the mid-distal graft of short ANAs as time progressed. By 8 weeks, long ANAs had limited regeneration across the ANA and into the distal nerve (98 vs. 7583 axons in short ANAs). Interestingly, blood vessels within the mid-distal graft of long ANAs underwent morphological changes characteristic of an inflammatory pathology by 8 weeks post surgery. Gene expression analysis revealed an increased expression of pro-inflammatory cytokines within the mid-distal graft region of long vs. short ANAs, which coincided with pathological changes in blood vessels. Our data show evidence of limited axonal regeneration and the development of a pro-inflammatory environment within long ANAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.A.C.); (D.A.H.); (L.S.); (D.P.); (S.E.M.)
| |
Collapse
|
3
|
Zhou Z, Hu X, Yan F, Zhou Y, He R, Ye X, Jiang Z. Observation on the effect of platelet-rich plasma combined with drugs in the treatment of herpes zoster neuralgia. Int J Neurosci 2024; 134:628-634. [PMID: 36259487 DOI: 10.1080/00207454.2022.2138381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 10/24/2022]
Abstract
PURPOSE To observe the effect of ultrasound-guided platelet-rich plasma (PRP) injection in the treatment of herpes zoster neuralgia (HZN). METHODS Eighty patients with HZN were randomly divided into observation group and control group, with 40 cases in each group. The observation group was treated with ultrasound-guided PRP injection of target nerves combined with drugs. The control group was treated with drugs alone. The pain scores of before treatment (T0), and 1 week (T1), 1 month (T2), 3 months (T3) and 6 months (T4) after treatment were recorded with Numerical Rating Scale (NRS). The sleep quality of patients was assessed with the Athens Insomnia Scale, and the dosage used at each time point, skin lesions, adverse reactions, and the occurrence of postherpetic neuralgia (PHN) were recorded. RESULTS The NRS score of the two groups after treatment showed a downward trend. Compared with T0 at each time point, the difference was statistically significant (p < 0.05). And the NRS score of the observation group was lower than control group (p < 0.05). The sleep quality of the observation group was better. The dosage of the observation group was less, and the time of herpes dry-up, scab crusting and shedding in the observation group was significantly shorter (p < 0.05). The incidence of dizziness, lethargy, ataxia and PHN in the observation group was significantly reduced (p < 0.05). CONCLUSION Compared with traditional drug treatment alone, the ultrasound-guided PRP injection has the advantages of better analgesia and fewer side effects, which provides a new idea for the treatment of HZN.
Collapse
Affiliation(s)
- Zenghua Zhou
- Department of Pain Management, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xin Hu
- Department of Pain Management, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangran Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yanhua Zhou
- Department of Dermatology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruilin He
- Department of Pain Management, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolong Ye
- Department of Pain Management, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zongbin Jiang
- Department of Pain Management, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Gordon T. Brief Electrical Stimulation Promotes Recovery after Surgical Repair of Injured Peripheral Nerves. Int J Mol Sci 2024; 25:665. [PMID: 38203836 PMCID: PMC10779324 DOI: 10.3390/ijms25010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Injured peripheral nerves regenerate their axons in contrast to those in the central nervous system. Yet, functional recovery after surgical repair is often disappointing. The basis for poor recovery is progressive deterioration with time and distance of the growth capacity of the neurons that lose their contact with targets (chronic axotomy) and the growth support of the chronically denervated Schwann cells (SC) in the distal nerve stumps. Nonetheless, chronically denervated atrophic muscle retains the capacity for reinnervation. Declining electrical activity of motoneurons accompanies the progressive fall in axotomized neuronal and denervated SC expression of regeneration-associated-genes and declining regenerative success. Reduced motoneuronal activity is due to the withdrawal of synaptic contacts from the soma. Exogenous neurotrophic factors that promote nerve regeneration can replace the endogenous factors whose expression declines with time. But the profuse axonal outgrowth they provoke and the difficulties in their delivery hinder their efficacy. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) proximal to the injury site promotes the expression of endogenous growth factors and, in turn, dramatically accelerates axon outgrowth and target reinnervation. The latter ES effect has been demonstrated in both rats and humans. A conditioning ES of intact nerve days prior to nerve injury increases axonal outgrowth and regeneration rate. Thereby, this form of ES is amenable for nerve transfer surgeries and end-to-side neurorrhaphies. However, additional surgery for applying the required electrodes may be a hurdle. ES is applicable in all surgeries with excellent outcomes.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON M4G 1X8, Canada
| |
Collapse
|
5
|
Sarhane KA, Qiu C, Harris TG, Hanwright PJ, Mao HQ, Tuffaha SH. Translational bioengineering strategies for peripheral nerve regeneration: opportunities, challenges, and novel concepts. Neural Regen Res 2022; 18:1229-1234. [PMID: 36453398 PMCID: PMC9838159 DOI: 10.4103/1673-5374.358616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Peripheral nerve injuries remain a challenging problem in need of better treatment strategies. Despite best efforts at surgical reconstruction and postoperative rehabilitation, patients are often left with persistent, debilitating motor and sensory deficits. There are currently no therapeutic strategies proven to enhance the regenerative process in humans. A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes. Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical, chemical, and conductive cues. New bioengineered approaches have enabled targeted, sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes. As such, further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries. This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries. We cover the rationale and limitations for their use as an alternative to autografts, focusing on the approaches to increase the number of regenerating axons crossing the repair site, and facilitating their growth towards the distal stump. We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion, by accelerating axonal growth, improving the distal regenerative environment, and preventing end-organs atrophy.
Collapse
Affiliation(s)
- Karim A. Sarhane
- Department of Plastic and Reconstructive Surgery, Peripheral Nerve Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenhu Qiu
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas G.W. Harris
- Department of Plastic and Reconstructive Surgery, Peripheral Nerve Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip J. Hanwright
- Department of Plastic and Reconstructive Surgery, Peripheral Nerve Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sami H. Tuffaha
- Department of Plastic and Reconstructive Surgery, Peripheral Nerve Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Correspondence to: Sami H. Tuffaha, .
| |
Collapse
|
6
|
Suzuki T, Kadoya K, Endo T, Iwasaki N. Molecular and Regenerative Characterization of Repair and Non-repair Schwann Cells. Cell Mol Neurobiol 2022:10.1007/s10571-022-01295-4. [PMID: 36222946 DOI: 10.1007/s10571-022-01295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
Although evidence has accumulated to indicate that Schwann cells (SCs) differentiate into repair SCs (RSCs) upon injury and that the unique phenotype of these cells allow them to provide support for peripheral nerve regeneration, the details of the RSCs are not fully understood. The findings of the current study indicate that the RSCs have enhanced adherent properties and a greater capability to promote neurite outgrowth and axon regeneration after peripheral nerve injury, compared to the non-RSCs. Further, transcriptome analyses have demonstrated that the molecular signature of the RSCs is distinctly different from that of the non-RSCs. The RSCs upregulate a group of genes that are related to inflammation, repair, and regeneration, whereas non-RSCs upregulate genes related to myelin maintenance, Notch, and aging. These findings indicate that the RSCs have markedly different cellular, regenerative, and molecular characteristics compared to the non-RSCs, even though the RSCs were just derived from non-RSCs upon injury, thus providing the basis for understanding the mechanisms related to SC mediated repair after peripheral nerve injury.
Collapse
Affiliation(s)
- Tomoaki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
7
|
Modulation of Specific Sphingosine-1-Phosphate Receptors Augments a Repair Mediating Schwann Cell Phenotype. Int J Mol Sci 2022; 23:ijms231810311. [PMID: 36142246 PMCID: PMC9499684 DOI: 10.3390/ijms231810311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Transdifferentiation of Schwann cells is essential for functional peripheral nerve regeneration after injury. By activating a repair program, Schwann cells promote functional axonal regeneration and remyelination. However, chronic denervation, aging, metabolic diseases, or chronic inflammatory processes reduce the transdifferentiation capacity and thus diminish peripheral nerve repair. It was recently described that the sphingosine-1-phosphate receptor (S1PR) agonist Fingolimod enhances the Schwann cell repair phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth. Since Fingolimod targets four out of five S1PRs (S1P1, S1P3-5) possibly leading to non-specific adverse effects, identification of the main receptor(s) responsible for the observed phenotypic changes is mandatory for future specific treatment approaches. Our experiments revealed that S1P3 dominates and that along with S1P1 acts as the responsible receptor for Schwann cell transdifferentiation as revealed by the combinatory application of specific agonists and antagonists. Targeting both receptors reduced the expression of myelin-associated genes, increased PDGF-BB representing enhanced trophic factor expression likely to result from c-Jun induction. Furthermore, we demonstrated that S1P4 and S1P5 play only a minor role in the adaptation of the repair phenotype. In conclusion, modulation of S1P1 and S1P3 could be effective to enhance the Schwann cell repair phenotype and thus stimulate proper nerve repair.
Collapse
|
8
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
9
|
Contreras E, Bolívar S, Navarro X, Udina E. New insights into peripheral nerve regeneration: The role of secretomes. Exp Neurol 2022; 354:114069. [DOI: 10.1016/j.expneurol.2022.114069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/05/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
|
10
|
Addressing common orthopaedic calamities with microsurgical solutions. Injury 2021; 52:3561-3572. [PMID: 34030865 DOI: 10.1016/j.injury.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 02/02/2023]
Abstract
Reconstructive microsurgery has been an essential aspect of orthopaedic surgery and extremity reconstruction since the introduction of the operating microscope in the mid-20th century. The reconstructive ladder ranges from simple healing by secondary intention to complex procedures such as free tissue transfer and vascularized composite allotransplantation. As orthopaedic surgery has evolved over the past 60 years, so too have the reconstructive microsurgical skills that are often needed to address common orthopaedic surgery problems. In this article, we will discuss a variety of complex orthopaedic surgery scenarios ranging from trauma to infection to tumor resection as well as the spectrum of microsurgical solutions that can aid in their management.
Collapse
|
11
|
Mettyas T, Barton M, Sahar MSU, Lawrence F, Sanchez-Herrero A, Shah M, St John J, Bindra R. Negative Pressure Neurogenesis: A Novel Approach to Accelerate Nerve Regeneration after Complete Peripheral Nerve Transection. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3568. [PMID: 34881144 PMCID: PMC8647885 DOI: 10.1097/gox.0000000000003568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Various modalities to facilitate nerve regeneration have been described in the literature with limited success. We hypothesized that negative pressure applied to a sectioned peripheral nerve would enhance nerve regeneration by promoting angiogenesis and axonal lengthening. METHODS Wistar rats' sciatic nerves were cut (creating ~7 mm nerve gap) and placed into a silicone T-tube, to which negative pressure was applied. The rats were divided into 4 groups: control (no pressure), group A (low pressure: 10 mm Hg), group B (medium pressure: 20/30 mm Hg) and group C (high pressure: 50/70 mm Hg). The nerve segments were retrieved after 7 days for gross and histological analysis. RESULTS In total, 22 rats completed the study. The control group showed insignificant nerve growth, whereas the 3 negative pressure groups showed nerve growth and nerve gap reduction. The true nerve growth was highest in group A (median: 3.54 mm) compared to group B, C, and control (medians: 1.19 mm, 1.3 mm, and 0.35 mm); however, only group A was found to be significantly different to the control group (**P < 0.01). Similarly, angiogenesis was observed to be significantly greater in group A (**P < 0.01) in comparison to the control. CONCLUSIONS Negative pressure stimulated nerve lengthening and angiogenesis within an in vivo rat model. Low negative pressure (10 mm Hg) provided superior results over the higher negative pressure groups and the control, favoring axonal growth. Further studies are required with greater number of rats and longer recovery time to assess the functional outcome.
Collapse
Affiliation(s)
- Tamer Mettyas
- From the Department of Orthopaedics, Queen Elizabeth II Hospital, Brisbane, Queensland, Australia
- School of Nursing and Midwifery, Griffith University, Australia
| | - Matthew Barton
- School of Nursing and Midwifery, Griffith University, Australia
- Menzies Health Institute Queensland, Griffith University, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Australia
| | - Muhammad Sana Ullah Sahar
- School of Engineering and Built Environment, Griffith University, Australia
- Department of Mechanical Engineering, Khwaja Fareed University of Engineering and information Technology, Rahim Yar Khan, Pakistan
| | - Felicity Lawrence
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | | | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Australia
- Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Randy Bindra
- School of Medicine, Griffith University, Australia
- Department of Orthopaedics, Gold Coast University Hospital, Australia
| |
Collapse
|
12
|
Defining the relative impact of muscle versus Schwann cell denervation on functional recovery after delayed nerve repair. Exp Neurol 2021; 339:113650. [PMID: 33607079 DOI: 10.1016/j.expneurol.2021.113650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Functional recovery following peripheral nerve injury worsens with increasing durations of delay prior to repair. From the time of injury until re-innervation occurs, denervated muscle undergoes progressive atrophy that limits the extent to which motor function can be restored. Similarly, Schwann cells (SC) in the distal nerve lacking axonal interaction progressively lose their capacity to proliferate and support regenerating axons. The relative contributions of these processes to diminished functional recovery is unclear. We developed a novel rat model to isolate the effects of SC vs. muscle denervation on functional recovery. Four different groups underwent the following interventions for 12 weeks prior to nerve transfer: 1) muscle denervation; 2) SC denervation; 3) muscle + SC denervation (negative control); 4) no denervation (positive control). Functional recovery was measured weekly using the stimulated grip strength testing (SGST). Animals were sacrificed 13 weeks post nerve transfer. Retrograde labeling was used to assess the number of motor neurons that regenerated their axons. Immunofluorescence was performed to evaluate target muscle re-innervation and atrophy, and to assess the phenotype of the SC within the distal nerve segment. Functional recovery in the muscle denervation and SC denervation groups mirrored that of the negative and positive control groups, respectively. The SC denervation group achieved better functional recovery, with a greater number of reinnervated motor endplates and less muscle atrophy, than the muscle denervation group. Retrograde labeling suggested a higher number of neurons contributing to muscle reinnervation in the muscle denervation group as compared to SC denervation (p > 0.05). The distal nerve segment in the muscle denervation group had a greater proportion of SCs expressing the proliferation marker Ki67 as compared to the SC denervation group (p < 0.05). Conversely, the SC denervation group had a higher percentage of senescent SCs expressing p16 as compared to the muscle denervation group (p < 0.05). The deleterious effects of muscle denervation are more consequential than the effects of SC denervation on functional recovery. The effects of 12 weeks of SC denervation on functional outcome were negligible. Future studies are needed to determine whether longer periods of SC denervation negatively impact functional recovery.
Collapse
|
13
|
Ultrasound-guided platelet-rich plasma injection and multimodality ultrasound examination of peripheral nerve crush injury. NPJ Regen Med 2020; 5:21. [PMID: 33298932 PMCID: PMC7680141 DOI: 10.1038/s41536-020-00101-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ultrasound-guided platelet-rich plasma (PRP) injection is able to make up for the limitations of applying a single growth factor. The goal of this study was to investigate the effects of serial ultrasound-guided PRP injections of the appropriate concentration on the treatment of sciatic nerve crush injury, and explore the value of multimodality ultrasound techniques in evaluating the prognosis of crushed peripheral nerve. In vitro, optimal concentration of PRP (from 150%, 250%, 450%, and 650%) was screened due for its maximal effect on proliferation and neurotrophic function of Schwann cells (SCs). In vivo, ninety rabbits were equally and randomly divided into normal control, model, PRP-2.5×, PRP-4.5×, and PRP-6.5× groups. The neurological function and electrophysiological recovery evaluation, and the comparison of the multimodality ultrasound evaluation with the histological results of sciatic nerve crush injury were performed to investigate the regenerative effects of PRP at different concentrations on the sciatic nerve crush injury. Our results showed that the PRP with a 4.5-fold concentration of whole blood platelets could significantly stimulate the proliferation and secretion of SCs and nerve repair. The changes in stiffness and blood perfusion were positively correlated with the collagen area percentage and VEGF expression in the injured nerve, respectively. Thus, serial ultrasound-guided PRP injections at an appropriate concentration accelerates the recovery of axonal function. Multimodality ultrasound techniques provide a clinical reference for prognosis by allowing the stiffness and microcirculation perfusion of crush-injured peripheral nerves to be quantitatively evaluated.
Collapse
|
14
|
Eggers R, de Winter F, Tannemaat MR, Malessy MJA, Verhaagen J. GDNF Gene Therapy to Repair the Injured Peripheral Nerve. Front Bioeng Biotechnol 2020; 8:583184. [PMID: 33251197 PMCID: PMC7673415 DOI: 10.3389/fbioe.2020.583184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
A spinal root avulsion is the most severe proximal peripheral nerve lesion possible. Avulsion of ventral root filaments disconnects spinal motoneurons from their target muscles, resulting in complete paralysis. In patients that undergo brachial plexus nerve repair, axonal regeneration is a slow process. It takes months or even years to bridge the distance from the lesion site to the distal targets located in the forearm. Following ventral root avulsion, without additional pharmacological or surgical treatments, progressive death of motoneurons occurs within 2 weeks (Koliatsos et al., 1994). Reimplantation of the avulsed ventral root or peripheral nerve graft can act as a conduit for regenerating axons and increases motoneuron survival (Chai et al., 2000). However, this beneficial effect is transient. Combined with protracted and poor long-distance axonal regeneration, this results in permanent function loss. To overcome motoneuron death and improve functional recovery, several promising intervention strategies are being developed. Here, we focus on GDNF gene-therapy. We first introduce the experimental ventral root avulsion model and discuss its value as a proxy to study clinical neurotmetic nerve lesions. Second, we discuss our recent studies showing that GDNF gene-therapy is a powerful strategy to promote long-term motoneuron survival and improve function when target muscle reinnervation occurs within a critical post-lesion period. Based upon these observations, we discuss the influence of timing of the intervention, and of the duration, concentration and location of GDNF delivery on functional outcome. Finally, we provide a perspective on future research directions to realize functional recovery using gene therapy.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn J A Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Muscella A, Vetrugno C, Cossa LG, Marsigliante S. TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities. J Neurochem 2019; 153:525-538. [PMID: 31729763 DOI: 10.1111/jnc.14913] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Following peripheral nerve injury, remnant Schwann cells adopt a migratory phenotype and remodel the extracellular matrix allowing axonal regrowth. Although much evidence has demonstrated that TGF-β1 promotes glioma cell motility and induces the expression of extracellular matrix proteins, the effects of TGF-β1 on Schwann cell migration has not yet been studied. We therefore investigated the cellular effects and the signal transduction pathways evoked by TGF-β1 in rattus norvegicus neuronal Schwann RSC96 cell. TGF-β1 significantly increased migration and invasion of Schwann cells assessed by the wound-healing assay and by cell invasion assay. TGF-β1-enhanced migration/invasion was blocked by inhibition of MMP-2 and MMP-9. Consistently, by real-time and western blot analyses, we demonstrated that TGF-β1 increased MMP-2 and MMP-9 mRNA and protein levels. TGF-β1 also increased MMPs activities in cell growth medium, as shown by gelatin zymography. The selective TGF-β Type I receptor inhibitor SB431542 completely abrogated any effects by TGF-β1. Indeed, TGF-β1 Type I receptor activation provoked the cytosol-to-nucleus translocation of SMAD2 and SMAD3. SMAD2 knockdown by siRNA blocked MMP-2 induction and cell migration/invasion due to TGF-β1. TGF-β1 also provoked phosphorylation of MAPKs extracellular regulated kinase 1/2 and JNK1/2. Both MAPKs were upstream to p65/NF-kB inasmuch as both MAPKs' inhibitors PD98059 and SP600125 or their down-regulation by siRNA significantly blocked the TGF-β1-induced nuclear translocation of p65/NF-kB. In addition, p65/NF-κB siRNA knockdown inhibited the effects of TGF-β1 on both MMP-9 and cell migration/invasion. We conclude that TGF-β1 controls RSC96 Schwann cell migration and invasion through MMP-2 and MMP-9 activities. MMP-2 is controlled by SMAD2 whilst MMP-9 is controlled via an ERK1/2-JNK1/2-NF-κB dependent pathway.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Carla Vetrugno
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Luca Giulio Cossa
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Lecce, Italy
| |
Collapse
|
16
|
Manoukian OS, Baker JT, Rudraiah S, Arul MR, Vella AT, Domb AJ, Kumbar SG. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release 2019; 317:78-95. [PMID: 31756394 DOI: 10.1016/j.jconrel.2019.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Peripheral nerve injuries can be extremely debilitating, resulting in sensory and motor loss-of-function. Endogenous repair is limited to non-severe injuries in which transection of nerves necessitates surgical intervention. Traditional treatment approaches include the use of biological grafts and alternative engineering approaches have made progress. The current article serves as a comprehensive, in-depth perspective on peripheral nerve regeneration, particularly nerve guidance conduits and drug delivery strategies. A detailed background of peripheral nerve injury and repair pathology, and an in-depth look into augmented nerve regeneration, nerve guidance conduits, and drug delivery strategies provide a state-of-the-art perspective on the field.
Collapse
Affiliation(s)
- Ohan S Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jiana T Baker
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA; Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Anthony T Vella
- Department of Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
17
|
Tajdaran K, Chan K, Gordon T, Borschel GH. Matrices, scaffolds, and carriers for protein and molecule delivery in peripheral nerve regeneration. Exp Neurol 2019; 319:112817. [DOI: 10.1016/j.expneurol.2018.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023]
|
18
|
Kahn L, Smith RD, Dumont AS, Bui CJ, Valle-Giler EP. Commentary: The Tulane University-Ochsner Clinic Foundation Neurosurgery Program: 75 Years of History, Including the Program's Rebirth After Katrina. Neurosurgery 2019; 84:E437-E442. [DOI: 10.1093/neuros/nyz081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
|
19
|
Transforming Growth Factor Beta 1 Regulates Fibroblast Growth Factor 7 Expression in Schwann Cells. Ochsner J 2019; 19:7-12. [PMID: 30983895 DOI: 10.31486/toj.18.0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Our previous work demonstrated that application of transforming growth factor beta 1 (TGF-β1) and forskolin to the repair site after chronic denervation and axotomy has a mitogenic effect, reactivates Schwann cells (SCs), and supports axonal regeneration. We found decreased expression of fibroblast growth factor 7 (FGF-7), a factor involved in synaptic organization and maintenance. Using an in vitro system, we examined the molecular mechanism of TGF-β1 and forskolin on the regulation of FGF-7 expression in SCs. Methods: SCs were prepared from the sciatic nerve and stimulated with forskolin (0.5 μM), TGF-β1 (1 ng/mL), or TGF-β1 + forskolin for 6 or 24 hours. SCs were also pretreated with LY2109761 (0.5 μM), a TGF-β receptor inhibitor, prior to stimulation with TGF-β1 + forskolin for 6 hours. Real-time TaqMan quantitative polymerase chain reaction analyses for FGF-7, myelin basic protein, and peripheral myelin protein 22 expression were performed. Cycle threshold (Ct) data were normalized to a reference gene, and fold changes relative to untreated SCs were determined using the 2-ΔΔCt method. Statistical analysis was done using t test (P<0.05). Results: TGF-β1 alone or in combination with forskolin for 24 hours resulted in a 3.3- and 2.8-fold decrease in FGF-7 expression in SCs, respectively. No change in FGF-7 expression was found with forskolin alone. TGF-β1 + forskolin treatment for 6 hours resulted in a 4.0-fold decrease in FGF-7 expression, while the addition of LY2109761 resulted in a 2.7-fold decrease in FGF-7 expression. Conclusion: We showed that SC expression of FGF-7 is regulated by TGF-β1. The positive effect of TGF-β1 and forskolin on SC reactivation and axonal regeneration may involve modulation of FGF-7 expression and activity in SCs.
Collapse
|
20
|
Protective distal side-to-side neurorrhaphy in proximal nerve injury-an experimental study with rats. Acta Neurochir (Wien) 2019; 161:645-656. [PMID: 30746570 PMCID: PMC6431300 DOI: 10.1007/s00701-019-03835-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Background Side-to-side neurorrhaphy may protect the denervated end organ and preserve the initial connection with proximal stump. We examined the effect of protective side-to-side anastomosis on nerve and end organ regeneration in proximal nerve injury model. Methods The left common peroneal nerve of 24 Sprague Dawley rats was proximally transected. In groups B and C, side-to-side neurorrhaphy was performed distally between the peroneal and tibial nerves without (group B) and with (group C) partial donor nerve axotomy inside the epineural window. Group A served as an unprotected control. After 26 weeks, the proximal transection was repaired with end-to-end neurorrhaphy on all animals. Regeneration was followed during 12 weeks with the walk track analysis. Morphometric studies and wet muscle mass calculations were conducted at the end of the follow-up period. Results The results of the walk track analysis were significantly better in groups B and C compared to group A. Groups B and C showed significantly higher wet mass ratios of the tibialis anterior and extensor digitorum longus muscle compared to group A. Group C showed significantly higher morphometric values compared to group A. Group B reached higher values of the fibre count, fibre density, and percentage of the fibre area compared to group A. Conclusions Protective distal side-to-side neurorrhaphy reduced muscle atrophy and had an improving effect on the morphometric studies and walk track analysis. Distal side-to-side neurorrhaphy does not prevent the regenerating axons to grow from the proximal stump to achieve distal nerve stump.
Collapse
|
21
|
Jessen KR, Mirsky R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Front Cell Neurosci 2019; 13:33. [PMID: 30804758 PMCID: PMC6378273 DOI: 10.3389/fncel.2019.00033] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
The remarkable plasticity of Schwann cells allows them to adopt the Remak (non-myelin) and myelin phenotypes, which are specialized to meet the needs of small and large diameter axons, and differ markedly from each other. It also enables Schwann cells initially to mount a strikingly adaptive response to nerve injury and to promote regeneration by converting to a repair-promoting phenotype. These repair cells activate a sequence of supportive functions that engineer myelin clearance, prevent neuronal death, and help axon growth and guidance. Eventually, this response runs out of steam, however, because in the long run the phenotype of repair cells is unstable and their survival is compromised. The re-programming of Remak and myelin cells to repair cells, together with the injury-induced switch of peripheral neurons to a growth mode, gives peripheral nerves their strong regenerative potential. But it remains a challenge to harness this potential and devise effective treatments that maintain the initial repair capacity of peripheral nerves for the extended periods typically required for nerve repair in humans.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
22
|
Schira J, Heinen A, Poschmann G, Ziegler B, Hartung HP, Stühler K, Küry P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism. FASEB J 2018; 33:4703-4715. [PMID: 30592632 DOI: 10.1096/fj.201801799r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Schwann cells promote nerve regeneration by adaptation of a regenerative phenotype referred to as repair mediating Schwann cell. Down-regulation of myelin proteins, myelin clearance, formation of Bungner's bands, and secretion of trophic factors characterize this cell type. We have previously shown that the sphingosine-1-phosphate receptor agonist Fingolimod/FTY720P promotes the generation of this particular Schwann cell phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth of dorsal root ganglion neurons. Despite its biomedical relevance, a detailed characterization of the corresponding Schwann cell secretome is lacking, and the impact of FTY720P on enhancing neurite growth is not defined. Here, we applied a label-free quantitative mass spectrometry approach to characterize the secretomes derived from primary neonatal and adult rat Schwann cells in response to FTY720P. We identified a large proportion of secreted proteins with a high overlap between the neonatal and adult Schwann cells, which can be associated with biologic processes such as development, axon growth, and regeneration. Moreover, FTY720P-treated Schwann cells release proteins downstream of Smad signaling known to support neurite growth. Our results therefore uncover a network of trophic factors involved in glial-mediated repair of the peripheral nervous system.-Schira, J., Heinen, A., Poschmann, G., Ziegler, B., Hartung, H.-P., Stühler, K., Küry, P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism.
Collapse
Affiliation(s)
- Jessica Schira
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany.,Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and
| | - André Heinen
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and
| | - Brigida Ziegler
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany; and.,Institute for Molecular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Biomedical Research Center, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
23
|
Combined Rosiglitazone and Forskolin Have Neuroprotective Effects in SD Rats after Spinal Cord Injury. PPAR Res 2018; 2018:3897478. [PMID: 30034460 PMCID: PMC6032969 DOI: 10.1155/2018/3897478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/22/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist rosiglitazone inhibits NF-κB expression and endogenous neural stem cell differentiation into neurons and reduces the inflammatory cascade after spinal cord injury (SCI). The aim of this study was to explore the mechanisms underlying rosiglitazone-mediated neuroprotective effects and regulation of the balance between the inflammatory cascade and generation of endogenous spinal cord neurons by using a spinal cord-derived neural stem cell culture system as well as SD rat SCI model. Activation of PPAR-γ could promote neural stem cell proliferation and inhibit PKA expression and neuronal formation in vitro. In the SD rat SCI model, the rosiglitazone + forskolin group showed better locomotor recovery compared to the rosiglitazone and forskolin groups. MAP2 expression was higher in the rosiglitazone + forskolin group than in the rosiglitazone group, NF-κB expression was lower in the rosiglitazone + forskolin group than in the forskolin group, and NeuN expression was higher in the rosiglitazone + forskolin group than in the forskolin group. PPAR-γ activation likely inhibits NF-κB, thereby reducing the inflammatory cascade, and PKA activation likely promotes neuronal cell regeneration.
Collapse
|
24
|
Sulaiman W, Dreesen T, Nguyen D. Single Local Application of TGF-β Promotes a Proregenerative State Throughout a Chronically Injured Nerve. Neurosurgery 2018; 82:894-902. [PMID: 28973496 DOI: 10.1093/neuros/nyx362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/06/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The lack of nerve regeneration and functional recovery occurs frequently when injuries involve large nerve trunks because insufficient mature axons reach their targets in the distal stump and because of the loss of neurotrophic support, primarily from Schwann cells (SCs). OBJECTIVE To investigate whether a single application of transforming growth factor-beta (TGF-β) plus forskolin or forskolin alone can promote and support axonal regeneration through the distal nerve stump. METHODS Using a delayed repair rat model of nerve injury, we transected the tibial nerve. After 8 wk, end-to-end repair was done and the repair site was treated with saline, forskolin, or TGF- β plus forskolin. After 6 wk, nerve sections consisting of the proximal stump, distal to the site of repair, and the most distal part of the nerve stump were removed for nerve histology, axon counts, and immunohistochemistry for activated SCs (S100), macrophages (CD68), cell proliferation (Ki67), p75NGFR, and apoptosis (activated caspase-3). RESULTS TGF-β plus forskolin significantly increased the numbers of axons regenerated distal to the repair site and the most distal nerve sections. Both treatments significantly increased the numbers of axons regenerated in the most distal nerve sections compared to saline treated. Both treatments exhibited extended expression of regeneration-associated marker proteins. CONCLUSION TGF-β plus forskolin treatment of chronically injured nerve improved axonal regeneration and increased expression of regeneration-associated proteins beyond the repair site. This suggests that a single application at the site of repair has mitogenic effects that extended distally and may potentially overcome the decrease in regenerated axon over long distance.
Collapse
Affiliation(s)
- Wale Sulaiman
- Department of Neurosurgery, Back and Spine Center, Ochsner Neuroscience Institute, Ochsner Health System, and Tulane University Medical Center, New Orleans, Louisiana.,Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| | - Thomas Dreesen
- Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| | - Doan Nguyen
- Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| |
Collapse
|
25
|
Wright AA, Todorovic M, Tello-Velasquez J, Rayfield AJ, St John JA, Ekberg JA. Enhancing the Therapeutic Potential of Olfactory Ensheathing Cells in Spinal Cord Repair Using Neurotrophins. Cell Transplant 2018; 27:867-878. [PMID: 29852748 PMCID: PMC6050907 DOI: 10.1177/0963689718759472] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autologous olfactory ensheathing cell (OEC) transplantation is a promising therapy for
spinal cord injury; however, the efficacy varies between trials in both animals and
humans. The main reason for this variability is that the purity and phenotype of the
transplanted cells differs between studies. OECs are susceptible to modulation with
neurotrophic factors, and thus, neurotrophins can be used to manipulate the transplanted
cells into an optimal, consistent phenotype. OEC transplantation can be divided into 3
phases: (1) cell preparation, (2) cell administration, and (3) continuous support to the
transplanted cells in situ. The ideal behaviour of OECs differs between these 3 phases; in
the cell preparation phase, rapid cell expansion is desirable to decrease the time between
damage and transplantation. In the cell administration phase, OEC survival and integration
at the injury site, in particular migration into the glial scar, are the most critical
factors, along with OEC-mediated phagocytosis of cellular debris. Finally, continuous
support needs to be provided to the transplantation site to promote survival of both
transplanted cells and endogenous cells within injury site and to promote long-term
integration of the transplanted cells and angiogenesis. In this review, we define the 3
phases of OEC transplantation into the injured spinal cord and the optimal cell behaviors
required for each phase. Optimising functional outcomes of OEC transplantation can be
achieved by modulation of cell behaviours with neurotrophins. We identify the key growth
factors that exhibit the strongest potential for optimizing the OEC phenotype required for
each phase.
Collapse
Affiliation(s)
- A A Wright
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - M Todorovic
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - J Tello-Velasquez
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - A J Rayfield
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - J A St John
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - J A Ekberg
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
26
|
Ma B, Liu X, Huang X, Ji Y, Jin T, Ma K. Translocator protein agonist Ro5-4864 alleviates neuropathic pain and promotes remyelination in the sciatic nerve. Mol Pain 2017; 14:1744806917748019. [PMID: 29212402 PMCID: PMC5805004 DOI: 10.1177/1744806917748019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our previous study reported the translocator protein to play a critical role in neuropathic pain and the possible mechanisms in the spinal cord. However, its mechanism in the peripheral nervous system is poorly understood. This study was undertaken to explore the distribution of translocator protein in the dorsal root ganglion and the possible mechanisms in peripheral nervous system in a rat model of spared nerve injury. Our results showed that translocator protein was activated in dorsal root ganglion after spared nerve injury. The translocator protein signals were primarily colocalized with neurons in dorsal root ganglion. A single intrathecal (i.t.) injection of translocator protein agonist (7-chloro-5-4-chlorophenyl)-1,3-dihydro-1-methyl-2-H-1,4-benzodiaze-pine-2) (Ro5-4864) exerted remarkable analgesic effect compared with the spared nerve injury group ( P < 0.01). After i.t. administration of 2 µg Ro5-4864 on day 3, the expression of translocator protein in ipsilateral dorsal root ganglion was significantly increased on day 7( P < 0.01) but decreased on day 14 ( P < 0.05) compared with the same point in time in the control group. The duration of translocator protein activation in dorsal root ganglion was remarkably shortened. Ro5-4864 also inhibited the activation of phospho-extracellular signal-regulated kinase 1(p-ERK1) ( P < 0.01), p-ERK2 (D7: P < 0.01, D14: P < 0.05), and brain-derived neurotrophic factor ( P < 0.05) in dorsal root ganglion. Meanwhile, i.t. administration of 2 µg Ro5-4864 on day 3 further accelerated the expression of myelin protein zero(P0) and peripheral myelin protein 22 (PMP22). Our results suggested Ro5-4864 could alleviate neuropathic pain and attenuate p-ERK and brain-derived neurotrophic factor activation in dorsal root ganglion. Furthermore, Ro5-4864 stimulated the expression of myelin regeneration proteins which may also be an important factor against neuropathic pain development. Translocator protein may present a novel target for the treatment of neuropathic pain both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Bingjie Ma
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Xiaoming Liu
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Xuehua Huang
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yun Ji
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Tian Jin
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Ke Ma
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
27
|
Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci 2017; 2017:4320408. [PMID: 30723498 PMCID: PMC5664381 DOI: 10.1155/2017/4320408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a major global cause of blindness, but the molecular mechanisms responsible for the neurodegenerative damage are not clear. Undoubtedly, the high intraocular pressure (IOP) and the secondary ischemic and mechanical damage of the optic nerve have a crucial role in retinal ganglion cell (RGC) death. Several studies specifically analyzed the events that lead to nerve fiber layer thinning, showing the importance of both intra- and extracellular factors. In parallel, many neuroprotective substances have been tested for their efficacy and safety in hindering the negative effects that lead to RGC death. New formulations of these compounds, also suitable for chronic oral administration, are likely to be used in clinical practice in the future along with conventional therapies, in order to control the progression of the visual impairment due to primary open-angle glaucoma (POAG). This review illustrates some of these old and new promising agents for the adjuvant treatment of POAG, with particular emphasis on forskolin and melatonin.
Collapse
|
28
|
STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration. J Neurosci 2017; 37:4255-4269. [PMID: 28320842 PMCID: PMC5413174 DOI: 10.1523/jneurosci.3481-16.2017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 11/21/2022] Open
Abstract
After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal parts of injured nerves repair, Schwann cells gradually lose regeneration-supporting features and eventually die. Identification of signals that sustain repair cells is therefore an important goal. We have found that in mice the transcription factor STAT3 protects these cells from death and contributes to maintaining the molecular and morphological repair phenotype that promotes axonal regeneration. Defining the molecular mechanisms that maintain repair Schwann cells is an essential step toward developing therapeutic strategies that improve nerve regeneration and functional recovery.
Collapse
|
29
|
Sánchez M, Garate A, Delgado D, Padilla S. Platelet-rich plasma, an adjuvant biological therapy to assist peripheral nerve repair. Neural Regen Res 2017; 12:47-52. [PMID: 28250739 PMCID: PMC5319232 DOI: 10.4103/1673-5374.198973] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Therapies such as direct tension-free microsurgical repair or transplantation of a nerve autograft, are nowadays used to treat traumatic peripheral nerve injuries (PNI), focused on the enhancement of the intrinsic regenerative potential of injured axons. However, these therapies fail to recreate the suitable cellular and molecular microenvironment of peripheral nerve repair and in some cases, the functional recovery of nerve injuries is incomplete. Thus, new biomedical engineering strategies based on tissue engineering approaches through molecular intervention and scaffolding offer promising outcomes on the field. In this sense, evidence is accumulating in both, preclinical and clinical settings, indicating that platelet-rich plasma products, and fibrin scaffold obtained from this technology, hold an important therapeutic potential as a neuroprotective, neurogenic and neuroinflammatory therapeutic modulator system, as well as enhancing the sensory and motor functional nerve muscle unit recovery.
Collapse
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ane Garate
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Diego Delgado
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
30
|
Gordon T, Borschel GH. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Exp Neurol 2017; 287:331-347. [DOI: 10.1016/j.expneurol.2016.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 02/06/2023]
|
31
|
Sánchez M, Anitua E, Delgado D, Sanchez P, Prado R, Orive G, Padilla S. Platelet-rich plasma, a source of autologous growth factors and biomimetic scaffold for peripheral nerve regeneration. Expert Opin Biol Ther 2016; 17:197-212. [DOI: 10.1080/14712598.2017.1259409] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
| | - Diego Delgado
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Peio Sanchez
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | | | - Gorka Orive
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
- Lab of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of The Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Sabino Padilla
- BTI Biotechnology Institute, Vitoria, Spain
- Eduardo Anitua Foundation, Vitoria, Spain
| |
Collapse
|
32
|
Hendry JM, Alvarez-Veronesi MC, Placheta E, Zhang JJ, Gordon T, Borschel GH. ErbB2 blockade with Herceptin (trastuzumab) enhances peripheral nerve regeneration after repair of acute or chronic peripheral nerve injury. Ann Neurol 2016; 80:112-26. [PMID: 27159537 DOI: 10.1002/ana.24688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/11/2016] [Accepted: 05/01/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Attenuation of the growth supportive environment within the distal nerve stump after delayed peripheral nerve repair profoundly limits nerve regeneration. Levels of the potent Schwann cell mitogen neuregulin and its receptor ErbB2 decline during this period, but the regenerative impact of this change is not completely understood. Herein, the ErbB2 receptor pathway is inhibited with the selective monoclonal antibody Herceptin (trastuzumab) to determine its significance in regulating acute and chronic regeneration in a rat hindlimb. METHODS The common peroneal nerve of Sprague-Dawley rats was transected and repaired immediately or after 4 months of chronic denervation, followed by administration of Herceptin or saline solution. Regenerated motor and sensory neurons were counted using a retrograde tracer 1, 2, or 4, weeks after repair. Distal myelinated axon outgrowth after 4 weeks was quantified using histomorphometry. Immunofluorescent imaging was used to evaluate Schwann cell proliferation and epidermal growth factor receptor (EGFR) activation in the regenerating nerves. RESULTS Herceptin administration increased the rate of motor and sensory neuron regeneration and the number of proliferating Schwann cells in the distal stump after the first week. Herceptin also increased the number of myelinated axons that regenerated 4 weeks after immediate and delayed repair. Reduced EGFR activation was observed using immunofluorescent imaging. INTERPRETATION Inhibition of the ErbB2 receptor with Herceptin unexpectedly enhances nerve regeneration after acute and delayed nerve repair. This finding raises the possibility of using targeted molecular therapies to improve outcomes of peripheral nerve injuries. The mechanism may involve a novel inhibitory association between ErbB2 and EGFR. Ann Neurol 2016;80:112-126.
Collapse
Affiliation(s)
- J Michael Hendry
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - M Cecilia Alvarez-Veronesi
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eva Placheta
- Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Jennifer J Zhang
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory H Borschel
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Gordon T. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans. Neurotherapeutics 2016; 13:295-310. [PMID: 26754579 PMCID: PMC4824030 DOI: 10.1007/s13311-015-0415-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.
Collapse
Affiliation(s)
- Tessa Gordon
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.
| |
Collapse
|
34
|
Fenrich K, Gordon T. Canadian Association of Neuroscience Review: Axonal Regeneration in the Peripheral and Central Nervous Systems – Current Issues and Advances. Can J Neurol Sci 2016; 31:142-56. [PMID: 15198438 DOI: 10.1017/s0317167100053798] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractInjured nerves regenerate their axons in the peripheral (PNS) but not the central nervous system (CNS). The contrasting capacities have been attributed to the growth permissive Schwann cells in the PNS and the growth inhibitory environment of the oligodendrocytes in the CNS. In the current review, we first contrast the robust regenerative response of injured PNS neurons with the weak response of the CNS neurons, and the capacity of Schwann cells and not the oligodendrocytes to support axonal regeneration. We then consider the factors that limit axonal regeneration in both the PNS and CNS. Limiting factors in the PNS include slow regeneration of axons across the injury site, progressive decline in the regenerative capacity of axotomized neurons (chronic axotomy) and progressive failure of denervated Schwann cells to support axonal regeneration (chronic denervation). In the CNS on the other hand, it is the poor regenerative response of neurons, the inhibitory proteins that are expressed by oligodendrocytes and act via a common receptor on CNS neurons, and the formation of the glial scar that prevent axonal regeneration in the CNS. Strategies to overcome these limitations in the PNS are considered in detail and contrasted with strategies in the CNS.
Collapse
Affiliation(s)
- Keith Fenrich
- Centre for Neuroscience, Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
35
|
Sulaiman W, Nguyen DH. Transforming growth factor beta 1, a cytokine with regenerative functions. Neural Regen Res 2016; 11:1549-1552. [PMID: 27904475 PMCID: PMC5116823 DOI: 10.4103/1673-5374.193223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We review the biology and role of transforming growth factor beta 1 (TGF-β1) in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks (i.e., sciatic nerve, brachial plexus), which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accurately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treatment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronically denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration.
Collapse
Affiliation(s)
- Wale Sulaiman
- Ochsner Health System, Department of Neurosurgery, Back and Spine Center, Tulane University, New Orleans, LA, USA
| | - Doan H Nguyen
- Laboratory of Neural Injury and Regeneration, Ochsner Medical Center, New Orleans, LA, USA
| |
Collapse
|
36
|
Barbosa RA, Nunes TLGM, Nunes TLGM, da Paixão AO, Neto RB, Moura S, Albuquerque Junior RLC, Cândido EAF, Padilha FF, Quintans-Júnior LJ, Gomes MZ, Cardoso JC. Hydroalcoholic extract of red propolis promotes functional recovery and axon repair after sciatic nerve injury in rats. PHARMACEUTICAL BIOLOGY 2015; 54:993-1004. [PMID: 26511070 PMCID: PMC11132607 DOI: 10.3109/13880209.2015.1091844] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/16/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
CONTEXT Peripheral axon injury and degeneration are often mediated by oxidative stress and inflammation. The hydroalcoholic extract of the red propolis (HERP) has attracted great attention because of its antioxidant and anti-inflammatory activities. OBJECTIVE The objective of this work is to study the effect of HERP on nerve repair and functional recovery after sciatic nerve injury (SNI) in rats. MATERIALS AND METHODS The chemical markers in HERP were identified using high-resolution mass spectroscopy. After axonotmesis of sciatic nerve, ibuprofen (IBP) and HERP treatments were orally administered for 28 d. Behavioural tests were performed weekly after SNI. The myelinated axon number was counted using morphometric analysis. RESULTS The compounds found in HERP were pinocembrin, formononetin, vestitol, and biochanin A. The animals that underwent SNI showed a significant decrease in motor function based on the Basso, Beattie and Bresnahan scale and sciatic functional index compared with sham animals until 7 d after the surgery (p < 0.05). After 14 and 21 d, the SNI groups treated with either HERP or IBP showed significant improvement (p < 0.01), and the SNI group treated with HERP 10 mg/kg showed accelerated motor recovery compared with the other groups (p < 0.01). SNI caused also a reduction in the myelinated axon counts, and treatment with HERP 10 mg/kg induced a significant increase in the number of myelinated fibres compared with all other groups. CONCLUSION HERP promoted regenerative responses and accelerated functional recovery after sciatic nerve crush. Thus, it can be considered to be a new strategy or complementary therapy for treating nerve injuries.
Collapse
Affiliation(s)
| | | | | | | | - Reinaldo Belo Neto
- Department of Healthy and Environment, Tiradentes University, Aracaju, Brazil
| | - Sidnei Moura
- Department of Technology, University of Caxias Do Sul, Caxias Do Sul, Brazil
| | - Ricardo Luiz Cavalcanti Albuquerque Junior
- Department of Healthy and Environment, Tiradentes University, Aracaju, Brazil
- Department of Biomaterials, Morphology and Experimental Pathology, Research and Technology Institute (ITP), Aracaju, Brazil
| | - Edna Aragão Farias Cândido
- Department of Healthy and Environment, Tiradentes University, Aracaju, Brazil
- Department of Biomaterials, Morphology and Experimental Pathology, Research and Technology Institute (ITP), Aracaju, Brazil
| | - Francine Ferreira Padilha
- Department of Healthy and Environment, Tiradentes University, Aracaju, Brazil
- Department of Biomaterials, Morphology and Experimental Pathology, Research and Technology Institute (ITP), Aracaju, Brazil
| | | | - Margarete Zanardo Gomes
- Department of Healthy and Environment, Tiradentes University, Aracaju, Brazil
- Department of Biomaterials, Morphology and Experimental Pathology, Research and Technology Institute (ITP), Aracaju, Brazil
| | - Juliana Cordeiro Cardoso
- Department of Healthy and Environment, Tiradentes University, Aracaju, Brazil
- Department of Biomaterials, Morphology and Experimental Pathology, Research and Technology Institute (ITP), Aracaju, Brazil
| |
Collapse
|
37
|
Sánchez M, Anitua E, Delgado D, Prado R, Sánchez P, Fiz N, Guadilla J, Azofra J, Pompei O, Orive G, Ortega M, Yoshioka T, Padilla S. Ultrasound-guided plasma rich in growth factors injections and scaffolds hasten motor nerve functional recovery in an ovine model of nerve crush injury. J Tissue Eng Regen Med 2015; 11:1619-1629. [DOI: 10.1002/term.2079] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit; Hospital Vithas San Jose; Vitoria-Gasteiz Spain
- Arthroscopic Surgery Unit Research; Hospital Vithas San Jose; Vitoria-Gasteiz Spain
| | - E. Anitua
- Eduardo Anitua Foundation for Biomedical Research; Vitoria-Gasteiz; Spain
| | - D. Delgado
- Arthroscopic Surgery Unit Research; Hospital Vithas San Jose; Vitoria-Gasteiz Spain
| | - R. Prado
- Biotechnology Institute (BTI); Vitoria-Gasteiz; Spain
| | - P. Sánchez
- Arthroscopic Surgery Unit Research; Hospital Vithas San Jose; Vitoria-Gasteiz Spain
| | - N. Fiz
- Arthroscopic Surgery Unit; Hospital Vithas San Jose; Vitoria-Gasteiz Spain
| | - J. Guadilla
- Arthroscopic Surgery Unit; Hospital Vithas San Jose; Vitoria-Gasteiz Spain
| | - J. Azofra
- Arthroscopic Surgery Unit; Hospital Vithas San Jose; Vitoria-Gasteiz Spain
| | - O. Pompei
- Arthroscopic Surgery Unit; Hospital Vithas San Jose; Vitoria-Gasteiz Spain
| | - G. Orive
- Eduardo Anitua Foundation for Biomedical Research; Vitoria-Gasteiz; Spain
| | - M. Ortega
- Clinical Neurophysiology Unit; Galdakao-Usánsolo Hospital; Bilbao Spain
| | - T. Yoshioka
- Division of Regenerative Medicine for Musculoskeletal System, Department of Orthopaedic Surgery; University of Tsukuba; Japan
| | - S. Padilla
- Biotechnology Institute (BTI); Vitoria-Gasteiz; Spain
| |
Collapse
|
38
|
Kuffler DP. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol Neurobiol 2015; 52:990-1014. [PMID: 26048672 DOI: 10.1007/s12035-015-9251-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/25/2022]
Abstract
Platelet-rich plasma (PRP) has been tested in vitro, in animal models, and clinically for its efficacy in enhancing the rate of wound healing, reducing pain associated with injuries, and promoting axon regeneration. Although extensive data indicate that PRP-released factors induce these effects, the claims are often weakened because many studies were not rigorous or controlled, the data were limited, and other studies yielded contrary results. Critical to assessing whether PRP is effective are the large number of variables in these studies, including the method of PRP preparation, which influences the composition of PRP; type of application; type of wounds; target tissues; and diverse animal models and clinical studies. All these variables raise the question of whether one can anticipate consistent influences and raise the possibility that most of the results are correct under the circumstances where PRP was tested. This review examines evidence on the potential influences of PRP and whether PRP-released factors could induce the reported influences and concludes that the preponderance of evidence suggests that PRP has the capacity to induce all the claimed influences, although this position cannot be definitively argued. Well-defined and rigorously controlled studies of the potential influences of PRP are required in which PRP is isolated and applied using consistent techniques, protocols, and models. Finally, it is concluded that, because of the purported benefits of PRP administration and the lack of adverse events, further animal and clinical studies should be performed to explore the potential influences of PRP.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd. Del Valle, San Juan, 00901, Puerto Rico,
| |
Collapse
|
39
|
Enhancement of facial nerve motoneuron regeneration through cross-face nerve grafts by adding end-to-side sensory axons. Plast Reconstr Surg 2015; 135:460-471. [PMID: 25626793 DOI: 10.1097/prs.0000000000000893] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND In unilateral facial palsy, cross-face nerve grafts are used for emotional facial reanimation. Facial nerve regeneration through the grafts takes several months, and the functional results are sometimes inadequate. Chronic denervation of the cross-face nerve graft results in incomplete nerve regeneration. The authors hypothesize that donor axons from regional sensory nerves will enhance facial motoneuron regeneration, improve axon regeneration, and improve the amplitude of facial muscle movement. METHODS In the rat model, a 30-mm nerve graft (right common peroneal nerve) was used as a cross-face nerve graft. The graft was coapted to the proximal stump of the transected right buccal branch of the facial nerve and the distal stumps of the transected left buccal and marginal mandibular branches. In one group, sensory occipital nerves were coapted end-to-side to the cross-face nerve graft. Regeneration of green fluorescent protein-positive axons was imaged in vivo in transgenic Thy1-green fluorescent protein rats, in which all neurons express green fluorescence. After 16 weeks, retrograde labeling of regenerated neurons and histomorphometric analysis of myelinated axons was performed. Functional outcomes were assessed with video analysis of whisker motion. RESULTS "Pathway protection" with sensory axons significantly enhanced motoneuron regeneration, as assessed by retrograde labeling, in vivo fluorescence imaging, and histomorphometry, and significantly improved whisker motion during video analysis. CONCLUSION Sensory pathway protection of cross-face nerve grafts counteracts chronic denervation in nerve grafts and improves regeneration and functional outcomes.
Collapse
|
40
|
Low-frequency electrical stimulation induces the proliferation and differentiation of peripheral blood stem cells into Schwann cells. Am J Med Sci 2015; 349:157-61. [PMID: 25581569 DOI: 10.1097/maj.0000000000000385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Functional recovery after peripheral nerve injury remains a tough problem at present. Specifically, a type of glial cell exists in peripheral nerves that promotes axonal growth and myelin formation and secretes various active substances, such as neurotrophic factors, extracellular matrix and adherence factors. These substances have important significance for the survival, growth and regeneration of nerve fibers. Numerous recent studies have shown that electrical stimulation can increase the number of myelinated nerve fibers. However, whether electrical stimulation acts on neurons or Schwann cells has not been verified in vivo. This study investigates low-frequency electrical stimulation-induced proliferation and differentiation of peripheral blood stem cells into Schwann cells and explores possible mechanisms. METHODS Peripheral blood stem cells from Sprague-Dawley rats were primarily cultured. Cells in passage 3 were divided into 4 groups: a low-frequency electrical stimulation group (20 Hz, 100 μs, 3 V), a low-frequency electrical stimulation+PD98059 (blocking the extracellular signal-regulated kinase [ERK] signaling pathway) group, a PD98059 group and a control group (no treatment). After induction, the cells were characterized. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide assay was employed to measure the absorbance values at 570 nm in the 4 groups. A Western blot assay was used to detect the expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) in each group. RESULTS No significant difference in cell viability was detected before induction. Peripheral blood stem cells from the 4 groups differentiated into Schwann cells. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels were highest in the low-frequency electrical stimulation group and lowest in the ERK blockage group. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels in the low-frequency electrical stimulation+ERK blockage group were lower than those in the low-frequency electrical stimulation group but higher than those in the ERK blockage group. CONCLUSIONS Low-frequency electrical stimulation contributed to the proliferation of peripheral blood stem cells cultured in vitro and induced differentiation into Schwann cells. The ERK signaling pathway underlies cell proliferation and differentiation.
Collapse
|
41
|
Wood MD, Mackinnon SE. Pathways regulating modality-specific axonal regeneration in peripheral nerve. Exp Neurol 2015; 265:171-5. [PMID: 25681572 DOI: 10.1016/j.expneurol.2015.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Following peripheral nerve injury, the distal nerve is primed for regenerating axons by generating a permissive environment replete with glial cells, cytokines, and neurotrophic factors to encourage axonal growth. However, increasing evidence demonstrates that regenerating axons within peripheral nerves still encounter axonal-growth inhibitors, such as chondroitin sulfate proteoglycans. Given the generally poor clinical outcomes following peripheral nerve injury and reconstruction, the use of pharmacological therapies to augment axonal regeneration and overcome inhibitory signals has gained considerable interest. Joshi et al. (2014) have provided evidence for preferential or modality-specific (motor versus sensory) axonal growth and regeneration due to inhibitory signaling from Rho-associated kinase (ROCK) pathway regulation. By providing inhibition to the ROCK signaling pathway through Y-27632, they demonstrate that motor neurons regenerating their axons are impacted to a greater extent compared to sensory neurons. In light of this evidence, we briefly review the literature regarding modality-specific axonal regeneration to provide context to their findings. We also describe potential and novel barriers, such as senescent Schwann cells, which provide additional axonal-growth inhibitory factors for future consideration following peripheral nerve injury.
Collapse
Affiliation(s)
- Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Sulaiman W, Dreesen TD. Effect of local application of transforming growth factor-β at the nerve repair site following chronic axotomy and denervation on the expression of regeneration-associated genes. Laboratory investigation. J Neurosurg 2014; 121:859-74. [PMID: 25036208 DOI: 10.3171/2014.4.jns131251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Although peripheral nerves can regenerate after traumatic injury, functional recovery is often suboptimal, especially after injuries to large nerve trunks such as the sciatic nerve or brachial plexus. Current research with animal models suggests that the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets due to the loss of neurotrophic support by Schwann cells in the distal stump of injured nerves. This study was designed to investigate the effect of one-time application of transforming growth factor-β (TGF-β) at the repair site of chronically injured nerve. METHODS The authors used the rat tibial nerve injury and repair model to investigate the effects of application of physiological concentrations of TGF-β plus forskolin or forskolin alone in vivo at the repair site on gene and protein expression and axon regeneration at 6 weeks after nerve repair. They used gene expression profiling and immunohistochemical analysis of indicative activated proteins in Schwann cells to evaluate the effects of treatments on the delayed repair. They also quantified the regenerated axons distal to the repair site by microscopy of paraffin sections. RESULTS Both treatment with forskolin only and treatment with TGF-β plus forskolin resulted in increased numbers of axons regenerated compared with saline-only control. There was robust activation and proliferation of both Schwann cells and macrophages reminiscent of the processes during Wallerian degeneration. The treatment also induced upregulation of genes implicated in cellular activation and growth as detected by gene array. CONCLUSIONS Addition of TGF-β plus forskolin to the repair after chronic nerve injury improved axonal regeneration, probably via upregulation of required genes, expression of growth-associated protein, and reactivation of Schwann cells and macrophages. Further studies are required to better understand the mechanism of the positive effect of TGF-β treatment on old nerve injuries.
Collapse
|
43
|
Kuffler DP. An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma. Prog Neurobiol 2014; 116:1-12. [DOI: 10.1016/j.pneurobio.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022]
|
44
|
Khuong HT, Kumar R, Senjaya F, Grochmal J, Ivanovic A, Shakhbazau A, Forden J, Webb A, Biernaskie J, Midha R. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol 2014; 254:168-79. [PMID: 24440805 DOI: 10.1016/j.expneurol.2014.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/23/2022]
Abstract
Previous work has shown that infusion of skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) can remyelinate injured and regenerating axons, and improve indices of axonal regeneration and electrophysiological parameters in rodents. We hypothesized that SKP-SC therapy would improve behavioral outcomes following nerve injury repair and tested this in a pre-clinical trial in 90 rats. A model of sciatic nerve injury and acellular graft repair was used to compare injected SKP-SCs to nerve-derived Schwann cells or media, and each was compared to the gold standard nerve isograft repair. In a second experiment, rats underwent right tibial nerve transection and received either acute or delayed direct nerve repair, with injections of either 1) SKP-SCs distal to the repair site, 2) carrier medium alone, or 3) dead SKP-SCs, and were followed for 4, 8 or 17weeks. For delayed repairs, both transected nerve ends were capped and repaired 11weeks later, along with injections of cells or media as above, and followed for 9 additional weeks (total of 20weeks). Rats were serially tested for skilled locomotion and a slip ratio was calculated for the horizontal ladder-rung and tapered beam tasks. Immediately after nerve injury and with chronic denervation, slip ratios were dramatically elevated. In the GRAFT repair study, the SKP-SC treated rats showed statistically significant improvement in ladder rung as compared to all other groups, and exhibited the greatest similarity to the sham controls on the tapered beam by study termination. In the ACUTE repair arm, the SKP-SC group showed marked improvement in ladder rung slip ratio as early as 5weeks after surgery, which was sustained for the duration of the experiment. Groups that received media and dead SKP-SCs improved with significantly slower progression. In the DELAYED repair arm, the SKP-SC group became significantly better than other groups 7weeks after the repair, while the media and the dead SKP-SCs showed no significant improvement in slip ratios. On histomorphometrical analysis, SKP-SC group showed significantly increased mean axon counts while the percent myelin debris was significantly lower at both 4 and 8weeks, suggesting that a less inhibitory micro-environment may have contributed to accelerated axonal regeneration. For delayed repair, mean axon counts were significantly higher in the SKP-SC group. Compound action potential amplitudes and muscle weights were also improved by cell therapy. In conclusion, SKP-SC therapy improves behavioral recovery after acute, chronic and nerve graft repair beyond the current standard of microsurgical nerve repair.
Collapse
Affiliation(s)
- Helene T Khuong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada; Service de Neurochirurgie, Département des Sciences Neurologiques, CHU-de Québec (Hôpital de l'Enfant-Jésus), Centre de Recherché du CHU-de Québec, Canada; Division de Neurochirurgie, Département de Chirurgie, Université Laval, 1401, 18e rue, Québec, Québec G1J 1Z4, Canada
| | - Ranjan Kumar
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Ferry Senjaya
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Joey Grochmal
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Aleksandra Ivanovic
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Antos Shakhbazau
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Joanne Forden
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Aubrey Webb
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Jeffrey Biernaskie
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Rajiv Midha
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada.
| |
Collapse
|
45
|
Li Q, Zhang P, Yin X, Jiang B. Early nerve protection with anterior interosseous nerve in modified end-to-side neurorrhaphy repairs high ulnar nerve injury: a hypothesis of a novel surgical technique. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 43:103-5. [DOI: 10.3109/21691401.2013.848873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Huang J, Zhang Y, Lu L, Hu X, Luo Z. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats. Eur J Neurosci 2013; 38:3691-701. [PMID: 24118464 DOI: 10.1111/ejn.12370] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022]
Abstract
The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions.
Collapse
Affiliation(s)
- Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | |
Collapse
|
47
|
Binan L, Ajji A, De Crescenzo G, Jolicoeur M. Approaches for Neural Tissue Regeneration. Stem Cell Rev Rep 2013; 10:44-59. [DOI: 10.1007/s12015-013-9474-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Affiliation(s)
- T Gordon
- Division of Physical Medicine and Rehabilitation/Centre for Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, Alta T6G 2S2, Canada
| | | | | |
Collapse
|
49
|
Jonsson S, Wiberg R, McGrath AM, Novikov LN, Wiberg M, Novikova LN, Kingham PJ. Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS One 2013; 8:e56484. [PMID: 23409189 PMCID: PMC3567071 DOI: 10.1371/journal.pone.0056484] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022] Open
Abstract
Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2–3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months.
Collapse
Affiliation(s)
- Samuel Jonsson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Rebecca Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Aleksandra M. McGrath
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Lev N. Novikov
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Liudmila N. Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- * E-mail: (PJK); (LNN)
| | - Paul J. Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- * E-mail: (PJK); (LNN)
| |
Collapse
|
50
|
Lee S, Zhang J. Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages. Brain Behav Immun 2012; 26:891-903. [PMID: 22469908 DOI: 10.1016/j.bbi.2012.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Macrophages are important immune effector cells in both innate and adaptive immune responses. Injury to peripheral nerves triggers activation of resident macrophages and infiltration of haematogenous macrophages, which they play critical roles in Wallerian degeneration and neuropathic pain. As macrophages are able to change their phenotypes in response to environment cues, we attempt to identify distinct phenotypes of macrophages in injured nerves and to understand the potential contribution of each macrophage subpopulation to the genesis of neuropathic pain associated with nerve injury. METHODS Rat mental nerves (terminal branches of trigeminal nerve) were loosely ligated. Sensitivity to mechanical stimuli at the lower lip area was monitored using calibrated von Frey Hairs. We examined the expression pattern of Iba-1, MAC1 and ED1 which allow us to reveal the immunophenotypes of macrophages at different time points post-injury. Functional status of each macrophage subpopulation was further investigated by colocalization with cytokines/chemokines, myelin basic protein and MHC II antigen, which reflect respectively secretory, phagocytic and antigen presentation properties of activated macrophages. RESULTS Following nerve injury, a burst of Iba-1(+) macrophages was found in injured mental nerves. Among them, we detected two major immunophenotypes: MAC1(+) cytokines/chemokines secreting macrophages and ED1(+) phagocytic macrophages. Small, round shaped MAC1(+) macrophages were distributed essentially around the lesion site and existed only at early time points. Large, irregular and foamy ED1(+) macrophages were found among damaged nerve fibers and they persisted for at least 3 months post-injury. Although ED1(+) macrophages did not secrete inflammatory mediators, they were able to express neurotransmitter CGRP and MHC II at later time points. In parallel, we observed that mechanical allodynia developed after the nerve ligation was at its lowest level within 1 month. Although slightly increased afterwards, the head escape threshold maintained significantly lower than before injury until 3 months. We suggest that MAC1(+) macrophages contribute to the initiation of neuropathic pain by releasing cytokines/chemokines, and ED1(+) macrophages may contribute in maintaining the hypersensitivity under other mechanisms. CONCLUSION Our results highlighted the heterogeneity and the plasticity of macrophages in response to the injury and provided further information on their potential involvement in neuropathic pain. Exploring the full spectrum of macrophage phenotypes in injured nerve is necessary. Individual macrophage population may be selectively targeted by cell-specific intervention for an effective treatment of neuropathic pain.
Collapse
Affiliation(s)
- SeungHwan Lee
- The Alan Edwards Centre for Research on Pain, McGill University, 740, Dr. Penfield Ave., Montreal, Quebec, Canada H3A 0G1
| | | |
Collapse
|