1
|
Rodrigues EM, Giovanini AF, Ribas CAPM, Malafaia O, Roesler R, Isolan GR. The Nervous System Development Regulator Neuropilin-1 as a Potential Prognostic Marker and Therapeutic Target in Brain Cancer. Cancers (Basel) 2023; 15:4922. [PMID: 37894289 PMCID: PMC10605093 DOI: 10.3390/cancers15204922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropilins are transmembrane glycoproteins that regulate developmental processes in the nervous system and other tissues. Overexpression of neuropilin-1 (NRP1) occurs in many solid tumor types and, in several instances, may predict patient outcome in terms of overall survival. Experimental inhibition of NRP1 activity can display antitumor effects in different cancer models. Here, we review NRP1 expression and function in adult and pediatric brain cancers, particularly glioblastomas (GBMs) and medulloblastomas, and present analyses of NRP1 transcript levels and their association with patient survival in GBMs. The case of NRP1 highlights the potential of regulators of neurodevelopment as biomarkers and therapeutic targets in brain cancer.
Collapse
Affiliation(s)
- Eduardo Mello Rodrigues
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Allan Fernando Giovanini
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | | | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Spalt Therapeutics, Porto Alegre 90560-010, RS, Brazil
| |
Collapse
|
2
|
Mondal A, Kang J, Kim D. Recent Progress in Fluorescent Probes for Real-Time Monitoring of Glioblastoma. ACS APPLIED BIO MATERIALS 2023; 6:3484-3503. [PMID: 36917648 DOI: 10.1021/acsabm.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Treating glioblastoma (GBM) by resecting to a large extent can prolong a patient's survival by controlling the tumor cells, but excessive resection may produce postoperative complications by perturbing the brain structures. Therefore, various imaging procedures have been employed to successfully diagnose and resect with utmost caution and to protect vital structural or functional features. Fluorescence tagging is generally used as an intraoperative imaging technique in glioma cells in collaboration with other surgical tools such as MRI and navigation methods. However, the existing fluorescent probes may have several limitations, including poor selectivity, less photostability, false signals, and intraoperative re-administration when used in clinical and preclinical studies for glioma surgery. The involvement of smart fluorogenic materials, specifically fluorescent dyes, and biomarker-amended cell-penetrable fluorescent probes have noteworthy advantages for precise glioma imaging. This review outlines the contemporary advancements of fluorescent probes for imaging glioma cells along with their challenges and visions, with the anticipation to develop next-generation smart glioblastoma detection modalities.
Collapse
Affiliation(s)
- Amita Mondal
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jisoo Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Materials Research Science and Engineering Center, University of California at San Diego, 9500 Gilman Drive La Jolla, California 92093, United States
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Szczerba K, Stokowa-Soltys K. What Is the Correlation between Preeclampsia and Cancer? The Important Role of Tachykinins and Transition Metal Ions. Pharmaceuticals (Basel) 2023; 16:366. [PMID: 36986466 PMCID: PMC10058266 DOI: 10.3390/ph16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Metal ions are irreplaceable in many biological processes. They are components of numerous metalloproteins and serve as cofactors or structural elements for enzymes. Interestingly, iron, copper and zinc play important roles in accelerating or preventing neoplastic cell transformation. Noteworthily, a lot of proliferative and invasive mechanisms are exploited by both malignant tumors and pregnancy. Cancer cells, as well as developing placenta cells, create a microenvironment supportive of immunologic privilege and angiogenesis. Therefore, pregnancy and cancer progression share many similarities. Moreover, during preeclampsia and cancer, significant changes in relevant trace element concentrations, tachykinin levels, expressions of neurokinin receptors, oxidative stress and angiogenic imbalance are observed. This sheds a new light on the role of metal ions and tachykinins in cancer progression and pregnancy, especially in preeclamptic women.
Collapse
Affiliation(s)
| | - Kamila Stokowa-Soltys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
4
|
van Kessel E, Berendsen S, Baumfalk AE, Venugopal H, Krijnen EA, Spliet WGM, van Hecke W, Giuliani F, Seute T, van Zandvoort MJE, Snijders TJ, Robe PA. Tumor-related molecular determinants of neurocognitive deficits in patients with diffuse glioma. Neuro Oncol 2022; 24:1660-1670. [PMID: 35148403 PMCID: PMC9527514 DOI: 10.1093/neuonc/noac036] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cognitive impairment is a common and debilitating symptom in patients with diffuse glioma, and is the result of multiple factors. We hypothesized that molecular tumor characteristics influence neurocognitive functioning (NCF), and aimed to identify tumor-related markers of NCF in diffuse glioma patients. METHODS We examined the relation between cognitive performance (executive function, memory, and psychomotor speed) and intratumoral expression levels of molecular markers in treatment-naive patients with diffuse glioma. We performed a single-center study in a consecutive cohort, through a two-step design: (1) hypothesis-free differential expression and gene set enrichment analysis to identify candidate oncogenetic markers for cognitive impairment. Nineteen molecular markers of interest were derived from this set of genes, as well as from prior knowledge; (2) correlation of cognitive performance to intratumoral expression levels of these nineteen molecular markers, measured with immunohistochemistry. RESULTS From 708 included patients with immunohistochemical data, we performed an in-depth analysis of neuropsychological data in 197, and differential expression analysis in 65 patients. After correcting for tumor volume and location, we found significant associations between expression levels of CD3 and IDH-1 and psychomotor speed; between IDH-1, ATRX, NLGN3, BDNF, CK2Beta, EAAT1, GAT-3, SRF, and memory performance; and between IDH-1, P-STAT5b, NLGN3, CK2Beta, and executive functioning. P-STAT5b, CD163, CD3, and Semaphorin-3A were independently associated after further correction for histopathological grade. CONCLUSION Molecular characteristics of glioma can be independent determinants of patients' cognitive functioning. This suggests that besides tumor volume, location, and histological grade, variations in glioma biology influence cognitive performance through mechanisms that include perturbation of neuronal communication. These results pave the way towards targeted cognition improving therapies in neuro-oncology.
Collapse
Affiliation(s)
- Emma van Kessel
- Corresponding Author: Emma van Kesssel, MD, University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, internal address G03.232, PO Box 85500, 3508 XC Utrecht, The Netherlands ()
| | - Sharon Berendsen
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Anniek E Baumfalk
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Hema Venugopal
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Eva A Krijnen
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Wim G M Spliet
- University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | - Wim van Hecke
- University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | - Fabrizio Giuliani
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | - Tatjana Seute
- University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
5
|
Abstract
Nervous system activity regulates development, homeostasis, and plasticity of the brain as well as other organs in the body. These mechanisms are subverted in cancer to propel malignant growth. In turn, cancers modulate neural structure and function to augment growth-promoting neural signaling in the tumor microenvironment. Approaching cancer biology from a neuroscience perspective will elucidate new therapeutic strategies for presently lethal forms of cancer. In this review, we highlight the neural signaling mechanisms recapitulated in primary brain tumors, brain metastases, and solid tumors throughout the body that regulate cancer progression. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Michael B Keough
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA;
| | - Michelle Monje
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA;
| |
Collapse
|
6
|
Fu Y, Liu JW, Wu J, Wu ZX, Li J, Ji HF, Liang NP, Zhang HJ, Lai ZQ, Dong YF. Inhibition of semaphorin-3a alleviates lipopolysaccharide-induced vascular injury. Microvasc Res 2022; 142:104346. [DOI: 10.1016/j.mvr.2022.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
7
|
The Role of Neuropilin-2 in the Epithelial to Mesenchymal Transition of Colorectal Cancer: A Systematic Review. Biomedicines 2022; 10:biomedicines10010172. [PMID: 35052853 PMCID: PMC8773800 DOI: 10.3390/biomedicines10010172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Neuropilin-2 (NRP-2) expression has been found in various investigations on the expression and function of NRP-2 in colorectal cancer. The link between NRP-2 and colorectal cancer, as well as the mechanism that regulates it, is still mostly unclear. This systematic review was carried out according to the Cochrane guidelines for systematic reviews. We searched PubMed, Embase®, MEDLINE, Allied & Complementary MedicineTM, Medical Toxicology & Environmental Health, DH-DATA: Health Administration for articles published before 1 October 2021. The following search terms were used: “neuropilin-2” “neuropilin 2”, “NRP2” and “NRP-2”, “colorectal cancer”, “colon cancer”. Ten articles researching either tumor tissue samples, cell lines, or mice models were included in this review. The majority of human primary and metastatic colon cancer cell lines expressed NRP-2 compared to the normal colonic mucosa. NRPs have been discovered in human cancers as well as neovasculature. The presence of NRP-2 appears to be connected to the epithelial–mesenchymal transition’s function in cancer dissemination and metastatic evolution. The studies were heterogeneous, but the data assessed indicates NRP-2 might have an impact on the metastatic potential of colorectal cancer cells. Nevertheless, further research is needed.
Collapse
|
8
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
9
|
Nitzan A, Corredor-Sanchez M, Galron R, Nahary L, Safrin M, Bruzel M, Moure A, Bonet R, Pérez Y, Bujons J, Vallejo-Yague E, Sacks H, Burnet M, Alfonso I, Messeguer A, Benhar I, Barzilai A, Solomon AS. Inhibition of Sema-3A Promotes Cell Migration, Axonal Growth, and Retinal Ganglion Cell Survival. Transl Vis Sci Technol 2021; 10:16. [PMID: 34817617 PMCID: PMC8626852 DOI: 10.1167/tvst.10.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Semaphorin 3A (Sema-3A) is a secreted protein that deflects axons from inappropriate regions and induces neuronal cell death. Intravitreal application of polyclonal antibodies against Sema-3A prevents loss of retinal ganglion cells ensuing from axotomy of optic nerves. This suggested a therapeutic approach for neuroprotection via inhibition of the Sema-3A pathway. Methods To develop potent and specific Sema-3A antagonists, we isolated monoclonal anti-Sema-3A antibodies from a human antibody phage display library and optimized low-molecular weight Sema-3A signaling inhibitors. The best inhibitors were identified using in vitro scratch assays and semiquantitative repulsion assays. Results A therapeutic approach for neuroprotection must have a long duration of action. Therefore, antibodies and low-molecular weight inhibitors were formulated in extruded implants to allow controlled and prolonged release. Following release from the implants, Sema-3A inhibitors antagonized Sema-3A effects in scratch and repulsion assays and protected retinal ganglion cells in animal models of optic nerve injury, retinal ischemia, and glaucoma. Conclusions and Translational Relevance Collectively, our findings indicate that the identified Sema-3A inhibitors should be further evaluated as therapeutic candidates for the treatment of Sema-3A-driven central nervous system degenerative processes.
Collapse
Affiliation(s)
- Anat Nitzan
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Corredor-Sanchez
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Limor Nahary
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mary Safrin
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel
| | - Marina Bruzel
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel
| | - Alejandra Moure
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Roman Bonet
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Yolanda Pérez
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Jordi Bujons
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | | | | | | | - Ignacio Alfonso
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Angel Messeguer
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Itai Benhar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Arieh S Solomon
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Ahmad E, Ali A, Fatima MT, Nimisha, Apurva, Kumar A, Sumi MP, Sattar RSA, Mahajan B, Saluja SS. Ligand decorated biodegradable nanomedicine in the treatment of cancer. Pharmacol Res 2021; 167:105544. [PMID: 33722711 DOI: 10.1016/j.phrs.2021.105544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is one of the major global health problems, responsible for the second-highest number of deaths. The genetic and epigenetic changes in the oncogenes or tumor suppressor genes alter the regulatory pathways leading to its onset and progression. Conventional methods are used in appropriate combinations for the treatment. Surgery effectively treats localized tumors; however, it fails to treat metastatic tumors, leading to a spread in other organs, causing a high recurrence rate and death. Among the different strategies, the nanocarriers-based approach is highly sought for, but its nonspecific delivery can cause a profound side effect on healthy cells. Targeted nanomedicine has the advantage of targeting cancer cells specifically by interacting with the receptors overexpressed on their surface, overcoming its non-specificity to target healthy cells. Nanocarriers prepared from biodegradable and biocompatible materials are decorated with different ligands by encapsulating therapeutic or diagnostic agents or both to target cancer cells overexpressing the receptors. Scientists are now utilizing a theranostic approach to simultaneously evaluate nanocarrier bio-distribution and its effect on the treatment regime. Herein, we have summarized the recent 5-year efforts in the development of the ligands decorated biodegradable nanocarriers, as a targeted nanomedicine approach, which has been highly promising in the treatment of cancer.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna 810507, India
| | - Munazza Tamkeen Fatima
- Department of Pharmaceutical Science, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant, Postgraduate Institute of Medical, Education and Research (GIPMER), New Delhi 110002, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant, Postgraduate Institute of Medica, Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
11
|
Multifaceted Functional Role of Semaphorins in Glioblastoma. Int J Mol Sci 2019; 20:ijms20092144. [PMID: 31052281 PMCID: PMC6539029 DOI: 10.3390/ijms20092144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor type affecting the adult central nervous system. Despite advances in therapy, the prognosis for patients with GBM remains poor, with a median survival of about 15 months. To date, few treatment options are available and recent trials based on the molecular targeting of some of the GBM hallmark pathways (e.g., angiogenesis) have not produced any significant improvement in overall survival. The urgent need to develop more efficacious targeted therapies has led to a better molecular characterization of GBM, revealing an emerging role of semaphorins in GBM progression. Semphorins are a wide group of membrane-bound and secreted proteins, originally identified as axon guidance cues, signaling through their receptors, neuropilins, and plexins. A number of semaphorin signals involved in the control of axonal growth and navigation during development have been found to furthermore participate in crosstalk with different dysfunctional GBM pathways, controlling tumor cell proliferation, migration, and invasion, as well as tumor angiogenesis or immune response. In this review, we summarize the regulatory activities mediated by semaphorins and their receptors on the oncogenic pathways implicated in GBM growth and invasive/metastatic progression.
Collapse
|
12
|
Hui DHF, Tam KJ, Jiao IZF, Ong CJ. Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers. Int J Mol Sci 2019; 20:E774. [PMID: 30759745 PMCID: PMC6386986 DOI: 10.3390/ijms20030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Daniel H F Hui
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Kevin J Tam
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Ivy Z F Jiao
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Christopher J Ong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
13
|
Wonder E, Simón-Gracia L, Scodeller P, Majzoub RN, Kotamraju VR, Ewert KK, Teesalu T, Safinya CR. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials 2018; 166:52-63. [PMID: 29544111 PMCID: PMC5944340 DOI: 10.1016/j.biomaterials.2018.02.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/31/2022]
Abstract
Cationic liposome-nucleic acid (CL-NA) complexes, which form spontaneously, are a highly modular gene delivery system. These complexes can be sterically stabilized via PEGylation [PEG: poly (ethylene glycol)] into nanoparticles (NPs) and targeted to specific tissues and cell types via the conjugation of an affinity ligand. However, there are currently no guidelines on how to effectively navigate the large space of compositional parameters that modulate the specific and nonspecific binding interactions of peptide-targeted NPs with cells. Such guidelines are desirable to accelerate the optimization of formulations with novel peptides. Using PEG-lipids functionalized with a library of prototypical tumor-homing peptides, we varied the peptide density and other parameters (binding motif, peptide charge, CL/DNA charge ratio) to study their effect on the binding and uptake of the corresponding NPs. We used flow cytometry to quantitatively assess binding as well as internalization of NPs by cultured cancer cells. Surprisingly, full peptide coverage resulted in less binding and internalization than intermediate coverage, with the optimum coverage varying between cell lines. In, addition, our data revealed that great care must be taken to prevent nonspecific electrostatic interactions from interfering with the desired specific binding and internalization. Importantly, such considerations must take into account the charge of the peptide ligand as well as the membrane charge density and the CL/DNA charge ratio. To test our guidelines, we evaluated the in vivo tumor selectivity of selected NP formulations in a mouse model of peritoneally disseminated human gastric cancer. Intraperitoneally administered peptide-tagged CL-DNA NPs showed tumor binding, minimal accumulation in healthy control tissues, and preferential penetration of smaller tumor nodules, a highly clinically relevant target known to drive recurrence of the peritoneal cancer.
Collapse
Affiliation(s)
- Emily Wonder
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramsey N Majzoub
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Venkata Ramana Kotamraju
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kai K Ewert
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tambet Teesalu
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cyrus R Safinya
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
14
|
Liu LN, Li XM, Ye DQ, Pan HF. Emerging role of semaphorin-3A in autoimmune diseases. Inflammopharmacology 2018; 26:655-665. [PMID: 29696565 DOI: 10.1007/s10787-018-0484-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases (ADs) are featured by the body's immune responses being directed against its own tissues, resulting in prolonged inflammation and subsequent tissue damage. Currently, the exact pathogenesis of ADs remains not fully elucidated. Semaphorin-3A (Sema3A), a secreted member of semaphorin family, is a potent immunoregulator during all immune response stages. Sema3A has wide expression, such as in bone, connective tissue, kidney, neurons, and cartilage. Sema3A can downregulate ADs by suppressing the over-activity of both T-cell and B-cell autoimmunity. Moreover, Sema3A shows the ability to enhance T-cell and B-cell regulatory properties that control ADs, including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and systemic sclerosis. However, it can also induce ADs when overexpressed. Together, these data strongly suggest that Sema3A plays a pivotal role in ADs, and it may be a promising treatment target for these diseases. In the present review, we focus on the immunological functions of Sema3A and summarize recent studies on the involvement of Sema3A in the pathogenesis of ADs; the discoveries obtained from recent findings may translate into novel therapeutic agent for ADs.
Collapse
Affiliation(s)
- Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
15
|
Semaphorin 3C and Its Receptors in Cancer and Cancer Stem-Like Cells. Biomedicines 2018; 6:biomedicines6020042. [PMID: 29642487 PMCID: PMC6027460 DOI: 10.3390/biomedicines6020042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023] Open
Abstract
Neurodevelopmental programs are frequently dysregulated in cancer. Semaphorins are a large family of guidance cues that direct neuronal network formation and are also implicated in cancer. Semaphorins have two kinds of receptors, neuropilins and plexins. Besides their role in development, semaphorin signaling may promote or suppress tumors depending on their context. Sema3C is a secreted semaphorin that plays an important role in the maintenance of cancer stem-like cells, promotes migration and invasion, and may facilitate angiogenesis. Therapeutic strategies that inhibit Sema3C signaling may improve cancer control. This review will summarize the current research on the Sema3C pathway and its potential as a therapeutic target.
Collapse
|
16
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
17
|
Tam KJ, Hui DHF, Lee WW, Dong M, Tombe T, Jiao IZF, Khosravi S, Takeuchi A, Peacock JW, Ivanova L, Moskalev I, Gleave ME, Buttyan R, Cox ME, Ong CJ. Semaphorin 3 C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells. Sci Rep 2017; 7:11501. [PMID: 28904399 PMCID: PMC5597577 DOI: 10.1038/s41598-017-11914-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Daniel H F Hui
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Wilson W Lee
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Mingshu Dong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Tabitha Tombe
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ivy Z F Jiao
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ario Takeuchi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Larissa Ivanova
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Ralph Buttyan
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Michael E Cox
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
18
|
Zhu X, Zhang X, Ye Z, Chen Y, Lv L, Zhang X, Hu H. Silencing of semaphorin 3C suppresses cell proliferation and migration in MCF-7 breast cancer cells. Oncol Lett 2017; 14:5913-5917. [PMID: 29113226 PMCID: PMC5661468 DOI: 10.3892/ol.2017.6920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/16/2017] [Indexed: 01/01/2023] Open
Abstract
Previous studies have suggested that semaphorin 3C (SEMA3C) is involved in the tumorigenesis and metastasis of a number of types of cancer. The aim of the present study was to investigate the role of SEMA3C in the proliferation and migration of MCF-7 breast cancer cells. Small interfering (si)RNA sequences targeting SEMA3C were constructed and transfected into MCF-7 cells in order to silence the expression of SEMA3C. Cell proliferation and migration were measured using CCK-8 and Transwell assays, respectively. Transfection with SEMA3C siRNA significantly downregulated the expression of SEMA3C in MCF-7 cells, and significantly suppressed cell proliferation and migration. Therefore, SEMA3C-targeted siRNA may be of potential use for the early diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiangjian Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhiqiang Ye
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yizuo Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lin Lv
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaohua Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hongye Hu
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
19
|
Qin EY, Cooper DD, Abbott KL, Lennon J, Nagaraja S, Mackay A, Jones C, Vogel H, Jackson PK, Monje M. Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma. Cell 2017; 170:845-859.e19. [PMID: 28823557 PMCID: PMC5587159 DOI: 10.1016/j.cell.2017.07.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022]
Abstract
The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP.
Collapse
Affiliation(s)
- Elizabeth Y Qin
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | | | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA 94305, USA
| | - James Lennon
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Alan Mackay
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Hannes Vogel
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
20
|
Simón-Gracia L, Hunt H, Scodeller P, Gaitzsch J, Kotamraju VR, Sugahara KN, Tammik O, Ruoslahti E, Battaglia G, Teesalu T. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials 2016; 104:247-57. [PMID: 27472162 DOI: 10.1016/j.biomaterials.2016.07.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 12/11/2022]
Abstract
Polymersomes are versatile nanoscale vesicles that can be used for cytoplasmic delivery of payloads. Recently, we demonstrated that pH-sensitive polymersomes exhibit an intrinsic selectivity towards intraperitoneal tumor lesions. A tumor homing peptide, iRGD, harbors a cryptic C-end Rule (CendR) motif that is responsible for neuropilin-1 (NRP-1) binding and for triggering extravasation and tumor penetration of the peptide. iRGD functionalization increases tumor selectivity and therapeutic efficacy of systemic drug-loaded nanoparticles in many tumor models. Here we studied whether intraperitoneally administered paclitaxel-loaded iRGD-polymersomes show improved efficacy in the treatment of peritoneal carcinomatosis. First, we demonstrated that the pH-sensitive polymersomes functionalized with RPARPAR (a prototypic CendR peptide) or iRGD internalize in the cells that express NRP-1, and that internalized polymersomes release their cargo inside the cytosol. CendR-targeted polymersomes loaded with paclitaxel were more cytotoxic on NRP-1-positive cells than on NRP-1-negative cells. In mice bearing peritoneal tumors of gastric (MKN-45P) or colon (CT26) origin, intraperitoneally administered RPARPAR and iRGD-polymersomes showed higher tumor-selective accumulation and penetration than untargeted polymersomes. Finally, iRGD-polymersomes loaded with paclitaxel showed improved efficacy in peritoneal tumor growth inhibition and in suppression of local dissemination compared to the pristine paclitaxel-polymersomes or Abraxane. Our study demonstrates that iRGD-functionalization improves efficacy of paclitaxel-polymersomes for intraperitoneal treatment of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia.
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia; Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - Jens Gaitzsch
- Department of Chemistry, University College London, 20 Gordon Street, WC1H OAJ, London, UK; Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - Kazuki N Sugahara
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, 92037, CA, USA; Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Olav Tammik
- Department of Surgical Oncology, Tartu University Hospital, Puusepa 8, 50411, Tartu, Estonia
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, 92037, CA, USA; Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, 20 Gordon Street, WC1H OAJ, London, UK
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia; Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, 92037, CA, USA; Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, CA, USA.
| |
Collapse
|
21
|
Yang WJ, Hu J, Uemura A, Tetzlaff F, Augustin HG, Fischer A. Semaphorin-3C signals through Neuropilin-1 and PlexinD1 receptors to inhibit pathological angiogenesis. EMBO Mol Med 2016. [PMID: 26194913 PMCID: PMC4604683 DOI: 10.15252/emmm.201404922] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity causes visual impairment due to destructive neoangiogenesis after degeneration of the retinal microvasculature. This study was aimed at analyzing whether local delivery of Semaphorin-3C (Sema3C) suppresses pathological retinal angiogenesis. Sema3C exerted potent inhibiting effects in cellular models of angiogenesis. In an endothelial cell xenotransplantation assay, Sema3C acted primarily on immature microvessels by inducing endothelial cell apoptosis. Intravitreal administration of recombinant Sema3C disrupted endothelial tip cell formation and cell–cell contacts, which led to decreased vascular bed expansion and vessel branching in the growing retinal vasculature of newborn mice, while not affecting mature vessels in the adult retina. Sema3C administration strongly inhibited the formation of pathological pre-retinal vascular tufts during oxygen-induced retinopathy. Mechanistically, Sema3C signaled through the receptors Neuropilin-1 and PlexinD1, which were strongly expressed on vascular tufts, induced VE-cadherin internalization, and abrogated vascular endothelial growth factor (VEGF)-induced activation of the kinases AKT, FAK, and p38MAPK. This disrupted endothelial cell junctions, focal adhesions, and cytoskeleton assembly resulted in decreased cell migration and survival. Thus, this study identified Sema3C as a potent and selective inhibitor of pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Wan-Jen Yang
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM) Heidelberg University, Mannheim, Germany
| | - Junhao Hu
- Vascular Oncology and Metastasis (A190), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Fabian Tetzlaff
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Hellmut G Augustin
- Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM) Heidelberg University, Mannheim, Germany Vascular Oncology and Metastasis (A190), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Andreas Fischer
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM) Heidelberg University, Mannheim, Germany Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Le AP, Huang Y, Pingle SC, Kesari S, Wang H, Yong RL, Zou H, Friedel RH. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget 2016; 6:7293-304. [PMID: 25762646 PMCID: PMC4466685 DOI: 10.18632/oncotarget.3421] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/01/2023] Open
Abstract
Invasive growth is a major determinant of the high lethality of malignant gliomas. Plexin-B2, an axon guidance receptor important for mediating neural progenitor cell migration during development, is upregulated in gliomas, but its function therein remains poorly understood. Combining bioinformatic analyses, immunoblotting and immunohistochemistry of patient samples, we demonstrate that Plexin-B2 is consistently upregulated in all types of human gliomas and that its expression levels correlate with glioma grade and poor survival. Activation of Plexin-B2 by Sema4C ligand in glioblastoma cells induced actin-based cytoskeletal dynamics and invasive migration in vitro. This proinvasive effect was associated with activation of the cell motility mediators RhoA and Rac1. Furthermore, costimulation of Plexin-B2 and the receptor tyrosine kinase Met led to synergistic Met phosphorylation. In intracranial glioblastoma transplants, Plexin-B2 knockdown hindered invasive growth and perivascular spreading, and resulted in decreased tumor vascularity. Our results demonstrate that Plexin-B2 promotes glioma invasion and vascularization, and they identify Plexin-B2 as a potential novel prognostic marker for glioma malignancy. Targeting the Plexin-B2 pathway may represent a novel therapeutic approach to curtail invasive growth of glioblastoma.
Collapse
Affiliation(s)
- Audrey P Le
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yong Huang
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandeep C Pingle
- Translational Neuro-Oncology Laboratories, Moores UCSD Cancer Center and Department of Neurosciences, La Jolla, CA, USA
| | - Santosh Kesari
- Translational Neuro-Oncology Laboratories, Moores UCSD Cancer Center and Department of Neurosciences, La Jolla, CA, USA
| | - Huaien Wang
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Comprehensive Brain Tumor Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymund L Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Comprehensive Brain Tumor Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Vaitkienė P, Skiriutė D, Steponaitis G, Skauminas K, Tamašauskas A, Kazlauskas A. High level of Sema3C is associated with glioma malignancy. Diagn Pathol 2015; 10:58. [PMID: 26032848 PMCID: PMC4450827 DOI: 10.1186/s13000-015-0298-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Malignant gliomas are characterized by the tendency of cancerous glial cells to infiltrate into normal brain tissue, thereby complicating targeted treatment of this type of cancer. Recent studies suggested involvement of Sema3C (semaphorin 3C) protein in tumorigenesis and metastasis in a number of cancers. The role of Sema3C in gliomagenesis is currently unclear. In this study, we investigated how expression levels of Sema3C in post-operative glioma tumors are associated with the malignancy grade and the survival of the patient. Findings Western blot analysis was used for detection of Sema3C protein levels in 84 different grade glioma samples: 12 grade I astrocytomas, 30 grade II astrocytomas, 17 grade III astrocytomas, and 25 grade IV astrocytomas (glioblastomas). Sema3C mRNA levels in gliomas were analysed by real-time PCR. Several statistical methods have been used to investigate associations between Sema3C protein and mRNA levels and clinical variables and survival outcome. The results demonstrated that protein levels of Sema3C were markedly increased in glioblastomas compared to grade I-III astrocytoma tissues and were significantly associated with the shorter overall survival of patients. High accumulation of Sema3C positively associated with the age of patients and pathological grade, but did not correlate with patient’s gender. Sema3C mRNA levels showed no association with either grade of glioma or patient survival. Conclusions The data presented in this work suggest that the increased levels of Sema3C protein may be associated with the progression of glioma tumor and has a potential as a prognostic marker for outcome of glioma patients. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1564066714158642 Electronic supplementary material The online version of this article (doi:10.1186/s13000-015-0298-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paulina Vaitkienė
- Laboratory of Neurooncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50009, Lithuania.
| | - Daina Skiriutė
- Laboratory of Neurooncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50009, Lithuania.
| | - Giedrius Steponaitis
- Laboratory of Neurooncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50009, Lithuania.
| | - Kęstutis Skauminas
- Laboratory of Neurooncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50009, Lithuania.
| | - Arimantas Tamašauskas
- Laboratory of Neurooncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50009, Lithuania.
| | - Arunas Kazlauskas
- Laboratory of Neurooncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, Kaunas, LT 50009, Lithuania.
| |
Collapse
|
24
|
Man J, Shoemake J, Zhou W, Fang X, Wu Q, Rizzo A, Prayson R, Bao S, Rich JN, Yu JS. Sema3C promotes the survival and tumorigenicity of glioma stem cells through Rac1 activation. Cell Rep 2014; 9:1812-1826. [PMID: 25464848 DOI: 10.1016/j.celrep.2014.10.055] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/30/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Different cancer cell compartments often communicate through soluble factors to facilitate tumor growth. Glioma stem cells (GSCs) are a subset of tumor cells that resist standard therapy to contribute to disease progression. How GSCs employ a distinct secretory program to communicate with and nurture each other over the nonstem tumor cell (NSTC) population is not well defined. Here, we show that GSCs preferentially secrete Sema3C and coordinately express PlexinA2/D1 receptors to activate Rac1/nuclear factor (NF)-κB signaling in an autocrine/paracrine loop to promote their own survival. Importantly, Sema3C is not expressed in neural progenitor cells (NPCs) or NSTCs. Disruption of Sema3C induced apoptosis of GSCs, but not NPCs or NSTCs, and suppressed tumor growth in orthotopic models of glioblastoma. Introduction of activated Rac1 rescued the Sema3C knockdown phenotype in vivo. Our study supports the targeting of Sema3C to break this GSC-specific autocrine/paracrine loop in order to improve glioblastoma treatment, potentially with a high therapeutic index.
Collapse
Affiliation(s)
- Jianghong Man
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jocelyn Shoemake
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Anthony Rizzo
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Richard Prayson
- Department of Anatomic Pathology, Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jennifer S Yu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Ge C, Li Q, Wang L, Xu X. The role of axon guidance factor semaphorin 6B in the invasion and metastasis of gastric cancer. J Int Med Res 2014; 41:284-92. [PMID: 23781008 DOI: 10.1177/0300060513476436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the role of semaphorin 6B in gastric cancer invasion and metastasis. METHODS Immunohistochemistry for semaphorin 6B was performed on gastric cancer tumour tissue samples in this retrospective study. Levels of semaphorin 6B protein and mRNA were determined in gastric cancer cell lines by Western blotting and quantitative reverse transcription-polymerase chain reaction, respectively. The human gastric cancer cell line SGC-7901 was transfected with small interfering RNA targeting semaphorin 6B; effects on cell adhesion, migration and invasion were determined by cell adhesion assay, transwell chamber migration assay and wound healing assay, respectively. RESULTS Tumour tissue samples from 220 patients were analysed. In vivo, semaphorin 6B immunopositivity correlated with tumour differentiation, lymph node metastasis and distant metastasis but not patient age, sex or tumour stage. Semaphorin 6B gene silencing significantly suppressed adhesion, migration and invasion of gastric cancer cells in vitro. CONCLUSIONS Semaphorin 6B is related to tumour differentiation and metastasis in vivo, and tumour cell migration, adhesion and invasion in vitro. Semaphorin 6B may represent a reliable biomarker for diagnosis, evaluation and gene-targeted therapy of gastric cancer.
Collapse
Affiliation(s)
- Changqing Ge
- National Hepatobiliary and Enteric Surgery Research Centre, Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
26
|
Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol 2013; 24:179-89. [PMID: 23099250 DOI: 10.1016/j.semcdb.2012.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023]
Abstract
The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding "normal" cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.
Collapse
Affiliation(s)
- Michael Rehman
- Institute for Cancer Research at Candiolo (IRC@C), University of Torino-Dept. of Oncology, 10060 Candiolo, Italy
| | | |
Collapse
|
27
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
28
|
The role of semaphorins and their receptors in gliomas. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:902854. [PMID: 23050142 PMCID: PMC3461631 DOI: 10.1155/2012/902854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/06/2012] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common tumor in the central nervous system. High-grade glioblastomas are characterized by their high invasiveness and resistance to radiotherapy, leading to high recurrence rate and short median survival despite radical surgical resection. Characterizations of gliomas at molecular level have revealed aberrations of various growth factor receptors, receptor tyrosine kinases, and tumor suppressor genes that lead to deregulation of multiple signaling pathways, thereby contributing to abnormal proliferation, invasion, and resistance to apoptosis in cancer cells. Recently, accumulating evidence points to the emerging role of axon guidance molecules in glioma progression. Notably, many signaling events harnessed by guidance molecules to regulate cell migration and axon navigation during development are also found to be involved in the modulation of deregulated pathways in gliomas. This paper focused on the signalings triggered by the guidance molecule semaphorins and their receptors plexins and neuropilins, and how their crosstalk with oncogenic pathways in gliomas might modulate cancer progression. The emerging role of semaphorins and plexins as tumor suppressors or oncogenes is also discussed.
Collapse
|
29
|
Abstract
Solid tumors not only comprise malignant cells but also other nonmalignant cell types, forming a unique microenvironment that can strongly influence the behavior of tumor cells. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins. In fact, semaphorins form a family of molecular signals known to guide and control cell migration during embryo development and in adults. Tumor cells express semaphorins as well as their receptors, plexins and neuropilins. It has been shown that semaphorin signaling can regulate tumor cell behavior. Moreover, semaphorins are important regulators of tumor angiogenesis. Conversely, very little is known about the functional relevance of semaphorin signals for tumor-infiltrating stromal cells, such as leukocytes. In this chapter, we review the current knowledge on the functional role of semaphorins in cancer progression, and we focus on the emerging role of semaphorins in mediating the cross talk between tumor cells and different tumor stromal cells.
Collapse
Affiliation(s)
- Claudia Muratori
- University of Torino Medical School, Institute for Cancer Research (IRCC), Candiolo, Turin, Italy
| | | |
Collapse
|
30
|
Hiroshima Y, Nakamura F, Miyamoto H, Mori R, Taniguchi K, Matsuyama R, Akiyama H, Tanaka K, Ichikawa Y, Kato S, Kobayashi N, Kubota K, Nagashima Y, Goshima Y, Endo I. Collapsin response mediator protein 4 expression is associated with liver metastasis and poor survival in pancreatic cancer. Ann Surg Oncol 2012; 20 Suppl 3:S369-78. [PMID: 22805864 DOI: 10.1245/s10434-012-2491-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pancreatic cancer is an aggressive malignancy with one of the worst mortality rates of all cancers. Recently, collapsin response mediator proteins (CRMPs) were reported to be associated with proliferation, apoptosis, differentiation, and invasion in several cancers. However, CRMP expression and their role in pancreatic cancer have not been investigated. This study aimed to clarify the clinical significance of CRMPs in pancreatic cancer. METHODS Expression of crmp genes in 11 pairs of pancreatic cancer and corresponding noncancerous pancreas tissues were examined by real-time RT-PCR. Knockdown of CRMP4 expression using siRNA was examined in pancreatic cancer cell lines to determine whether CRMP4 regulates cell proliferation and invasion in vitro. Furthermore, CRMP4 protein levels in primary tumors of pancreatic cancer (n = 53) were examined by immunohistochemistry and compared with the clinicopathological features of the tumors. RESULTS Of all the CRMPs, only CRMP4 was differentially expressed in pancreatic cancer tissues (p = 0.008). CRMP4 knockdown using siRNA reduced cellular invasion, but did not affect proliferation. The expression of CRMP4 was detected immunohistochemically in 34 (64.2 %) of the 53 pancreatic cancer samples, and CRMP4 expression was correlated with severe venous invasion (p = 0.044), stage (p = 0.019), and liver metastasis (p = 0.021). Multivariate analyses suggested that venous invasion and CRMP4 overexpression were prognostic factors for survival. CONCLUSIONS Our results suggested that CRMP4 is significantly associated with poor prognosis by promoting liver metastasis and can serve as a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Yukihiko Hiroshima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Class 3 semaphorins and their receptors in physiological and pathological angiogenesis. Biochem Soc Trans 2011; 39:1565-70. [DOI: 10.1042/bst20110654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Class 3 semaphorins (Sema3) are a family of secreted proteins that were originally identified as axon guidance factors mediating their signal transduction by forming complexes with neuropilins and plexins. However, the wide expression pattern of Sema3 suggested additional functions other than those associated with the nervous system, and indeed many studies have now indicated that Sema3 proteins and their receptors play a role in angiogenesis. The present review specifically focuses on recent evidence for this role in both physiological and pathological angiogenesis.
Collapse
|
32
|
d'Onofrio A. Spatiotemporal effects of a possible chemorepulsion of tumor cells by immune system effectors. J Theor Biol 2011; 296:41-8. [PMID: 22119911 DOI: 10.1016/j.jtbi.2011.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 10/18/2011] [Accepted: 11/11/2011] [Indexed: 11/27/2022]
Abstract
Tumor-immune system interplay is a landmark of tumor development, and chemotactic attraction of immune system cells towards a tumor is a landmark of immune control. Since tumor cells are capable of chemotactic and chemorepulsive motion, based on a number of analogies between the behavior of tumor cells and that of bacteria, and on the production of potentially chemorepulsive semaphorins by immune systems effectors, we propose here the possibility of chemorepulsion of tumor cells, elicited by chemicals produced by immune system effectors such as macrophages and cytotoxic T lymphocytes. To study the effects of this hypothesized phenomenon within the framework of the interplay of neoplasias with the innate and adaptive immune system, we appropriately extend two well-known models: the tumor-macrophage models by Owen and Sherratt [Owen and Sherratt, J. Theor. Biol., 1998] and the Matzavinos-Chaplain model of tumor-CTL interaction [Matzavinos, Chaplain and Kuznetsov, Math. Med. Biol., 2004]. Our simulations suggest that this mechanism might allow a faster expansion of tumors, and in the concluding remarks we envisage a new possible route of immunoevasion.
Collapse
Affiliation(s)
- Alberto d'Onofrio
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milano I-20141, Italy.
| |
Collapse
|
33
|
Pircher A, Hilbe W, Heidegger I, Drevs J, Tichelli A, Medinger M. Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int J Mol Sci 2011; 12:7077-99. [PMID: 22072937 PMCID: PMC3211028 DOI: 10.3390/ijms12107077] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/09/2011] [Indexed: 12/16/2022] Open
Abstract
Tumor angiogenesis has been identified to play a critical role in tumor growth and tumor progression, and is regulated by a balance of angiogenic and anti-angiogenic cytokines. Among them VEGF (vascular endothelial growth factor) and its signaling through its receptors are of crucial relevance. Inhibition of VEGF signaling by monoclonal antibodies or small molecules (kinase inhibitors) has already been successfully established for the treatment of different cancer entities and multiple new drugs are being tested in clinical trials. However not all patients are likely to respond to these therapies, but to date there are no reliable biomarkers available to predict therapy response. Many studies integrated biomarker programs in their study protocols, thus several potential biomarkers have been identified which are currently under clinical investigation in prospective randomized studies. This review intends to give an overview of the described potential biomarkers as well as different imaging techniques such as ultrasound and magnetic resonance imaging that can indicate benefit, resistance and toxicity to anti-angiogenic therapies.
Collapse
Affiliation(s)
- Andreas Pircher
- Hematology and Oncology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; E-Mails: (A.P.); (W.H.)
| | - Wolfgang Hilbe
- Hematology and Oncology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; E-Mails: (A.P.); (W.H.)
| | - Isabel Heidegger
- Department of Urology and Division of Experimental Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; E-Mail:
| | - Joachim Drevs
- Tumor Center Unisantus, Custodisstrasse 3-17, 50679 Köln, Germany; E-Mail:
| | - André Tichelli
- Hematology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland; E-Mail:
| | - Michael Medinger
- Hematology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland; E-Mail:
| |
Collapse
|
34
|
Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One 2011; 6:e20444. [PMID: 21747928 PMCID: PMC3128581 DOI: 10.1371/journal.pone.0020444] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/03/2011] [Indexed: 12/31/2022] Open
Abstract
Neuropilins, initially characterized as neuronal receptors, act as co-receptors for cancer related growth factors and were recently involved in several signaling pathways leading to cytoskeletal organization, angiogenesis and cancer progression. Then, we sought to investigate the ability of neuropilin-2 to orchestrate epithelial-mesenchymal transition in colorectal cancer cells. Using specific siRNA to target neuropilin-2 expression, or gene transfer, we first observed that neuropilin-2 expression endows HT29 and Colo320 for xenograft formation. Moreover, neuropilin-2 conferred a fibroblastic-like shape to cancer cells, suggesting an involvement of neuropilin-2 in epithelial-mesenchymal transition. Indeed, the presence of neuropilin-2 in colorectal carcinoma cell lines was correlated with loss of epithelial markers such as cytokeratin-20 and E-cadherin and with acquisition of mesenchymal molecules such as vimentin. Furthermore, we showed by surface plasmon resonance experiments that neuropilin-2 is a receptor for transforming-growth factor-β1. The expression of neuropilin-2 on colon cancer cell lines was indeed shown to promote transforming-growth factor-β1 signaling, leading to a constitutive phosphorylation of the Smad2/3 complex. Treatment with specific TGFβ-type1 receptor kinase inhibitors restored E-cadherin levels and inhibited in part neuropilin-2-induced vimentin expression, suggesting that neuropilin-2 cooperates with TGFβ-type1 receptor to promote epithelial-mesenchymal transition in colorectal cancer cells. Our results suggest a direct role of NRP2 in epithelial-mesenchymal transition and highlight a cross-talk between neuropilin-2 and TGF-β1 signaling to promote cancer progression. These results suggest that neuropilin-2 fulfills all the criteria of a therapeutic target to disrupt multiple oncogenic functions in solid tumors.
Collapse
|
35
|
Semaphorin 5A and plexin-B3 regulate human glioma cell motility and morphology through Rac1 and the actin cytoskeleton. Oncogene 2011; 31:595-610. [PMID: 21706053 DOI: 10.1038/onc.2011.256] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Semaphorins are implicated in glioma progression, although little is known about the underlying mechanisms. We have reported plexin-B3 expression in human gliomas, which upon stimulation by Sema5A causes significant inhibition of cell migration and invasion. The concomitant inactivation of Rac1 is of mechanistic importance because forced expression of constitutively active Rac1 abolishes these inhibitory effects. Furthermore, Sema5A induces prominent cell collapse and ramification of processes reminiscent of astrocytic morphology, which temporally associate with extensive disassembly of actin stress fibers and disruption of focal adhesions, followed by accumulation of actin patches in protrusions. Mechanistically, Sema5A induces transient protein kinase C (PKC) phosphorylation of fascin-1, which can reduce its actin-binding/bundling activities and temporally parallels its translocation from cell body to extending processes. PKC inhibition or fascin-1 knockdown is sufficient to abrogate Sema5A-induced morphological differentiation, whereas the process is hastened by forced expression of fascin-1. Intriguingly, Sema5A induces re-expression of glial fibrillary acidic protein (GFAP), which when silenced restricts differentiation of glioma cells to bipolar instead of multipolar morphology. Therefore, we hypothesize complementary functions of fascin-1 and GFAP in the early and late phases of Sema5A-induced astrocytic differentiation of gliomas, respectively. In summary, Sema5A and plexin-B3 impede motility but promote differentiation of human gliomas. These effects are plausibly compromised in high-grade human astrocytomas in which Sema5A expression is markedly reduced, hence leading to infiltrative and anaplastic characteristics. This is evident by increased invasiveness of glioma cells when endogenous Sema5A is silenced. Therefore, Sema5A and plexin-B3 represent potential novel targets in counteracting glioma progression.
Collapse
|
36
|
Grandclement C, Borg C. Neuropilins: a new target for cancer therapy. Cancers (Basel) 2011; 3:1899-928. [PMID: 24212788 PMCID: PMC3757396 DOI: 10.3390/cancers3021899] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/23/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023] Open
Abstract
Recent investigations highlighted strong similarities between neural crest migration during embryogenesis and metastatic processes. Indeed, some families of axon guidance molecules were also reported to participate in cancer invasion: plexins/semaphorins/neuropilins, ephrins/Eph receptors, netrin/DCC/UNC5. Neuropilins (NRPs) are transmembrane non tyrosine-kinase glycoproteins first identified as receptors for class-3 semaphorins. They are particularly involved in neural crest migration and axonal growth during development of the nervous system. Since many types of tumor and endothelial cells express NRP receptors, various soluble molecules were also found to interact with these receptors to modulate cancer progression. Among them, angiogenic factors belonging to the Vascular Endothelial Growth Factor (VEGF) family seem to be responsible for NRP-related angiogenesis. Because NRPs expression is often upregulated in cancer tissues and correlated with poor prognosis, NRPs expression might be considered as a prognostic factor. While NRP1 was intensively studied for many years and identified as an attractive angiogenesis target for cancer therapy, the NRP2 signaling pathway has just recently been studied. Although NRP genes share 44% homology, differences in their expression patterns, ligands specificities and signaling pathways were observed. Indeed, NRP2 may regulate tumor progression by several concurrent mechanisms, not only angiogenesis but lymphangiogenesis, epithelial-mesenchymal transition and metastasis. In view of their multiples functions in cancer promotion, NRPs fulfill all the criteria of a therapeutic target for innovative anti-tumor therapies. This review focuses on NRP-specific roles in tumor progression.
Collapse
Affiliation(s)
- Camille Grandclement
- INSERM UMR 645, F-25020 Besançon, France; E-Mail:
- University of Franche-Comté, IFR133, F-25020 Besançon, France
- EFS Bourgogne Franche-Comté, F-25020 Besançon, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-3-81-61-56-15 or +33-3-81-66-93-21; Fax: +33-3-81-61-56-17
| | - Christophe Borg
- INSERM UMR 645, F-25020 Besançon, France; E-Mail:
- University of Franche-Comté, IFR133, F-25020 Besançon, France
- EFS Bourgogne Franche-Comté, F-25020 Besançon, France
- Department of Medical Oncology, CHU Besançon, F-25000 Besançon, France
| |
Collapse
|
37
|
Eisele G, Roth P, Hasenbach K, Aulwurm S, Wolpert F, Tabatabai G, Wick W, Weller M. APO010, a synthetic hexameric CD95 ligand, induces human glioma cell death in vitro and in vivo. Neuro Oncol 2010; 13:155-64. [PMID: 21183510 DOI: 10.1093/neuonc/noq176] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Death receptor targeting has emerged as one of the promising novel approaches of cancer therapy. The activation of one such prototypic death receptor, CD95 (Fas/APO-1), has remained controversial because CD95 agonistic molecules have exhibited either too strong toxicity or too little activity. The natural CD95 ligand (CD95L) is a cytokine, which needs to trimerize to mediate a cell death signal. Mega-Fas-Ligand, now referred to as APO010, is a synthetic hexameric CD95 agonist that exhibits strong antitumor activity in various tumor models. Here, we studied the effects of APO010 in human glioma models in vitro and in vivo. Compared with a cross-linked soluble CD95L or a CD95-agonistic antibody, APO010 exhibited superior activity in glioma cell lines expressing CD95 and triggered caspase-dependent cell death. APO010 reduced glioma cell viability in synergy when combined with temozolomide. The locoregional administration of APO010 induced glioma cell death in vivo and prolonged the survival of tumor-bearing mice. A further exploration of APO010 as a novel antiglioma agent is warranted.
Collapse
Affiliation(s)
- Günter Eisele
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sadanandam A, Varney ML, Singh S, Ashour AE, Moniaux N, Deb S, Lele SM, Batra SK, Singh RK. High gene expression of semaphorin 5A in pancreatic cancer is associated with tumor growth, invasion and metastasis. Int J Cancer 2010; 127:1373-83. [PMID: 20073063 DOI: 10.1002/ijc.25166] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Semaphorin 5A (SEMA5A) is an axonal regulator molecule, which belongs to the Semaphorin family of proteins. Previously, we identified SEMA5A as a putative marker for aggressive pancreatic tumors. However, the expression, localization and functional significance of SEMA5A in pancreatic tumors remain unclear. In our study, we hypothesized that SEMA5A expression modulates pancreatic tumor growth and metastasis. We analyzed the constitutive expression and localization of SEMA5A in patient pancreatic tumors (n = 33) and unmatched normal pancreatic (n = 8) tissues and human pancreatic cancer cell lines (n = 16) with different histopathological characteristics. We observed significantly higher expression of SEMA5A protein expression (p < 0.05) in human pancreatic tumor tissue samples compared to normal pancreatic tissues. Similarly, the pancreatic cancer cell lines with higher tumorigenic and metastatic potentials as xenografts in nude mice expressed higher levels of SEMA5A mRNA compared to those with lower tumorigenic and metastatic potentials. Furthermore, we examined the functional role of SEMA5A in pancreatic tumor growth and invasion. Ectopic expression of mouse full-length Sema5A in Panc1 (SEMA5A negative) cells significantly (p < 0.05) enhanced tumorigenesis, growth and metastasis in vivo as well as proliferation, invasiveness and homotypic aggregation in vitro. Together, these data demonstrate that the expression of SEMA5A in pancreatic cancer cells regulates tumorigenesis, growth, invasion and metastasis, and it also suggests a novel target for diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Anguraj Sadanandam
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Michikawa Y, Suga T, Ishikawa A, Hayashi H, Oka A, Inoko H, Iwakawa M, Imai T. Genome wide screen identifies microsatellite markers associated with acute adverse effects following radiotherapy in cancer patients. BMC MEDICAL GENETICS 2010; 11:123. [PMID: 20701746 PMCID: PMC2928773 DOI: 10.1186/1471-2350-11-123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 08/11/2010] [Indexed: 01/24/2023]
Abstract
Background The response of normal tissues in cancer patients undergoing radiotherapy varies, possibly due to genetic differences underlying variation in radiosensitivity. Methods Cancer patients (n = 360) were selected retrospectively from the RadGenomics project. Adverse effects within 3 months of radiotherapy completion were graded using the National Cancer Institute Common Toxicity Criteria; high grade group were grade 3 or more (n = 180), low grade group were grade 1 or less (n = 180). Pooled genomic DNA (gDNA) (n = 90 from each group) was screened using 23,244 microsatellites. Markers with different inter-group frequencies (Fisher exact test P < 0.05) were analyzed using the remaining pooled gDNA. Silencing RNA treatment was performed in cultured normal human skin fibroblasts. Results Forty-seven markers had positive association values; including one in the SEMA3A promoter region (P = 1.24 × 10-5). SEMA3A knockdown enhanced radiation resistance. Conclusions This study identified 47 putative radiosensitivity markers, and suggested a role for SEMA3A in radiosensitivity.
Collapse
Affiliation(s)
- Yuichi Michikawa
- RadGenomics Project, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Li X, Lee AYW. Semaphorin 5A and plexin-B3 inhibit human glioma cell motility through RhoGDIalpha-mediated inactivation of Rac1 GTPase. J Biol Chem 2010; 285:32436-45. [PMID: 20696765 DOI: 10.1074/jbc.m110.120451] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Semaphorins and plexins are implicated in the progression of various types of cancer, although the molecular basis has not been fully elucidated. Here, we report the expression of plexin-B3 in glioma cells, which upon stimulation by its ligand Sema5A results in significant inhibition of cell migration and invasion. A search for the underlying mechanism revealed direct interaction of plexin-B3 with RhoGDP dissociation inhibitor α (RhoGDIα), a negative regulator of RhoGTPases that blocks guanine nucleotide exchange and sequesters them away from the plasma membrane. Glioma cells challenged with Sema5A indeed showed a marked reduction in Rac1-GTP levels by 60%, with a concomitant disruption of lamellipodia. The inactivation of Rac1 was corroborated to contribute to the impediment of glioma cell invasion by Sema5A, as supported by the abolishment of effect upon forced expression of a constitutively active Rac1 mutant. Furthermore, silencing the endogenous expression of RhoGDIα in glioma cells was found to be sufficient in abrogating the down-regulation of Rac1-GTP and the ensuing suppression of glioma cell motility induced by Sema5A. Mechanistically, we provide evidence that Sema5A promotes Rac1 recruitment to RhoGDIα and reduces its membrane localization in a plexin-B3-dependent manner, thereby preventing Rac1 activation. This represents a novel signaling of semaphorin and plexin in the control of cell motility by indirect inactivation of Rac1 through RhoGDIα.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Physiology, Yong Loo Lin School of Medicine, Neurobiology/Ageing Program, Life Sciences Institute, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | | |
Collapse
|
41
|
Jin Q, Alkhatib B, Cornetta K, Alkhatib G. Alternate receptor usage of neuropilin-1 and glucose transporter protein 1 by the human T cell leukemia virus type 1. Virology 2009; 396:203-12. [PMID: 19913864 DOI: 10.1016/j.virol.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/17/2009] [Accepted: 10/12/2009] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that neuropilin 1 (NP-1) is involved in HTLV-1 entry; however, the role NP-1 plays in this process is not understood. We demonstrated that ectopic expression of human NP-1 but not NP-2 cDNA increased susceptibility to HTLV-1. SiRNA-mediated inhibition of NP-1 expression correlated with significant reduction of HTLV-1 Env-mediated fusion. The vascular endothelial growth factor (VEGF(165)) caused downmodulation of surface NP-1 and inhibited HTLV-1 infection of U87 cells. In contrast, VEGF(165) partially inhibited infection of primary astrocytes and had no significant effect on infection of HeLa cells. VEGF(165) and antibodies to the glucose transporter protein 1 (anti-GLUT-1) were both needed to block infection of primary astrocytes, however, only anti-GLUT-1 antibodies were sufficient to block infection of HeLa cells. HTLV-1 Env forms complexes with both NP-1 and GLUT-1 in primary human astrocytes. The alternate usage of these two cellular receptors may have important implications regarding HTLV-1 neuro-tropism.
Collapse
Affiliation(s)
- Qingwen Jin
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Rm#420, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
42
|
Nasarre C, Koncina E, Labourdette G, Cremel G, Roussel G, Aunis D, Bagnard D. Neuropilin-2 acts as a modulator of Sema3A-dependent glioma cell migration. Cell Adh Migr 2009; 3:383-9. [PMID: 19855168 DOI: 10.4161/cam.3.4.9934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and three different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while overexpression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.
Collapse
Affiliation(s)
- Cécile Nasarre
- INSERM U575 Physiopathologie du Système Nerveux, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Balakrishnan A, Penachioni JY, Lamba S, Bleeker FE, Zanon C, Rodolfo M, Vallacchi V, Scarpa A, Felicioni L, Buck M, Marchetti A, Comoglio PM, Bardelli A, Tamagnone L. Molecular profiling of the "plexinome" in melanoma and pancreatic cancer. Hum Mutat 2009; 30:1167-74. [PMID: 19462467 DOI: 10.1002/humu.21017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plexins are transmembrane high-affinity receptors for semaphorins, regulating cell guidance, motility, and invasion. Functional evidences implicate semaphorin signals in cancer progression and metastasis. Yet, it is largely unknown whether plexin genes are genetically altered in human tumors. We performed a comprehensive gene copy analysis and mutational profiling of all nine members of the plexin gene family (plexinome), in melanomas and pancreatic ductal adenocarcinomas (PDACs), which are characterized by high metastatic potential and poor prognosis. Gene copy analysis detected amplification of PLXNA4 in melanomas, whereas copy number losses of multiple plexin genes were seen in PDACs. Somatic mutations were detected in PLXNA4, PLXNB3, and PLXNC1; providing the first evidence that these plexins are mutated in human cancer. Functional assays in cellular models revealed that some of these missense mutations result in loss of plexin function. For instance, c.1613G>A, p.R538H mutation in the extracellular domain of PLXNB3 prevented binding of the ligand Sema5A. Moreover, although PLXNA4 signaling can inhibit tumor cell migration, the mutated c.5206C>T, p.H1736Y allele had lost this activity. Our study is the first systematic analysis of the "plexinome" in human tumors, and indicates that multiple mutated plexins may be involved in cancer progression.
Collapse
Affiliation(s)
- Asha Balakrishnan
- Laboratory of Molecular Genetics, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Capparuccia L, Tamagnone L. Semaphorin signaling in cancer cells and in cells of the tumor microenvironment--two sides of a coin. J Cell Sci 2009; 122:1723-36. [PMID: 19461072 DOI: 10.1242/jcs.030197] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Semaphorins are a large family of secreted and membrane-bound molecules that were initially implicated in the development of the nervous system and in axon guidance. More recently, they have been found to regulate cell adhesion and motility, angiogenesis, immune responses, and tumor progression. Semaphorin receptors, the neuropilins and the plexins, are expressed by a wide variety of cell types, including endothelial cells, bone-marrow-derived cells and cancer cells. Interestingly, a growing body of evidence indicates that semaphorins also have an important role in cancer. It is now known that cancer progression, invasion and metastasis involve not only genetic changes in the tumor cells but also crosstalk between tumor cells and their surrounding non-tumor cells. Through the recruitment of endothelial cells, leukocytes, pericytes and fibroblasts, and the local release of growth factors and cytokines, the tumor microenvironment can mediate tumor-cell survival, tumor proliferation and regulation of the immune response. Moreover, by conferring cancer cells with an enhanced ability to migrate and invade adjacent tissues, extracellular regulatory signals can play a major role in the metastatic process. In this Commentary, we focus on the emerging role of semaphorins in mediating the crosstalk between tumor cells and multiple stromal cell types in the surrounding microenvironment.
Collapse
Affiliation(s)
- Lorena Capparuccia
- Institute for Cancer Research and Treatment (IRCC), University of Turin, S.P. 142, 10060, Candiolo (TO), Italy
| | | |
Collapse
|
45
|
|
46
|
Mertsch S, Becker M, Lichota A, Paulus W, Senner V. Vesicle amine transport protein-1 (VAT-1) is upregulated in glioblastomas and promotes migration. Neuropathol Appl Neurobiol 2009. [DOI: 10.1111/j.1365-2990.2008.00993.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Barresi V, Vitarelli E, Cerasoli S. Semaphorin3A immunohistochemical expression in human meningiomas: correlation with the microvessel density. Virchows Arch 2009; 454:563-71. [PMID: 19296128 DOI: 10.1007/s00428-009-0757-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 01/13/2023]
Abstract
The immunoexpression of the antiangiogenic factor semaphorin3A (SEMA3A) was evaluated in a series of meningiomas. Then, its correlations with the microvessel density (MVD) of the tumors and with the clinicopathological parameters as well with the survival time or recurrence-free interval were investigated. A positive SEMA3A immunostaining was found in most of meningiomas and a significant association was found between a high expression of this protein and a low MVD of the tumors. Moreover, a low SEMA3A immunoexpression was significantly correlated with a higher recurrence rate of meningiomas. In conclusion, our findings suggest a role for SEMA3A as an antiangiogenic factor in meningiomas with its decrease being associated with the development of recurrences. The supplementation of SEMA3A might be used in novel therapeutic antiangiogenic strategies to prevent the recurrence of highly vascularized meningiomas.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Human Pathology, University of Messina, Messina, Italy.
| | | | | |
Collapse
|
48
|
Catalano A, Lazzarini R, Di Nuzzo S, Orciari S, Procopio A. The plexin-A1 receptor activates vascular endothelial growth factor-receptor 2 and nuclear factor-kappaB to mediate survival and anchorage-independent growth of malignant mesothelioma cells. Cancer Res 2009; 69:1485-93. [PMID: 19176370 DOI: 10.1158/0008-5472.can-08-3659] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The semaphorins and their receptors, the neuropilins and the plexins, are constituents of a complex regulatory system that controls axonal guidance. Moreover, many types of tumor cells express various members of semaphorins and receptors, but the biological activities within tumor mass and the signal transduction mechanism(s) they use are largely unknown. Here, we show that in asbestos-related malignant pleural mesothelioma (MPM), Semaphorin-6D (Sema6D) and its receptor plexin-A1 are frequently expressed and trigger a prosurvival program that promotes anchorage-independent growth of MPM cells. Interestingly, the same response is also controlled by the tyrosine kinase receptors of vascular endothelial growth factor (VEGF) through a nuclear factor-kappaB (NF-kappaB)-dependent pathway. We found that in MPM cells, plexin-A1 and VEGF-receptor 2 (VEGF-R2) are associated in a complex. Moreover, the presence of Sema6D promotes the tyrosine phosphorylation of VEGF-R2 in a plexin-A1-dependent manner. This is necessary for basal and Sema6D-induced NF-kappaB transcriptional activity, and NF-kappaB mediates tumor cell survival. Expression of Sema6D and plexin-A1 is induced by asbestos fibers and overexpression of plexin-A1 in nonmalignant mesothelial cells inhibits cell death after asbestos exposure. This work identifies a new biological function of semaphorins in cancer cells and suggests the involvement of an undescribed survival pathway during MPM tumorigenesis.
Collapse
Affiliation(s)
- Alfonso Catalano
- Department of Molecular Pathology and Innovative Therapies, Marche University, Ancona, Italy.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Angiogenesis, the sprouting of new blood vessels from preexisting blood vessels, is a hallmark of glioma progression. Malignant gliomas are among the most lethal tumors with a very dismal prognosis, despite advances in standard therapy, including surgery, radiation, and chemotherapy. The median survival of patients with malignant gliomas has changed little in the last few years and is still measured in months. In an attempt to develop new therapeutic strategies and identify the molecular mechanism involved in glioma growth and progression, there has been extraordinary scientific interest in the past 2 decades in angiogenic responses associated with gliomas. This chapter focuses on the molecular mechanism of glioma angiogenesis and summarizes some of the therapeutic approaches based on antiangiogenesis.
Collapse
Affiliation(s)
- Marcia Machein
- Department of Neurosurgery, University of Freiburg Medical School, Breisacher Str. 64, Freiburg 79106, Germany.
| | | |
Collapse
|
50
|
Aubert M, Badoual M, Grammaticos B. A model for short- and long-range interactions of migrating tumour cell. Acta Biotheor 2008; 56:297-314. [PMID: 18843538 DOI: 10.1007/s10441-008-9061-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/22/2008] [Indexed: 01/06/2023]
Abstract
We examine the consequences of long-range effects on tumour cell migration. Our starting point are previous results of ours where we have shown that the migration patterns of glioma cells are best interpreted if one assumes attractive interactions between cells. Here we complement the cellular automaton model previously introduced by the assumption of the existence of a chemorepellent produced by the main bulk of large spheroids (in the hypoxic/necrotic areas). Visible effects due to the presence of such a substance can be found in the density profiles of cells migrating out of a single spheroid as well as in the angular distribution of cells coming from two close-lying spheroids. These effects depend crucially on the diffusion speed of the chemorepellent. A comparison of the simulation results to experimental data of Werbowetski et al. allows to draw (tentative) conclusions on the existence of a chemorepellent and its properties.
Collapse
|