1
|
Silva JA, Colquhoun A. Effect of Polyunsaturated Fatty Acids on Temozolomide Drug-Sensitive and Drug-Resistant Glioblastoma Cells. Biomedicines 2023; 11:biomedicines11030779. [PMID: 36979758 PMCID: PMC10045395 DOI: 10.3390/biomedicines11030779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Glioblastomas (GBMs) are notoriously difficult to treat, and the development of multiple drug resistance (MDR) is common during the course of the disease. The polyunsaturated fatty acids (PUFAs) gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have been reported to improve MDR in several tumors including breast, bladder, and leukaemia. However, the effects of PUFAs on GBM cell MDR are poorly understood. The present study investigated the effects of PUFAs on cellular responses to temozolomide (TMZ) in U87MG cells and the TMZ-resistant (TMZR) cells derived from U87MG. Cells were treated with PUFAs in the absence or presence of TMZ and dose–response, viable cell counting, gene expression, Western blotting, flow cytometry, gas chromatography-mass spectrometry (GCMS), and drug efflux studies were performed. The development of TMZ resistance caused an increase in ABC transporter ABCB1 and ABCC1 expression. GLA-, EPA-, and DHA-treated cells had altered fatty acid composition and accumulated lipid droplets in the cytoplasm. The most significant reduction in cell growth was seen for the U87MG and TMZR cells in the presence of EPA. GLA and EPA caused more significant effects on ABC transporter expression than DHA. GLA and EPA in combination with TMZ caused significant reductions in rhodamine 123 efflux from U87MG cells but not from TMZR cells. Overall, these findings support the notion that PUFAs can modulate ABC transporters in GBM cells.
Collapse
|
2
|
Bastian C, Zerimech S, Nguyen H, Doherty C, Franke C, Faris A, Quinn J, Baltan S. Aging astrocytes metabolically support aging axon function by proficiently regulating astrocyte-neuron lactate shuttle. Exp Neurol 2022; 357:114173. [PMID: 35863500 PMCID: PMC11218845 DOI: 10.1016/j.expneurol.2022.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
The astrocyte-neuron lactate shuttle (ANLS) is an essential metabolic support system that uptakes glucose, stores it as glycogen in astrocytes, and provides glycogen-derived lactate for axonal function. Aging intrinsically increases the vulnerability of white matter (WM) to injury. Therefore, we investigated the regulation of this shuttle to understand vascular-glial metabolic coupling to support axonal function during aging in two different WM tracts. Aging astrocytes displayed larger cell bodies and thicker horizontal processes in contrast to thinner vertically oriented processes of young astrocytes. Aging axons recovered less following aglycemia in mouse optic nerves (MONs) compared to young axons, although providing lactate during aglycemia equally supported young and aging axonal function. Incubating MONs in high glucose to upregulate glycogen stores in astrocytes delayed loss of function during aglycemia and improved recovery in both young and aging axons. Providing lactate during recovery from aglycemia unmasked a metabolic switch from glucose to lactate in aging axons. Young and aging corpus callosum consisting of a mixture of myelinated and unmyelinated axons sustained their function fully when lactate was available during aglycemia and surprisingly showed a greater resilience to aglycemia compared to fully myelinated axons of optic nerve. We conclude that lactate is a universal substrate for axons independent of their myelination content and age.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 441952, United States of America
| | - Sarah Zerimech
- Anesthesia and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, United States of America
| | - Hung Nguyen
- Anesthesia and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, United States of America
| | - Christine Doherty
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 441952, United States of America
| | - Caroline Franke
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 441952, United States of America
| | - Anna Faris
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 441952, United States of America
| | - John Quinn
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 441952, United States of America
| | - Selva Baltan
- Anesthesia and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, United States of America; Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 441952, United States of America.
| |
Collapse
|
3
|
Minireview Exploring the Biological Cycle of Vitamin B3 and Its Influence on Oxidative Stress: Further Molecular and Clinical Aspects. Molecules 2020; 25:molecules25153323. [PMID: 32707945 PMCID: PMC7436124 DOI: 10.3390/molecules25153323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin B3, or niacin, is one of the most important compounds of the B-vitamin complex. Recent reports have demonstrated the involvement of vitamin B3 in a number of pivotal functions which ensure that homeostasis is maintained. In addition, the intriguing nature of its synthesis and the underlying mechanism of action of vitamin B3 have encouraged further studies aimed at deepening our understanding of the close link between the exogenous supply of B3 and how it activates dependent enzymes. This crucial role can be attributed to the gut microflora and its ability to shape human behavior and development by mediating the bioavailability of metabolites. Recent studies have indicated a possible interconnection between the novel coronavirus and commensal bacteria. As such, we have attempted to explain how the gastrointestinal deficiencies displayed by SARS-CoV-2-infected patients arise. It seems that the stimulation of a proinflammatory cascade and the production of large amounts of reactive oxygen species culminates in the subsequent loss of host eubiosis. Studies of the relationhip between ROS, SARS-CoV-2, and gut flora are sparse in the current literature. As an integrated component, oxidative stress (OS) has been found to negatively influence host eubiosis, in vitro fertilization outcomes, and oocyte quality, but to act as a sentinel against infections. In conclusion, research suggests that in the future, a healthy diet may be considered a reliable tool for maintaining and optimizing our key internal parameters.
Collapse
|
4
|
Andreoli Miyake J, Nascimento Gomes R, Colquhoun A. Gamma-Linolenic acid alters migration, proliferation and apoptosis in human and rat glioblastoma cells. Prostaglandins Other Lipid Mediat 2020; 150:106452. [PMID: 32439412 DOI: 10.1016/j.prostaglandins.2020.106452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant astrocytoma, the main treatments consist of surgical resection followed by radiotherapy and chemotherapy. Patients, after diagnosed, have a survival rate of one year. GBM cells have an invasive, proliferative and migratory characteristic, also they do not respond properly for usual cancer treatment (radiotherapy, chemotherapy). Fatty acids have been studied as an adjuvant cancer treatment in breast, colorectal and GBM. The fatty acid can alter tumoural cell metabolism causing a modification of eicosanoids production. This study has observed some cellular aspects modified by fatty acid treatment in vitro, using GBM cells (human and rat). Modifications in cell behaviour were analyzed like cell proliferation, apoptosis, migration and invasion cell capacity after treatment with fatty acid (gamma-linolenic acid). The treatment suggested in this study showed an increased number of apoptotic cells and a decreased number of proliferative and migratory cells. These data recognize that gamma-linolenic acid could be used as an alternative treatment for glioblastoma.
Collapse
Affiliation(s)
- Juliano Andreoli Miyake
- Department of Morphological Sciences, Biological Sciences Centre, Federal University of Santa Catarina, Campus Trindade, Mailbox 476, 88040-900, Florianópolis, SC, Brazil.
| | - Renata Nascimento Gomes
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, 1374, Prof. Lineu Prestes Av. 05508-900, São Paulo, SP, Brazil.
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, 1374, Prof. Lineu Prestes Av. 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Riccardi DMDR, das Neves RX, de Matos-Neto EM, Camargo RG, Lima JDCC, Radloff K, Alves MJ, Costa RGF, Tokeshi F, Otoch JP, Maximiano LF, de Alcantara PSM, Colquhoun A, Laviano A, Seelaender M. Plasma Lipid Profile and Systemic Inflammation in Patients With Cancer Cachexia. Front Nutr 2020; 7:4. [PMID: 32083092 PMCID: PMC7005065 DOI: 10.3389/fnut.2020.00004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia affects about 80% of advanced cancer patients, it is linked to poor prognosis and to date, there is no efficient treatment or cure. The syndrome leads to progressive involuntary loss of muscle and fat mass induced by systemic inflammatory processes. The role of the white adipose tissue (WAT) in the onset and manifestation of cancer cachexia gained importance during the last decade. WAT wasting is not only characterized by increased lipolysis and release of free fatty acids (FFA), but in addition, owing to its high capacity to produce a variety of inflammatory factors. The aim of this study was to characterize plasma lipid profile of cachectic patients and to correlate the FA composition with circulating inflammatory markers; finally, we sought to establish whether the fatty acids released by adipocytes trigger and/or contribute to local and systemic inflammation in cachexia. The study selected 65 patients further divided into 3 groups: control (N); weight stable cancer (WSC); and cachectic cancer (CC). The plasma FA profile was significantly different among the groups and was positively correlated with pro-inflammatory cytokines expression in the CC patients. Therefore, we propose that saturated to unsaturated FFA ratio may serve as a means of detecting cachexia.
Collapse
Affiliation(s)
| | - Rodrigo Xavier das Neves
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Emidio Marques de Matos-Neto
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil.,Department of Physical Education, Federal University of Piaui, Teresina, Brazil
| | - Rodolfo Gonzalez Camargo
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | | | - Katrin Radloff
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Michele Joana Alves
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | | | - Flávio Tokeshi
- University Hospital of the University of São Paulo, São Paulo, Brazil
| | - José Pinhata Otoch
- University Hospital of the University of São Paulo, São Paulo, Brazil.,University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Linda Ferreira Maximiano
- University Hospital of the University of São Paulo, São Paulo, Brazil.,University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | | | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Alessandro Laviano
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil.,University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| |
Collapse
|
6
|
Dadfarma A, Shayanfar M, Benisi-Kohansal S, Mohammad-Shirazi M, Sharifi G, Hosseini S, Esmaillzadeh A. Dietary Polyunsaturated Fat Intake in Relation to Glioma: A Case-Control Study. Nutr Cancer 2018; 70:1026-1033. [PMID: 30321055 DOI: 10.1080/01635581.2018.1494845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study aimed to assess the association of dietary polyunsaturated fatty acid (PUFA) and risk of glioma among the Iranian population. A case-control study carried out among 128 newly diagnosed glioma adult patients with pathologically confirmed samples along with 256 sex- and age-matched controls. Dietary intake was examined by means of a validated semiquantitative food frequency questionnaire (FFQ). Total PUFA intake was computed by summing up dietary PUFAs from all food items in the questionnaire. Participants were categorized based on quartile cut-points of dietary PUFA intake. After taking into account the effect of age, sex and energy intake, individuals in the top quartile of PUFA intake were 77% less likely to have glioma than those in the bottom quartile (OR: 0.23; 95% CI: 0.11-0.48). Further adjustment for other potential variables strengthened the association. Additional controlling of nutrients did not alter the findings (OR: 0.19; 95% CI: 0.04-0.78). When we took into account the effect of body mass index (BMI), we found those in the highest quartile of PUFA intake has lower odds of glioma than those in the lowest (OR: 0.20; 95% CI: 0.05-0.84). We found dietary PUFA intake was inversely associated with risk of glioma in this case-control study on Iranian adults.
Collapse
Affiliation(s)
- Alireza Dadfarma
- a Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics , International Campus, Tehran University of Medical Sciences (IC-TUMS) , Tehran , Iran
| | - Mehdi Shayanfar
- b Department of Clinical Nutrition and Dietetics , National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sanaz Benisi-Kohansal
- c Department of Community Nutrition, School of Nutrition and Food Science , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Minoo Mohammad-Shirazi
- c Department of Community Nutrition, School of Nutrition and Food Science , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Giuve Sharifi
- d Department of Neurosurgery , Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Hosseini
- a Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics , International Campus, Tehran University of Medical Sciences (IC-TUMS) , Tehran , Iran.,e Endocrinology and Metabolism Research Center , Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran
| | - Ahmad Esmaillzadeh
- f Obesity and Eating Habits Research Center , Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran.,g Department of Community Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran.,h Department of Community Nutrition , Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
7
|
The prostanoid pathway contains potential prognostic markers for glioblastoma. Prostaglandins Other Lipid Mediat 2018; 137:52-62. [PMID: 29966699 DOI: 10.1016/j.prostaglandins.2018.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023]
Abstract
Prostanoids derived from the activity of cyclooxygenases and their respective synthases contribute to both active inflammation and immune response in the tumor microenvironment. Their synthesis, deactivation and role in glioma biology have not yet been fully explored and require further study. Using quantitative real time PCR, gas chromatography/ electron impact mass spectrometry and liquid chromatography/ electrospray ionization tandem mass spectrometry, we have further characterized the prostanoid pathway in grade IV glioblastoma (GBM). We observed significant correlations between high mRNA expression levels and poor patient survival for microsomal PGE synthase 1 (mPGES1) and prostaglandin reductase 1 (PTGR1). Conversely, high mRNA expression levels for 15-hydroxyprostaglandin dehydrogenase (15-HPGD) were correlated with better patient survival. GBMs had a higher quantity of the prostanoid precursor, arachidonic acid, versus grade II/III tumors and in GBMs a significant positive correlation was found between arachidonic acid and PGE2 content. GBMs also had higher concentrations of TXB2, PGD2, PGE2 and PGF2α versus grade II/III tumors. A significant decrease in survival was detected for high versus low PGE2, PGE2 + PGE2 deactivation products (PGEMs) and PGF2α in GBM patients. Our data show the potential importance of prostanoid metabolism in the progression towards GBM and provide evidence that higher PGE2 and PGF2α concentrations in the tumor are correlated with poorer patient survival. Our findings highlight the potential importance of the enzymes 15-HPGD and PTGR1 as prognostic biomarkers which could be used to predict survival outcome of patients with GBM.
Collapse
|
8
|
de Oliveira MR, Nabavi SF, Nabavi SM, Jardim FR. Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Colquhoun A. Cell biology-metabolic crosstalk in glioma. Int J Biochem Cell Biol 2017; 89:171-181. [PMID: 28549626 DOI: 10.1016/j.biocel.2017.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
The renewed interest in cancer metabolism in recent years has been fuelled by the identification of the involvement of key oncogenes and tumour suppressor genes in the control of metabolic pathways. Many of these alterations lead to dramatic changes in bioenergetics, biosynthesis and redox balance within tumour cells. The complex relationship between tumour cell metabolism and the tumour microenvironment has turned this field of biochemistry and cell biology into a challenging and exciting area for study. In the case of gliomas the involvement of altered metabolic pathways including glycolysis, oxidative phosphorylation and glutaminolysis are pointing the way to new possibilities for treatment. The tumour-promoting effects of inflammation are an emerging hallmark of cancer and the role of the eicosanoids in gliomas is an area of active research to elucidate the importance of individual eicosanoids in glioma cell proliferation, migration and immune escape. In this review, the different aspects of metabolic reprogramming which occur in gliomas are highlighted and their relationship to glioma cell biology and the wider tumour microenvironment is described.
Collapse
Affiliation(s)
- Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Basiricò L, Morera P, Dipasquale D, Tröscher A, Bernabucci U. Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells. J Dairy Sci 2017; 100:2299-2309. [PMID: 28088424 DOI: 10.3168/jds.2016-11729] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/19/2016] [Indexed: 01/01/2023]
Abstract
Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H2O2 exposure was assessed to evaluate and to compare the potential protection of different FA against H2O2-induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H2O2 compared with other FA.
Collapse
Affiliation(s)
- L Basiricò
- Dipartimento di Scienze e Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | - P Morera
- Dipartimento di Scienze e Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | - D Dipasquale
- Dipartimento di Scienze e Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy
| | | | - U Bernabucci
- Dipartimento di Scienze e Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, via S. Camillo De Lellis, s.n.c, 01100 Viterbo, Italy.
| |
Collapse
|
11
|
Antal O, Péter M, Hackler L, Mán I, Szebeni G, Ayaydin F, Hideghéty K, Vigh L, Kitajka K, Balogh G, Puskás LG. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1271-82. [PMID: 26092623 DOI: 10.1016/j.bbalip.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.
Collapse
Affiliation(s)
- Otilia Antal
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Mária Péter
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | | | - Imola Mán
- Avidin Ltd., Szeged H-6726, Hungary(3)
| | | | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Katalin Hideghéty
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, H-6720, Hungary
| | - László Vigh
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Klára Kitajka
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; Avidin Ltd., Szeged H-6726, Hungary(3)
| | - Gábor Balogh
- Laboratory of Molecular Stress Biology, Membrane and Stress Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Laszló G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; Avidin Ltd., Szeged H-6726, Hungary(3).
| |
Collapse
|
12
|
Borawska MH, Markiewicz-Żukowska R, Naliwajko SK, Moskwa J, Bartosiuk E, Socha K, Surażyński A, Kochanowicz J, Mariak Z. The interaction of bee products with temozolomide in human diffuse astrocytoma, glioblastoma multiforme and astroglia cell lines. Nutr Cancer 2014; 66:1247-56. [PMID: 25256634 DOI: 10.1080/01635581.2014.951735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present study, we investigated the influence of extracts from Salix spp. honey (ESH), beebread (EBB), and royal jelly (ERJ) with and without temozolomide (TMZ) on cell lines derived from a patient with diffuse astrocytoma (DASC), human glioblastoma multiforme (U87MG), and normal human astroglia (SVGp12). DASC was identified by immunocytochemistry. TMZ (20 μM) in combination with ESH (30 μg/mL), EBB (50 μg/mL), and ERJ (30 μg/mL) has stronger cytotoxic activity on U87MG cells after 72 h (20.0, 26.5, and 29.3% of control, respectively) than TMZ alone (about 6% of control). An increase of the cytotoxic effect and inhibition of DNA synthesis in SVGp12 were detected after administering TMZ with the studied extracts. NF-κB p50 subunit was reduced in U87MG cells after treatment with ESH (70.9%) and ESH + TMZ (74.7%). A significant decline of MMP-9 and MMP-2 secretion in cultured U87MG was detected after incubation with EBB (42.9% and 73.0%, respectively) and EBB + TMZ (38.4% and 68.5%, respectively). In conclusion, the use of bee products may increase the cytotoxic effect of TMZ in U87MG but also in SVGp12 cell line. It is important to note that the U87MG cells were sensitive to natural bee products, although there was no influence of natural bee products on the DASC cells.
Collapse
Affiliation(s)
- Maria H Borawska
- a Department of Bromatology , Medical University of Bialystok , Bialystok , Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Antal O, Hackler L, Shen J, Mán I, Hideghéty K, Kitajka K, Puskás LG. Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis. Lipids Health Dis 2014; 13:142. [PMID: 25182732 PMCID: PMC4176829 DOI: 10.1186/1476-511x-13-142] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background Based on previous observations a potential resort in the therapy of the particularly radioresistant glioma would be its treatment with unsaturated fatty acids (UFAs) combined with irradiation. Methods We evaluated the effect of different UFAs (arachidonic acid (AA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and oleic acid (OA)) on human U87 MG glioma cell line by classical biochemical end-point assays, impedance-based, real-time cellular and holographic microscopic analysis. We further analyzed AA, DHA, and GLA at morphological, gene and miRNA expression level. Results Corresponding to LDH-, MTS assays and real-time cytoxicity profiles AA, DHA, and GLA enhanced the radio sensitivity of glioma cells. The collective application of polyunsaturated fatty acids (PUFAs) and irradiation significantly changed the expression of EGR1, TNF-α, NOTCH1, c-MYC, TP53, HMOX1, AKR1C1, NQO1, while up-regulation of GADD45A, EGR1, GRP78, DDIT3, c-MYC, FOSL1 were recorded both in response to PUFA treatment or irradiation alone. Among the analyzed miRNAs miR-146 and miR-181a were induced by DHA treatment. Overexpression of miR-146 was also detected by combined treatment of GLA and irradiation. Conclusions Because PUFAs increased the radio responsiveness of glioma cells as assessed by biochemical and cellular assays, they might increase the therapeutic efficacy of radiation in treatment of gliomas. We demonstrated that treatment with DHA, AA and GLA as adjunct to irradiation up-regulated the expression of oxidative-stress and endoplasmic reticulum stress related genes, and affected NOTCH1 expression, which could explain their additive effects. Electronic supplementary material The online version of this article (doi:10.1186/1476-511X-13-142) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - László G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary.
| |
Collapse
|
14
|
Benadiba M, de M Costa I, Santos RLSR, Serachi FO, de Oliveira Silva D, Colquhoun A. Growth inhibitory effects of the Diruthenium-Ibuprofen compound, [Ru2Cl(Ibp) 4], in human glioma cells in vitro and in the rat C6 orthotopic glioma in vivo. J Biol Inorg Chem 2014; 19:1025-35. [PMID: 24824561 DOI: 10.1007/s00775-014-1143-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
Abstract
The Diruthenium-Ibuprofen compound [Ru2Cl(Ibp)4] (or RuIbp) is known to cause significant inhibition of C6 rat glioma cell proliferation in vitro. RuIbp increased the expression of cell cycle-related proteins such as p21 and p27 and the pro-apoptotic protein Bax, as well as causing a reduction in mitochondrial membrane potential and a modest increase in apoptosis in vitro. The present study extended these findings by (i) investigating the effects of RuIbp on human glioma cell line proliferation in vitro and (ii) investigating the acute and chronic toxicology of the compound in normal Wistar rats. The compound was then tested for its anti-tumour properties by either chronic 14 days intra-peritoneal (IP) administration or chronic Alzet osmotic pump infusion, in the rat C6 orthotopic glioma model in vivo. The IP injection of RuIbp caused a 41 % inhibition of tumour area without significant toxic effects but with an increase in blood neutrophils and monocytes and a decrease in blood lymphocytes. In an attempt to reduce this effect RuIbp was administered by Alzet osmotic pump infusion directly into the tumour at a dose of 15 mg/kg with an infusion rate of 0.5 µL/h for 14 days. The direct infusion of RuIbp caused a 45 % inhibition of tumour area without alterations in differential blood leukocyte counts. These results prove the efficacy of RuIbp in human glioma cell lines in vitro and in an in vivo glioma model and point to its potential as an inhibitor of tumour growth in vivo.
Collapse
Affiliation(s)
- Marcel Benadiba
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Sandrone SS, Repossi G, Candolfi M, Eynard AR. Polyunsaturated fatty acids and gliomas: a critical review of experimental, clinical, and epidemiologic data. Nutrition 2014; 30:1104-9. [PMID: 24976422 DOI: 10.1016/j.nut.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/12/2014] [Indexed: 01/25/2023]
Abstract
Certain polyunsaturated fatty acids (PUFAs) called essential fatty acids (EFAs) cannot be biosynthesized by the body and hence, need to be obtained from diet. These PUFAs and their metabolites have multiple physiological functions that are altered in tumor cells due to a decreased expression of Δdelta-6-desaturase, which is an essential step in their metabolism. As a result, tumor cells would be protected from the toxic effect caused by free radicals, one product of EFA metabolism. EFAs have been proposed to have therapeutic potential in the treatment of glioblastoma. Gliomas are the most common primary tumors of the central nervous system in children and adults. High-grade gliomas remain a therapeutic challenge in neuro-oncology because there is no treatment that achieves a significant improvement in survival. Novel therapeutic strategies that use PUFAs for the treatment of gliomas have been assessed in cell cultures, rodent glioma models, and humans, with encouraging results. Here we review the latest progress made in the field.
Collapse
Affiliation(s)
- Silvana Silvia Sandrone
- Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Servicio de Patología, Hospital Rawson de Córdoba, Córdoba, Argentina
| | - Gaston Repossi
- Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Cátedra de Histología, Embriología y Genética, Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina; CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Aldo Renato Eynard
- Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
16
|
Gomes RN, Colquhoun A. E series prostaglandins alter the proliferative, apoptotic and migratory properties of T98G human glioma cells in vitro. Lipids Health Dis 2012; 11:171. [PMID: 23231886 PMCID: PMC3547780 DOI: 10.1186/1476-511x-11-171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/04/2012] [Indexed: 12/02/2022] Open
Abstract
Background In many types of cancer, prostaglandin E2 (PGE2) is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE1, PGE2 and Ibuprofen (IBP) observed in the T98G human glioma cell line in vitro. Methods T98G human glioma cells were treated with IBP, PGE1 or PGE2 at varying concentrations for 24–72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively). The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results A significant decrease was seen in cell number (54%) in the presence of 50 μM IBP. Mitotic index and bromodeoxyuridine (BrdU) incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167%) and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74%) and the transwell migration assay (36%). In contrast, the presence of exogenous PGE1 or PGE2 caused significant increases in cell number (37% PGE1 and 45% PGE2). When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE1 (62%) and to a greater extent by PGE2 (100%). The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE1 and 44% PGE2) and the transwell migration assay (28% PGE1 and 68% PGE2). Conclusions The present study demonstrated that treatments which alter PGE1 and PGE2 metabolism influence the proliferative and apoptotic indices of T98G glioma cells. The migratory capacity of the cells was also significantly affected by the change in prostaglandin metabolism. Modifying PG metabolism remains an interesting target for future studies in gliomas.
Collapse
Affiliation(s)
- Renata N Gomes
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
17
|
Inhibition of C6 rat glioma proliferation by [Ru2Cl(Ibp)4] depends on changes in p21, p27, Bax/Bcl2 ratio and mitochondrial membrane potential. J Inorg Biochem 2010; 104:928-35. [DOI: 10.1016/j.jinorgbio.2010.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 11/19/2022]
|
18
|
Colquhoun A. Lipids, mitochondria and cell death: implications in neuro-oncology. Mol Neurobiol 2010; 42:76-88. [PMID: 20429043 DOI: 10.1007/s12035-010-8134-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 12/31/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are known to inhibit cell proliferation of many tumour types both in vitro and in vivo. Their capacity to interfere with cell proliferation has been linked to their induction of reactive oxygen species (ROS) production in tumour tissues leading to cell death through apoptosis. However, the exact mechanisms of action of PUFAs are far from clear, particularly in brain tumours. The loss of bound hexokinase from the mitochondrial voltage-dependent anion channel has been directly related to loss of protection from apoptosis, and PUFAs can induce this loss of bound hexokinase in tumour cells. Tumour cells overexpressing Akt activity, including gliomas, are sensitised to ROS damage by the Akt protein and may be good targets for chemotherapeutic agents, which produce ROS, such as PUFAs. Cardiolipin peroxidation may be an initial event in the release of cytochrome c from the mitochondria, and enriching cardiolipin with PUFA acyl chains may lead to increased peroxidation and therefore an increase in apoptosis. A better understanding of the metabolism of fatty acids and eicosanoids in primary brain tumours such as gliomas and their influence on energy balance will be fundamental to the possible targeting of mitochondria in tumour treatment.
Collapse
Affiliation(s)
- Alison Colquhoun
- Laboratory of Tumour Cell Metabolism, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, Avenida Prof. Lineu Prestes 1524, CEP 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Ribeiro G, Benadiba M, de Oliveira Silva D, Colquhoun A. The novel rutheniumâγ-linolenic complex [Ru2(aGLA)4Cl] inhibits C6 rat glioma cell proliferation and induces changes in mitochondrial membrane potential, increased reactive oxygen species generation and apoptosisin vitro. Cell Biochem Funct 2010; 28:15-23. [DOI: 10.1002/cbf.1626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Benadiba M, Miyake JA, Colquhoun A. Gamma-linolenic acid alters Ku80, E2F1, and bax expression and induces micronucleus formation in C6 glioma cells in vitro. IUBMB Life 2009; 61:244-51. [PMID: 19180667 DOI: 10.1002/iub.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gamma-linolenic acid (GLA) is an inhibitor of tumor cell proliferation in both in vitro and in vivo conditions. The aim of this study was to investigate the effects of 150 muM GLA on the expression of E2F1, cyclin D1, bax, bcl2, Ku70, and Ku80 in C6 rat glioma cells. The Ku proteins were chosen as previous studies have shown that loss or reduction in their expression causes increased DNA damage and micronucleus formation in the presence of radiation. The fact that GLA exposure is known to enhance the efficacy of radiation treatment raised the question whether the Ku proteins could be involved in this effect as seen for other molecules such as roscovitine and flavopiridol. GLA altered the mRNA expression of E2F1, cyclin D1, and bax, but no changes were found for bcl2, Ku70, and Ku80. Alterations in protein expression were observed for bax, Ku80, and E2F1. The 45% decrease in E2F1 expression was proportional to decreased cell proliferation (44%). Morphological analysis found a 25% decrease in mitotic activity in the GLA-treated cells, which was accompanied by a 49% decrease in S-phase by FACS analysis. A 39% increase in the number of micronuclei detected by Hoechst fluorescence points to GLA's effects on cell division even at concentrations that do not produce significant increases in apoptosis. Most important was the finding that Ku80 expression, a critical protein involved in DNA repair as a heterodimer with Ku70, was decreased by 71%. It is probable that reduced Ku80 is responsible for the increase in micronucleus formation in GLA-treated cells in a similar manner to that found in Ku80 null cells exposed to radiation. The decreased expression of Ku80 and E2F1 could make cells more susceptible to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Marcel Benadiba
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
21
|
Leonardi F, Attorri L, Di Benedetto R, Di Biase A, Sanchez M, Nardini M, Salvati S. Effect of arachidonic, eicosapentaenoic and docosahexaenoic acids on the oxidative status of C6 glioma cells. Free Radic Res 2009; 39:865-74. [PMID: 16036367 DOI: 10.1080/10715760500145069] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFAs) have been described to have beneficial effects on brain development and in the prevention and treatment of brain damage. C6 glioma cells were incubated with 100 microM of either C20:4n-6 (ARA), or C20:5n-3 (EPA), or C22:6n-3 (DHA) for different time periods to assess whether these acids altered the cellular oxidative state. The ARA and EPA were promptly metabolised to C22:4n-6 and C22:5n-3, respectively, whereas DHA treatment simply increased the amount of DHA in the cells. Cell viability was not affected by ARA, while a cytotoxic effect was observed 72 h after n-3 PUFAs supplementation. The levels of reactive oxygen species and thiobarbituric acid-reactive substances were significantly higher in DHA-treated cells than in EPA- and ARA-treated groups. This modification in the oxidative cellular status was also highlighted by a significant increase in catalase activity and a decrease in glutathione content in DHA-supplemented cells. Glucose-6-phosphate dehydrogenase activity, an enzyme involved in redox regulation, and O2*- release were significantly increased both in EPA and DHA groups. The effect of DHA was more severe than that of EPA. No significant changes were observed in the ARA group with respect to untreated cells. These data show that EPA and DHA induce alterations in the oxidative status that could affect the glial function.
Collapse
Affiliation(s)
- Fabiana Leonardi
- Food Science, Nutrition and Health Department, Intituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Miyake JA, Benadiba M, Colquhoun A. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis 2009; 8:8. [PMID: 19292920 PMCID: PMC2661078 DOI: 10.1186/1476-511x-8-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. METHODS Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. RESULTS GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. CONCLUSION Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Collapse
Affiliation(s)
- Juliano Andreoli Miyake
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
23
|
Mechanisms of action of eicosapentaenoic acid in bladder cancer cells in vitro: alterations in mitochondrial metabolism, reactive oxygen species generation and apoptosis induction. J Urol 2009; 181:1885-93. [PMID: 19237174 DOI: 10.1016/j.juro.2008.11.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Indexed: 11/23/2022]
Abstract
PURPOSE Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. MATERIALS AND METHODS T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed. Reactive oxygen species and lipid peroxide production were also determined. RESULTS Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. CONCLUSIONS These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Collapse
|
24
|
Guo S, Miyake M, Liu KJ, Shi H. Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment. J Neurochem 2009; 108:1309-21. [PMID: 19183269 DOI: 10.1111/j.1471-4159.2009.05877.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypoxia inducible factor 1 (HIF-1) has been suggested to play a critical role in the fate of cells exposed to hypoxic stress. However, the mechanism of HIF-1-regulated cell survival is still not fully understood in ischemic conditions. Redox status is critical for decisions of cell survival, death and differentiation. We investigated the effects of inhibiting HIF-1 on cellular redox status in SH-SY5Y cells exposed to hypoxia or oxygen and glucose deprivation (OGD), coupled with cell death analyses. Our results demonstrated that inhibiting HIF-1alpha expression by HIF-1alpha specific small interfering RNA (siRNA) transfection increased reactive oxygen species generation, and transformed the cells to more oxidizing environments (low GSH/GSSG ratio, low NADPH level) under either hypoxic or OGD exposure. Cell death increased dramatically in the siRNA transfected cells, compared to non-transfected cells after hypoxic/OGD exposures. In contrast, increasing HIF-1alpha expression by desferrioxamine, a metal chelator and hydroxylase inhibitor, induced a more reducing environment (high GSH/GSSG ratio, high NADPH level) and reduced cell death. Further studies showed that HIF-1 regulated not only glucose transporter-1 expression, but also the key enzymes of the pentose phosphate pathway such as glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. These enzymes are important in maintaining cellular redox homeostasis by generating NADPH, the primary reducing agent in cells. Moreover, catalase significantly decreased cell death in the siRNA-transfected cells induced by hypoxia and OGD. These results suggest that maintenance of cellular redox status by HIF-1 protects cells from hypoxia and ischemia mediated injuries.
Collapse
Affiliation(s)
- Shuhong Guo
- University of New Mexico Health Sciences Center, Albuquerque, USA
| | | | | | | |
Collapse
|
25
|
Serini S, Piccioni E, Merendino N, Calviello G. Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis 2009; 14:135-52. [DOI: 10.1007/s10495-008-0298-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Ribeiro G, Benadiba M, Colquhoun A, de Oliveira Silva D. Diruthenium(II,III) complexes of ibuprofen, aspirin, naproxen and indomethacin non-steroidal anti-inflammatory drugs: Synthesis, characterization and their effects on tumor-cell proliferation. Polyhedron 2008. [DOI: 10.1016/j.poly.2007.12.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Díaz-Flores M, Ibáñez-Hernández MA, Galván RE, Gutiérrez M, Durán-Reyes G, Medina-Navarro R, Pascoe-Lira D, Ortega-Camarillo C, Vilar-Rojas C, Cruz M, Baiza-Gutman LA. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Life Sci 2005; 78:2601-7. [PMID: 16325866 DOI: 10.1016/j.lfs.2005.10.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 10/11/2005] [Indexed: 12/16/2022]
Abstract
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.
Collapse
Affiliation(s)
- Margarita Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS-México, México.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leaver HA, Williams JR, Smith C, Whittle IR. Intracellular oxidation by human glioma cell populations: effect of arachidonic acid. Prostaglandins Leukot Essent Fatty Acids 2004; 70:449-53. [PMID: 15062847 DOI: 10.1016/j.plefa.2003.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 09/05/2003] [Indexed: 11/23/2022]
Abstract
Arachidonic acid (AA) and Gamma linolenic acid have been shown to limit glioma cell growth, stimulate apoptosis and lipid peroxidation. However, brain tumours are characterised by cellular heterogeneity and responding cell populations have not been identified. Brain tumour samples from patients were disaggregated. In cell preparations from 7 gliomas, reactive oxygen species (ROS), morphology and plasma membrane integrity were monitored +/-18-36 microM AA for 15-120 min using flow cytometry. Basal oxidative activity related to cell size/morphology, small granular cells showed lower activity. AA stimulation of ROS formation depended on cell size/morphology. Large, less granular cells showed greater AA stimulation. In 17 gliomas, GFAP immunofluorescence was demonstrated in larger cell populations. The large GFAP positive cell population with low side scatter was the highest responding cell population, suggesting selective tumour cell sensitivity to AA induced ROS formation. ROS may have a role in AA induced cell death and anti-tumour activity of AA in glioma.
Collapse
Affiliation(s)
- H A Leaver
- Department of Clinical Neurosciences, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU UK.
| | | | | | | |
Collapse
|