1
|
Reshamwala R, Oieni F, Shah M. Non-stem Cell Mediated Tissue Regeneration and Repair. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
2
|
Denaro S, D’Aprile S, Alberghina C, Pavone AM, Torrisi F, Giallongo S, Longhitano L, Mannino G, Lo Furno D, Zappalà A, Giuffrida R, Tibullo D, Li Volti G, Vicario N, Parenti R. Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Front Immunol 2022; 13:1098212. [PMID: 36601122 PMCID: PMC9806219 DOI: 10.3389/fimmu.2022.1098212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence sustains glial cells as critical players during central nervous system (CNS) development, homeostasis and disease. Olfactory ensheathing cells (OECs), a type of specialized glia cells sharing properties with both Schwann cells and astrocytes, are of critical importance in physiological condition during olfactory system development, supporting its regenerative potential throughout the adult life. These characteristics prompted research in the field of cell-based therapy to test OEC grafts in damaged CNS. Neuroprotective mechanisms exerted by OEC grafts are not limited to axonal regeneration and cell differentiation. Indeed, OEC immunomodulatory properties and their phagocytic potential encourage OEC-based approaches for tissue regeneration in case of CNS injury. Herein we reviewed recent advances on the immune role of OECs, their ability to modulate CNS microenvironment via bystander effects and the potential of OECs as a cell-based strategy for tissue regeneration.
Collapse
Affiliation(s)
- Simona Denaro
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona D’Aprile
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristiana Alberghina
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Maria Pavone
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Torrisi
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Debora Lo Furno
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| |
Collapse
|
3
|
Li X, Zhang X, Hao M, Wang D, Jiang Z, Sun L, Gao Y, Jin Y, Lei P, Zhuo Y. The application of collagen in the repair of peripheral nerve defect. Front Bioeng Biotechnol 2022; 10:973301. [PMID: 36213073 PMCID: PMC9542778 DOI: 10.3389/fbioe.2022.973301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Collagen is a natural polymer expressed in the extracellular matrix of the peripheral nervous system. It has become increasingly crucial in peripheral nerve reconstruction as it was involved in regulating Schwann cell behaviors, maintaining peripheral nerve functions during peripheral nerve development, and being strongly upregulated after nerve injury to promote peripheral nerve regeneration. Moreover, its biological properties, such as low immunogenicity, excellent biocompatibility, and biodegradability make it a suitable biomaterial for peripheral nerve repair. Collagen provides a suitable microenvironment to support Schwann cells’ growth, proliferation, and migration, thereby improving the regeneration and functional recovery of peripheral nerves. This review aims to summarize the characteristics of collagen as a biomaterial, analyze its role in peripheral nerve regeneration, and provide a detailed overview of the recent advances concerning the optimization of collagen nerve conduits in terms of physical properties and structure, as well as the application of the combination with the bioactive component in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Hao
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| | - Yue Zhuo
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| |
Collapse
|
4
|
Jiang Y, Guo J, Tang X, Wang X, Hao D, Yang H. The Immunological Roles of Olfactory Ensheathing Cells in the Treatment of Spinal Cord Injury. Front Immunol 2022; 13:881162. [PMID: 35669779 PMCID: PMC9163387 DOI: 10.3389/fimmu.2022.881162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 01/16/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating type of neurological disorder of the central nervous system (CNS) with high mortality and disability. The pathological processes of SCI can usually be described as two stages, namely, primary and acute secondary injuries. Secondary injury produces more significant exacerbations of the initial injury. Among all the mechanisms of secondary damage, infection and inflammatory responses, as the principle culprits in initiating the second phase of SCI, can greatly contribute to the severity of SCI and numerous sequelae after SCI. Therefore, effectively antagonizing pro-inflammatory responses may be a promising treatment strategy to facilitate functional recovery after SCI. Olfactory ensheathing cells (OECs), a unique type of glial cells, have increasingly become potential candidates for cell-based therapy in the injured CNS. Strikingly, there is growing evidence that the mechanisms underlying the anti-inflammatory role of OECs are associated with the immune properties and secretory functions of these cells responsible for anti-neuroinflammation and immunoregulatory effects, leading to maintenance of the internal microenvironment. Accordingly, a more profound understanding of the mechanism of OEC immunological functions in the treatment of SCI would be beneficial to improve the therapeutic clinical applications of OECs for SCI. In this review, we mainly summarize recent research on the cellular and molecular immune attributes of OECs. The unique biological functions of these cells in promoting neural regeneration are discussed in relation of the development of novel therapies for CNS injury.
Collapse
Affiliation(s)
- Yizhen Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Guo
- Department of Joint Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang,
| |
Collapse
|
5
|
Mori E, Ueha R, Kondo K, Funada S, Shimmura H, Kanemoto K, Tanaka H, Nishijima H, Otori N, Yamasoba T, Kojima H. Squamous and Respiratory Metaplasia After Olfactory Mucosal Resection. Front Neurosci 2021; 15:695653. [PMID: 34354563 PMCID: PMC8329582 DOI: 10.3389/fnins.2021.695653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Resection of the olfactory mucosa (OM) is sometimes unavoidable during surgery; however, it is not known whether the OM can completely recover thereafter. The aim of this study was to uncover whether the OM fully recovers after mucosal resection and describe the process of OM regeneration. 8-week-old male Sprague–Dawley rats (n = 18) were subjected to OM resection at the nasal septum; six rats were euthanized for histological examination 0, 30, and 90 days after surgery. Immunohistochemistry was performed to identify olfactory receptor neuron (ORN) lineage cells [mature and immature ORNs and ORN progenitors, and olfactory ensheathing cells (OECs)], as well as dividing and apoptotic cells. Squamous and respiratory metaplasia and inflammatory cell infiltration were also assessed. On day 30 after resection, the mucosa had regenerated, and mainly contained thin nerve bundles, basal cells, and immature ORNs, with a few mature ORNs and OECs. On day 90, the repaired nasal mucosa had degenerated into stratified squamous or ciliated pseudostratified columnar epithelia, with reducing ORNs. The lamina propria contained numerous macrophages. Partial regeneration was observed within 1 month after OM resection, whereas subsequent degeneration into squamous and respiratory epithelia occurred within 3 months. Given the poor persistence of ORNs and OECs, OM resection is likely to result in olfactory impairment. Overall, surgeons should be cautious not to injure the OM during surgery.
Collapse
Affiliation(s)
- Eri Mori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Rumi Ueha
- Swallowing Center, The University of Tokyo Hospital, Tokyo, Japan.,Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shotaro Funada
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hajime Shimmura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kai Kanemoto
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hirotaka Tanaka
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Antimicrobial responses of peripheral and central nervous system glia against Staphylococcus aureus. Sci Rep 2021; 11:10722. [PMID: 34021227 PMCID: PMC8140078 DOI: 10.1038/s41598-021-90252-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus infections of the central nervous system are serious and can be fatal. S. aureus is commonly present in the nasal cavity, and after injury to the nasal epithelium it can rapidly invade the brain via the olfactory nerve. The trigeminal nerve constitutes another potential route of brain infection. The glia of these nerves, olfactory ensheathing cells (OECs) and trigeminal nerve Schwann cells (TgSCs), as well as astrocytes populating the glia limitans layer, can phagocytose bacteria. Whilst some glial responses to S. aureus have been studied, the specific responses of different glial types are unknown. Here, we compared how primary mouse OECs, TgSCs, astrocytes and microglia responded to S. aureus. All glial types internalized the bacteria within phagolysosomes, and S. aureus-conjugated BioParticles could be tracked with subtle but significant differences in time-course of phagocytosis between glial types. Live bacteria could be isolated from all glia after 24 h in culture, and microglia, OECs and TgSCs exhibited better protection against intracellular S. aureus survival than astrocytes. All glial types responded to the bacteria by cytokine secretion. Overall, OECs secreted the lowest level of cytokines, suggesting that these cells, despite showing strong capacity for phagocytosis, have immunomodulatory functions that can be relevant for neural repair.
Collapse
|
7
|
Carvalho LA, Teng J, Fleming RL, Tabet EI, Zinter M, de Melo Reis RA, Tannous BA. Olfactory Ensheathing Cells: A Trojan Horse for Glioma Gene Therapy. J Natl Cancer Inst 2020; 111:283-291. [PMID: 30257000 DOI: 10.1093/jnci/djy138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/18/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The olfactory ensheathing cells (OECs) migrate from the peripheral nervous system to the central nervous system (CNS), a critical process for the development of the olfactory system and axonal extension after injury in neural regeneration. Because of their ability to migrate to the injury site and anti-inflammatory properties, OECs were tested against different neurological pathologies, but were never studied in the context of cancer. Here, we evaluated OEC tropism to gliomas and their potential as a "Trojan horse" to deliver therapeutic transgenes through the nasal pathway, their natural route to CNS. METHODS OECs were purified from the mouse olfactory bulb and engineered to express a fusion protein between cytosine deaminase and uracil phosphoribosyltransferase (CU), which convert the prodrug 5-fluorocytosine (5-FC) into cytotoxic metabolite 5-fluorouracil, leading to a bystander killing of tumor cells. These cells were injected into the nasal cavity of mice bearing glioblastoma tumors and OEC-mediated gene therapy was monitored by bioluminescence imaging and confirmed with survival and ex vivo histological analysis. All statistical tests were two-sided. RESULTS OECs migrated from the nasal pathway to the primary glioma site, tracked infiltrative glioma stemlike cells, and delivered therapeutic transgene, leading to a slower tumor growth and increased mice survival. At day 28, bioluminescence imaging revealed that mice treated with a single injection of OEC-expressing CU and 5-FC had tumor-associated photons (mean [SD]) of 1.08E + 08 [9.7E + 07] vs 4.1E + 08 [2.3E + 08] for control group (P < .001), with a median survival of 41 days vs 34 days, respectively (ratio = 0.8293, 95% confidence interval = 0.4323 to 1.226, P < .001) (n = 9 mice per group). CONCLUSIONS We show for the first time that autologous transplantation of OECs can target and deliver therapeutic transgenes to brain tumors upon intranasal delivery, the natural route of OECs to the CNS, which could be extended to other types of cancer.
Collapse
Affiliation(s)
- Litia A Carvalho
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Jian Teng
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Renata L Fleming
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Elie I Tabet
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Max Zinter
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| | - Ricardo A de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA.,Neuroscience Program, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Reshamwala R, Shah M, Belt L, Ekberg JAK, St John JA. Reliable cell purification and determination of cell purity: crucial aspects of olfactory ensheathing cell transplantation for spinal cord repair. Neural Regen Res 2020; 15:2016-2026. [PMID: 32394949 PMCID: PMC7716040 DOI: 10.4103/1673-5374.282218] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transplantation of olfactory ensheathing cells, the glia of the primary olfactory nervous system, has been trialed for spinal cord injury repair with promising but variable outcomes in animals and humans. Olfactory ensheathing cells can be harvested either from the lamina propria beneath the neuroepithelium in the nasal cavity, or from the olfactory bulb in the brain. As these areas contain several other cell types, isolating and purifying olfactory ensheathing cells is a critical part of the process. It is largely unknown how contaminating cells such as fibroblasts, other glial cell types and supporting cells affect olfactory ensheathing cell function post-transplantation; these cells may also cause unwanted side-effects. It is also, however, possible that the presence of some of the contaminant cells can improve outcomes. Here, we reviewed the last decade of olfactory ensheathing cell transplantation studies in rodents, with a focus on olfactory ensheathing cell purity. We analyzed how purification methods and resultant cell purity differed between olfactory mucosa- and olfactory bulb-derived cell preparations. We analyzed how the studies reported on olfactory ensheathing cell purity and which criteria were used to define cells as olfactory ensheathing cells. Finally, we analyzed the correlation between cell purity and transplantation outcomes. We found that olfactory bulb-derived olfactory ensheathing cell preparations are typically purer than mucosa-derived preparations. We concluded that there is an association between high olfactory ensheathing cell purity and favourable outcomes, but the lack of olfactory ensheathing cell-specific markers severely hampers the field.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lucy Belt
- Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Reshamwala R, Shah M, St John J, Ekberg J. Survival and Integration of Transplanted Olfactory Ensheathing Cells are Crucial for Spinal Cord Injury Repair: Insights from the Last 10 Years of Animal Model Studies. Cell Transplant 2019; 28:132S-159S. [PMID: 31726863 PMCID: PMC7016467 DOI: 10.1177/0963689719883823] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system, support the natural regeneration of the olfactory nerve that occurs throughout life. OECs thus exhibit unique properties supporting neuronal survival and growth. Transplantation of OECs is emerging as a promising treatment for spinal cord injury; however, outcomes in both animals and humans are variable and the method needs improvement and standardization. A major reason for the discrepancy in functional outcomes is the variability in survival and integration of the transplanted cells, key factors for successful spinal cord regeneration. Here, we review the outcomes of OEC transplantation in rodent models over the last 10 years, with a focus on survival and integration of the transplanted cells. We identify the key factors influencing OEC survival: injury type, source of transplanted cells, co-transplantation with other cell types, number and concentration of cells, method of delivery, and time of transplantation after the injury. We found that two key issues are hampering optimization and standardization of OEC transplantation: lack of (1) reliable methods for identifying transplanted cells, and (2) three-dimensional systems for OEC delivery. To develop OEC transplantation as a successful and standardized therapy for spinal cord injury, we must address these issues and increase our understanding of the complex parameters influencing OEC survival.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - James St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Jenny Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Zhang L, Zhuang X, Chen Y, Xia H. Intravenous transplantation of olfactory bulb ensheathing cells for a spinal cord hemisection injury rat model. Cell Transplant 2019; 28:1585-1602. [PMID: 31665910 PMCID: PMC6923555 DOI: 10.1177/0963689719883842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular transplantation strategies utilizing intraspinal or intrathecal olfactory
ensheathing cells (OECs) have been reported as beneficial for spinal cord injury (SCI).
However, there are many disadvantages of these methods, including additional trauma to the
spinal cord parenchyma and technical challenges. Therefore, we investigated the
feasibility and potential benefits of intravenous transplantation of OECs in a rat
hemisection SCI model. OECs derived from olfactory bulb tissue were labeled with quantum
dots (QDs), and their biodistribution after intravenous transplantation was tracked using
a fluorescence imaging system. Accumulation of the transplanted OECs was observed in the
injured spinal cord within 10 min, peaked at seven days after cell transplantation, and
decreased gradually thereafter. This time window corresponded to the blood–spinal cord
barrier (BSCB) opening time, which was quantitated with the Evans blue leakage assay.
Using immunohistochemistry, we examined neuronal growth (GAP-43), remyelination (MBP), and
microglia (Iba-1) reactions at the lesion site. Motor function recovery was also measured
using a classic open field test (Basso, Beattie and Bresnahan score). Compared with the
group injected only with QDs, the rats that received OEC transplantation exhibited a
prominent reduction in inflammatory responses, increased neurogenesis and remyelination,
and significant improvement in motor function. We suggest that intravenous injection could
also be an effective method for delivering OECs and improving functional outcomes after
SCI. Moreover, the time course of BSCB disruption provides a clinically relevant
therapeutic window for cell-based intervention.
Collapse
Affiliation(s)
- Lijian Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Surgery Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China.,Both the authors are co-authors and contributed equally to this article
| | - Xiaoqing Zhuang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Both the authors are co-authors and contributed equally to this article
| | - Yao Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
11
|
Murtaza M, Chacko A, Delbaz A, Reshamwala R, Rayfield A, McMonagle B, St John JA, Ekberg JAK. Why are olfactory ensheathing cell tumors so rare? Cancer Cell Int 2019; 19:260. [PMID: 31632194 PMCID: PMC6788004 DOI: 10.1186/s12935-019-0989-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
The glial cells of the primary olfactory nervous system, olfactory ensheathing cells (OECs), are unusual in that they rarely form tumors. Only 11 cases, all of which were benign, have been reported to date. In fact, the existence of OEC tumors has been debated as the tumors closely resemble schwannomas (Schwann cell tumors), and there is no definite method for distinguishing the two tumor types. OEC transplantation is a promising therapeutic approach for nervous system injuries, and the fact that OECs are not prone to tumorigenesis is therefore vital. However, why OECs are so resistant to neoplastic transformation remains unknown. The primary olfactory nervous system is a highly dynamic region which continuously undergoes regeneration and neurogenesis throughout life. OECs have key roles in this process, providing structural and neurotrophic support as well as phagocytosing the axonal debris resulting from turnover of neurons. The olfactory mucosa and underlying tissue is also frequently exposed to infectious agents, and OECs have key innate immune roles preventing microbes from invading the central nervous system. It is possible that the unique biological functions of OECs, as well as the dynamic nature of the primary olfactory nervous system, relate to the low incidence of OEC tumors. Here, we summarize the known case reports of OEC tumors, discuss the difficulties of correctly diagnosing them, and examine the possible reasons for their rare incidence. Understanding why OECs rarely form tumors may open avenues for new strategies to combat tumorigenesis in other regions of the nervous system.
Collapse
Affiliation(s)
- Mariyam Murtaza
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Anu Chacko
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Ali Delbaz
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Ronak Reshamwala
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Andrew Rayfield
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Brent McMonagle
- 4Department of Otolaryngology-Head and Neck Surgery, Gold Coast University Hospital, 1 Hospital Boulevard, Southport, QLD 4215 Australia
| | - James A St John
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| | - Jenny A K Ekberg
- 1Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111 Australia.,2Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia.,3Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111 Australia
| |
Collapse
|
12
|
Nazareth L, Chen M, Shelper T, Shah M, Tello Velasquez J, Walkden H, Beacham I, Batzloff M, Rayfield A, Todorovic M, Beagley KW, St John JA, Ekberg JAK. Novel insights into the glia limitans of the olfactory nervous system. J Comp Neurol 2019; 527:1228-1244. [PMID: 30592044 DOI: 10.1002/cne.24618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 02/04/2023]
Abstract
Olfactory ensheathing cells (OECs) are often described as being present in both the peripheral and the central nervous systems (PNS and CNS). Furthermore, the olfactory nervous system glia limitans (the glial layer defining the PNS-CNS border) is considered unique as it consists of intermingling OECs and astrocytes. In contrast, the glia limitans of the rest of the nervous system consists solely of astrocytes which create a distinct barrier to Schwann cells (peripheral glia). The ability of OECs to interact with astrocytes is one reason why OECs are believed to be superior to Schwann cells for transplantation therapies to treat CNS injuries. We have used transgenic reporter mice in which glial cells express DsRed fluorescent protein to study the cellular constituents of the glia limitans. We found that the glia limitans layer of the olfactory nervous system is morphologically similar to elsewhere in the nervous system, with a similar low degree of intermingling between peripheral glia and astrocytes. We found that the astrocytic layer of the olfactory bulb is a distinct barrier to bacterial infection, suggesting that this layer constitutes the PNS-CNS immunological barrier. We also found that OECs interact with astrocytes in a similar fashion as Schwann cells in vitro. When cultured in three dimensions, however, there were subtle differences between OECs and Schwann cells in their interactions with astrocytes. We therefore suggest that glial fibrillary acidic protein-reactive astrocyte layer of the olfactory bulb constitutes the glia limitans of the olfactory nervous system and that OECs are primarily "PNS glia."
Collapse
Affiliation(s)
- Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Megha Shah
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Johana Tello Velasquez
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Heidi Walkden
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Ifor Beacham
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Andrew Rayfield
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Michael Todorovic
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia.,School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - Kenneth W Beagley
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
13
|
Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin Receptor: A Double-Edged Sword in Pathology and Regeneration of the Central Nervous System. Vet Pathol 2018; 55:786-801. [PMID: 29940812 DOI: 10.1177/0300985818781930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The low-affinity nerve growth factor receptor p75NTR is a major neurotrophin receptor involved in manifold and pleiotropic functions in the developing and adult central nervous system (CNS). Although known for decades, its entire functions are far from being fully elucidated. Depending on the complex interactions with other receptors and on the cellular context, p75NTR is capable of performing contradictory tasks such as mediating cell death as well as cell survival. In parallel, as a prototype marker for certain differentiation stages of Schwann cells and related CNS aldynoglial cells, p75NTR has recently gained increasing notice as a marker for cells with proposed regenerative potential in CNS diseases, such as demyelinating disease and traumatic CNS injury. Besides its pivotal role as a marker for transplantation candidate cells, recent studies in canine neuroinflammatory CNS conditions also highlight a spontaneous endogenous occurrence of p75NTR-positive glia, which potentially play a role in Schwann cell-mediated CNS remyelination. The aim of the present communication is to review the pleiotropic functions of p75NTR in the CNS with a special emphasis on its role as an immunohistochemical marker in neuropathology. Following a brief illustration of the expression of p75NTR in neurogenesis and in developed neuronal populations, the implications of p75NTR expression in astrocytes, oligodendrocytes, and microglia are addressed. A special focus is put on the role of p75NTR as a cell marker for specific differentiation stages of Schwann cells and a regeneration-promoting CNS population, collectively referred to as aldynoglia.
Collapse
Affiliation(s)
- Kathrin Becker
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armend Cana
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
14
|
Gomes ED, Mendes SS, Assunção-Silva RC, Teixeira FG, Pires AO, Anjo SI, Manadas B, Leite-Almeida H, Gimble JM, Sousa N, Lepore AC, Silva NA, Salgado AJ. Co-Transplantation of Adipose Tissue-Derived Stromal Cells and Olfactory Ensheathing Cells for Spinal Cord Injury Repair. Stem Cells 2018; 36:696-708. [PMID: 29352743 DOI: 10.1002/stem.2785] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Patients suffering from spinal cord injury (SCI) still have a dismal prognosis. Despite all the efforts developed in this area, currently there are no effective treatments. Therefore, cell therapies have been proposed as a viable alternative to the current treatments used. Adipose tissue-derived stromal cells (ASCs) and olfactory ensheathing cells (OECs) have been used with promising results in different models of SCI, namely due to the regenerative properties of the secretome of the first, and the guidance capability of the second. Using an in vitro model of axonal growth, the dorsal root ganglia explants, we demonstrated that OECs induce neurite outgrowth mainly through cell-cell interactions, while ASCs' effects are strongly mediated by the release of paracrine factors. A proteomic analysis of ASCs' secretome revealed the presence of proteins involved in VEGF, PI3K, and Cadherin signaling pathways, which may be responsible for the effects observed. Then, the cotransplantation of ASCs and OECs showed to improve motor deficits of SCI-rats. Particular parameters of movement such as stepping, coordination, and toe clearance were improved in rats that received the transplant of cells, in comparison to nontreated rats. A histological analysis of the spinal cord tissues revealed that transplantation of ASCs and OECs had a major effect on the reduction of inflammatory cells close the lesion site. A slight reduction of astrogliosis was also evident. Overall, the results obtained with the present work indicate that the cotransplantation of ASCs and OECs brings important functional benefits to the injured spinal cord. Stem Cells 2018;36:696-708.
Collapse
Affiliation(s)
- Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia S Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita C Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra I Anjo
- Faculty of Sciences and Technology, Department of Life Sciences.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
15
|
Xue L, Zeng Y, Li Q, Li Y, Li Z, Xu H, Yin Z. Transplanted olfactory ensheathing cells restore retinal function in a rat model of light-induced retinal damage by inhibiting oxidative stress. Oncotarget 2017; 8:93087-93102. [PMID: 29190980 PMCID: PMC5696246 DOI: 10.18632/oncotarget.21857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
There is still not an effective treatment for continuous retinal light exposure and subsequent photoreceptor degeneration. Olfactory ensheathing cell (OEC) transplantation has been shown to be neuroprotective in spinal cord, and optic nerve injury and retinitis pigmentosa. However, whether OECs protect rat photoreceptors against light-induced damage and how this may work is unclear. Thus, to elucidate this mechanism, purified rat OECs were grafted into the subretinal space of a Long-Evans rat model with light-induced photoreceptor damage. Light exposure decreased a- and b- wave amplitudes and outer nuclear layer (ONL) thickness, whereas the ONL of rats exposed to light for 24 h after having received OEC transplants in their subretinal space was thicker than the PBS control and untreated groups. A- and b- wave amplitudes from electroretinogram of OEC-transplanted rats were maintained until 8 weeks post OEC transplantation. Also, transplanted OECs inhibited formation of reactive oxygen species in retinas exposed to light. In vitro experiments showed that OECs had more total antioxidant capacity in a co-cultured 661W photoreceptor cell line, and cells were protected from damage induced by hydrogen-peroxide. Thus, transplanted OECs preserved retinal structure and function in a rat model of light-induced degeneration by suppressing retinal oxidative stress reactions.
Collapse
Affiliation(s)
- Langyue Xue
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zhengqin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
16
|
Oprych K, Cotfas D, Choi D. Common olfactory ensheathing glial markers in the developing human olfactory system. Brain Struct Funct 2016; 222:1877-1895. [PMID: 27718014 PMCID: PMC5406434 DOI: 10.1007/s00429-016-1313-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Abstract
The in situ immunocytochemical properties of olfactory ensheathing cells (OECs) have been well studied in several small to medium sized animal models including rats, mice, guinea pigs, cats and canines. However, we know very little about the antigenic characteristics of OECs in situ within the adult and developing human olfactory bulb and nerve roots. To address this gap in knowledge we undertook an immunocytochemical analysis of the 11–19 pcw human foetal olfactory system. Human foetal OECs in situ possessed important differences compared to rodents in the expression of key surface markers. P75NTR was not observed in OECs but was strongly expressed by human foetal Schwann cells and perineurial olfactory nerve fibroblasts surrounding OECs. We define OECs throughout the 11–19 pcw human olfactory system as S100/vimentin/SOX10+ with low expression of GFAP. Our results suggest that P75NTR is a robust marker that could be utilised with cell sorting techniques to generate enriched OEC cultures by first removing P75NTR expressing Schwann cells and fibroblasts, and subsequently to isolate OECs after P75NTR upregulation in vitro. O4 and PSA-NCAM were not found to be suitable surface antigens for OEC purification owing to their ambiguous and heterogeneous expression. Our results highlight the importance of corroborating cell markers when translating cell therapies from animal models to the clinic.
Collapse
Affiliation(s)
- Karen Oprych
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Daniel Cotfas
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - David Choi
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
17
|
Gómez RM, Ghotme K, Botero L, Bernal JE, Pérez R, Barreto GE, Bustos RH. Ultrastructural analysis of olfactory ensheathing cells derived from olfactory bulb and nerve of neonatal and juvenile rats. Neurosci Res 2016; 103:10-7. [DOI: 10.1016/j.neures.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
|
18
|
Nazareth L, Tello Velasquez J, Lineburg KE, Chehrehasa F, St John JA, Ekberg JAK. Differing phagocytic capacities of accessory and main olfactory ensheathing cells and the implication for olfactory glia transplantation therapies. Mol Cell Neurosci 2015; 65:92-101. [PMID: 25752729 DOI: 10.1016/j.mcn.2015.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/06/2015] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
The rodent olfactory systems comprise the main olfactory system for the detection of odours and the accessory olfactory system which detects pheromones. In both systems, olfactory axon fascicles are ensheathed by olfactory glia, termed olfactory ensheathing cells (OECs), which are crucial for the growth and maintenance of the olfactory nerve. The growth-promoting and phagocytic characteristics of OECs make them potential candidates for neural repair therapies such as transplantation to repair the injured spinal cord. However, transplanting mixed populations of glia with unknown properties may lead to variations in outcomes for neural repair. As the phagocytic capacity of the accessory OECs has not yet been determined, we compared the phagocytic capacity of accessory and main OECs in vivo and in vitro. In normal healthy animals, the accessory OECs accumulated considerably less axon debris than main OECs in vivo. Analysis of freshly dissected OECs showed that accessory OECs contained 20% less fluorescent axon debris than main OECs. However, when assayed in vitro with exogenous axon debris added to the culture, the accessory OECs phagocytosed almost 20% more debris than main OECs. After surgical removal of one olfactory bulb which induced the degradation of main and accessory olfactory sensory axons, the accessory OECs responded by phagocytosing the axon debris. We conclude that while accessory OECs have the capacity to phagocytose axon debris, there are distinct differences in their phagocytic capacity compared to main OECs. These distinct differences may be of importance when preparing OECs for neural transplant repair therapies.
Collapse
Affiliation(s)
- Lynnmaria Nazareth
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000 Queensland, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia
| | - Johana Tello Velasquez
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia
| | - Katie E Lineburg
- QIMR-Berghofer Medical Research Institute, Herston, 4006 Queensland, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000 Queensland, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia.
| | - Jenny A K Ekberg
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000 Queensland, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia.
| |
Collapse
|
19
|
Nazareth L, Lineburg KE, Chuah MI, Tello Velasquez J, Chehrehasa F, St John JA, Ekberg JAK. Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J Comp Neurol 2015; 523:479-94. [PMID: 25312022 DOI: 10.1002/cne.23694] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/07/2022]
Abstract
During development of the primary olfactory system, axon targeting is inaccurate and axons inappropriately project within the target layer or overproject into the deeper layers of the olfactory bulb. As a consequence there is considerable apoptosis of primary olfactory neurons during embryonic and postnatal development and axons of the degraded neurons need to be removed. Olfactory ensheathing cells (OECs) are the glia of the primary olfactory nerve and are known to phagocytose axon debris in the adult and postnatal animal. However, it is unclear when phagocytosis by OECs first commences. We investigated the onset of phagocytosis by OECs in the developing mouse olfactory system by utilizing two transgenic reporter lines: OMP-ZsGreen mice which express bright green fluorescent protein in primary olfactory neurons, and S100β-DsRed mice which express red fluorescent protein in OECs. In crosses of these mice, the fate of the degraded axon debris is easily visualized. We found evidence of axon degradation at embryonic day (E)13.5. Phagocytosis of the primary olfactory axon debris by OECs was first detected at E14.5. Phagocytosis of axon debris continued into the postnatal animal during the period when there was extensive mistargeting of olfactory axons. Macrophages were often present in close proximity to OECs but they contributed only a minor role to clearing the axon debris, even after widespread degeneration of olfactory neurons by unilateral bulbectomy and methimazole treatment. These results demonstrate that from early in embryonic development OECs are the primary phagocytic cells of the primary olfactory nerve.
Collapse
Affiliation(s)
- Lynnmaria Nazareth
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, Queensland, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Gladwin K, Choi D. Olfactory Ensheathing Cells: Part I—Current Concepts and Experimental Laboratory Models. World Neurosurg 2015; 83:114-9. [DOI: 10.1016/j.wneu.2013.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/22/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
21
|
Tello Velasquez J, Watts ME, Todorovic M, Nazareth L, Pastrana E, Diaz-Nido J, Lim F, Ekberg JAK, Quinn RJ, John JAS. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLoS One 2014; 9:e111787. [PMID: 25360677 PMCID: PMC4216124 DOI: 10.1371/journal.pone.0111787] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022] Open
Abstract
One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 µM, and often at 50 µM, and it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin (0.5 µM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold, and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies.
Collapse
Affiliation(s)
| | - Michelle E. Watts
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Michael Todorovic
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Lynnmaria Nazareth
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Erika Pastrana
- Nature Communications, New York, New York, United States of America
| | | | - Filip Lim
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Jenny A. K. Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Ronald J. Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - James A. St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- * E-mail:
| |
Collapse
|
22
|
Transcriptional profiling predicts overwhelming homology of schwann cells, olfactory ensheathing cells, and schwann cell-like glia. Glia 2014; 62:1559-81. [DOI: 10.1002/glia.22700] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/26/2023]
|
23
|
Roet KCD, Verhaagen J. Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp Neurol 2014; 261:594-609. [PMID: 24842489 DOI: 10.1016/j.expneurol.2014.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Olfactory ensheathing glial cells (OECs) are a specialized type of glia that form a continuously aligned cellular pathway that actively supports unprecedented regeneration of primary olfactory axons from the periphery into the central nervous system. Implantation of OECs stimulates neural repair in experimental models of spinal cord, brain and peripheral nerve injury and delays disease progression in animal models for neurodegenerative diseases like amyotrophic lateral sclerosis. OECs implanted in the injured spinal cord display a plethora of pro-regenerative effects; they promote axonal regeneration, reorganize the glial scar, remyelinate axons, stimulate blood vessel formation, have phagocytic properties and modulate the immune response. Recently genome wide transcriptional profiling and proteomics analysis combined with classical or larger scale "medium-throughput" bioassays have provided novel insights into the molecular mechanism that endow OECs with their pro-regenerative properties. Here we review these studies and show that the gaps that existed in our understanding of the molecular basis of the reparative properties of OECs are narrowing. OECs express functionally connected sets of genes that can be linked to at least 10 distinct processes directly relevant to neural repair. The data indicate that OECs exhibit a range of synergistic cellular activities, including active and passive stimulation of axon regeneration (by secretion of growth factors, axon guidance molecules and basement membrane components) and critical aspects of tissue repair (by structural remodeling and support, modulation of the immune system, enhancement of neurotrophic and antigenic stimuli and by metabolizing toxic macromolecules). Future experimentation will have to further explore the newly acquired knowledge to enhance the therapeutic potential of OECs.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA Amsterdam, The Netherlands.
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, Amsterdam 1081HV, The Netherlands.
| |
Collapse
|
24
|
Biological Roles of Olfactory Ensheathing Cells in Facilitating Neural Regeneration: A Systematic Review. Mol Neurobiol 2014; 51:168-79. [DOI: 10.1007/s12035-014-8664-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
25
|
Kegler K, Imbschweiler I, Ulrich R, Kovermann P, Fahlke C, Deschl U, Kalkuhl A, Baumgärnter W, Wewetzer K. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro. J Neural Transm (Vienna) 2014; 121:569-81. [PMID: 24487976 DOI: 10.1007/s00702-014-1163-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/18/2014] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
Collapse
Affiliation(s)
- Kristel Kegler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Roloff F, Ziege S, Baumgärtner W, Wewetzer K, Bicker G. Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro. BMC Neurosci 2013; 14:141. [PMID: 24219805 PMCID: PMC3840578 DOI: 10.1186/1471-2202-14-141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/07/2013] [Indexed: 12/04/2022] Open
Abstract
Background Transplantation of olfactory ensheathing cells (OEC) and Schwann cells (SC) is a promising therapeutic strategy to promote axonal growth and remyelination after spinal cord injury. Previous studies mainly focused on the rat model though results from primate and porcine models differed from those in the rat model. Interestingly, canine OECs show primate-like in vitro characteristics, such as absence of early senescence and abundance of stable p75NTR expression indicating that this species represents a valuable translational species for further studies. So far, few investigations have tested different glial cell types within the same study under identical conditions. This makes it very difficult to evaluate contradictory or confirmatory findings reported in various studies. Moreover, potential contamination of OEC preparations with Schwann cells was difficult to exclude. Thus, it remains rather controversial whether the different glial types display distinct cellular properties. Results Here, we established cultures of Schwann cell-free OECs from olfactory bulb (OB-OECs) and mucosa (OM-OECs) and compared them in assays to Schwann cells. These glial cultures were obtained from a canine large animal model and used for monitoring migration, phagocytosis and the effects on in vitro neurite growth. OB-OECs and Schwann cells migrated faster than OM-OECs in a scratch wound assay. Glial cell migration was not modulated by cGMP and cAMP signaling, but activating protein kinase C enhanced motility. All three glial cell types displayed phagocytic activity in a microbead assay. In co-cultures with of human model (NT2) neurons neurite growth was maximal on OB-OECs. Conclusions These data provide evidence that OB- and OM-OECs display distinct migratory behavior and interaction with neurites. OB-OECs migrate faster and enhance neurite growth of human model neurons better than Schwann cells, suggesting distinct and inherent properties of these closely-related cell types. Future studies will have to address whether, and how, these cellular properties correlate with the in vivo behavior after transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Gerd Bicker
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany.
| |
Collapse
|
27
|
Lankford KL, Brown RJ, Sasaki M, Kocsis JD. Olfactory ensheathing cells, but not Schwann cells, proliferate and migrate extensively within moderately X-irradiated juvenile rat brain. Glia 2013; 62:52-63. [PMID: 24166823 DOI: 10.1002/glia.22583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/09/2022]
Abstract
Olfactory ensheathing cells (OECs) and Schwann cells (SCs) share many characteristics, including the ability to promote neuronal repair when transplanted directly into spinal cord lesions, but poor survival and migration when transplanted into intact adult spinal cord. Interestingly, transplanted OECs, but not SCs, migrate extensively within the X-irradiated (40 Gy) adult rat spinal cord, suggesting distinct responses to environmental cues [Lankford et al., (2008) GLIA 56:1664-1678]. In this study, GFP-expressing OECs and SCs were transplanted into juvenile rat brains (hippocampus) subjected to a moderate radiation dose (16 Gy). As in the adult spinal cord, OECs, but not SCs, migrated extensively within the irradiated juvenile rat brain. Unbiased stereology revealed that the number of OECs observed within irradiated rat brains three weeks after transplantation was as much as 20 times greater than the number of cells transplanted, and the cells distributed extensively within the brain. In conjunction with the OEC dispersion, the number of activated microglia in OEC-transplanted irradiated brains was reduced. Unlike in the intact adult spinal cord, both OECs and SCs showed some, but limited, migration within nonirradiated rat brains, suggesting that the developing brain may be a more permissive environment for cell migration than the adult CNS. These results show that OECs display unique migratory, proliferative, and microglia interaction properties as compared with SCs when transplanted into the moderately X-irradiated brain.
Collapse
Affiliation(s)
- Karen L Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | | | | | | |
Collapse
|
28
|
Clonal In Vitro Analysis of Neurotrophin Receptor p75-Immunofluorescent Cells Reveals Phenotypic Plasticity of Primary Rat Olfactory Ensheathing Cells. Neurochem Res 2013; 38:1078-87. [DOI: 10.1007/s11064-013-1023-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/08/2013] [Accepted: 03/14/2013] [Indexed: 11/27/2022]
|
29
|
Cell type- and isotype-specific expression and regulation of β-tubulins in primary olfactory ensheathing cells and Schwann cells in vitro. Neurochem Res 2013; 38:981-8. [PMID: 23430470 DOI: 10.1007/s11064-013-1006-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are closely-related cell types with regeneration-promoting properties. Comparative gene expression analysis is particularly relevant since it may explain cell type-specific effects and guide the use of each cell type into special clinical applications. In the present study, we focused on β-tubulin isotype expression in primary adult canine glia as a translational large animal model. β-tubulins so far have been studied mainly in non-neuronal tumors and implied in tumorigenic growth. We show here that primary OECs and SCs expressed βII-V isotype mRNA. Interestingly, βIII-tubulin mRNA and protein expression was high in OECs and low in SCs, while fibroblast growth factor-2 (FGF-2) induced its down-regulation in both cell types to the same extent. This was in contrast to βV-tubulin mRNA which was similarly expressed in both cell types and unaltered by FGF-2. Immunocytochemical analysis revealed that OEC cultures contained a higher percentage of βIII-tubulin-positive cells compared to SC cultures. Addition of FGF-2 reduced the number of βIII-tubulin-positive cells in both cultures and significantly increased the percentage of cells with a multipolar morphology. Taken together, we demonstrate cell type-specific expression (βIII) and isotype-specific regulation (βIII, βV) of β-tubulin isotypes in OECs and SCs. While differential expression of βIII-tubulin in primary glial cell types with identical proliferative behaviour argues for novel functions unrelated to tumorigenic growth, strong βIII-tubulin expression in OECs may help to explain the specific properties of this glial cell type.
Collapse
|
30
|
Chen L, Chen D, Xi H, Wang Q, Liu Y, Zhang F, Wang H, Ren Y, Xiao J, Wang Y, Huang H. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant 2012; 21 Suppl 1:S65-77. [PMID: 22507682 DOI: 10.3727/096368912x633789] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our previous series of studies have proven that olfactory ensheathing cell (OEC) transplantation appears to be able to slow the rate of clinical progression after OEC transplantation in the first 4 months and cell intracranial (key points for neural network restoration, KPNNR) and/or intraspinal (impaired segments) implants provide benefit for patients (including both the bulbar onset and limb onset subtypes) with amyotrophic lateral sclerosis (ALS). Here we report the results of cell therapy in patients with ALS on the basis of long-term observation following multiple transplants. From March of 2003 to January of 2010, 507 ALS patients received our cellular treatment. Among them, 42 patients underwent further OEC therapy by the route of KPNNR for two or more times (two times in 35 patients, three times in 5 patients, four times in 1 patient, and five times in 1 patient). The time intervals are 13.1 (6-60) months between the first therapy and the second one, 15.2 (8-24) months between the second therapy and the third one, 16 (6-26) months between the third therapy and the fourth one, and 9 months between the fourth therapy and the fifth time. All of the patients exhibited partial neurological functional recovery after each cell-based administration. Firstly, the scores of the ALS Functional Rating Scale (ALS-FRS) and ALS Norris Scale increased by 2.6 + 2.4 (0-8) and 4.9 + 5.2 (0-20) after the first treatment, 1.1 + 1.3 (0-5) and 2.3 + 2.9 (0-13) after the second treatment, 1.1 + 1.5 (0-4), and 3.4 + 6.9 (0-19) after the third treatment, 0.0 + 0.0 (0-0), and 2.5 + 3.5 (0-5) after the fourth treatment, and 1 point after the fifth cellular therapy, which were evaluated by independent neurologists. Secondly, the majority of patients have achieved improvement in electromyogram (EMG) assessments after the first, second, third, and fourth cell transplantation. After the first treatment, among the 42 patients, 36 (85.7%) patients' EMG test results improved, the remaining 6 (14.3%) patients' EMG results showed no remarkable change. After the second treatment, of the 42 patients, 30 (71.4%) patients' EMG results improved, 11 (26.2%) patients showed no remarkable change, and 1 (2.4%) patient became worse. After the third treatment, out of the 7 patients, 4 (57.1%) patients improved, while the remaining 3 (42.9%) patients showed no change. Thirdly, the patients have partially recovered their breathing ability as demonstrated by pulmonary functional tests. After the first treatment, 20 (47.6%) patients' pulmonary function ameliorated. After the second treatment, 18 (42.9%) patients' pulmonary function improved. After the third treatment, 2 (28.6%) patients recovered some pulmonary function. After the fourth and fifth treatment, patients' pulmonary function did not reveal significant change. The results show that multiple doses of cellular therapy definitely serve as a positive role in the treatment of ALS. This repeated and periodic cell-based therapy is strongly recommended for the patients, for better controlling this progressive deterioration disorder.
Collapse
Affiliation(s)
- Lin Chen
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ziege S, Baumgärtner W, Wewetzer K. Toward defining the regenerative potential of olfactory mucosa: establishment of Schwann cell-free adult canine olfactory ensheathing cell preparations suitable for transplantation. Cell Transplant 2012; 22:355-67. [PMID: 23006619 DOI: 10.3727/096368912x656108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Olfactory mucosa (OM)-derived olfactory ensheathing cells (OECs) are attractive candidates for autologous cell transplantation-based therapy of nervous system injury. However, defining the regenerative capacity of OM-derived OECs is impeded by the fact that cell cultures used for transplantation may contain significant amounts of contaminating trigeminal nerve Schwann cells that escape identification by sharing in vitro expression of OEC markers. The aim of the present study, therefore, was to quantify contaminating Schwann cells in OEC preparations and to develop a protocol for their specific depletion. Based on the observation that freshly dissociated, but not cultured, OECs and Schwann cells display differential expression of HNK-1 and p75(NTR), magnet-activated cell sorting (MACS) was used to deplete myelinating (HNK-1-positive) and nonmyelinating (p75(NTR)-positive) Schwann cells from primary cell suspensions containing HNK-1-/p75(NTR)-negative OECs. Upregulation of p75(NTR) expression in OECs during culturing allowed their subsequent MACS-based separation from fibroblasts. Immunofluorescence analysis of freshly dissociated OM prior to MACS depletion revealed that 21% of the total and 56% of all CNPase-positive cells, representing both OECs and Schwann cells, expressed the Schwann cell antigens HNK-1 or p75(NTR), indicating that freshly dissociated OM prior to culturing contained as many Schwann cells as OECs, while olfactory bulb (OB) primary cell suspensions revealed lower levels of Schwann cell contamination. Interestingly, neurite growth of neonatal rat dorsal root ganglion (DRG) neurons cocultured with OM-OECs, OB-OECs, and fibular nerve (FN) Schwann cells used as control was significantly higher in the presence of OECs than of Schwann cells. The first report on identification and specific depletion of Schwann cells from OEC preparations provides a solid basis for future efforts to fully define the regenerative potential of nasal mucosa OECs.
Collapse
Affiliation(s)
- Susanne Ziege
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | |
Collapse
|
32
|
Huo SJ, Li YC, Xie J, Li Y, Raisman G, Zeng YX, He JR, Weng CH, Yin ZQ. Transplanted olfactory ensheathing cells reduce retinal degeneration in Royal College of Surgeons rats. Curr Eye Res 2012; 37:749-58. [PMID: 22691022 DOI: 10.3109/02713683.2012.697972] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF THE STUDY Retinitis pigmentosa (RP) is a group of genetic disorders and a slow loss of vision that is caused by a cascade of retinal degenerative events. We examined whether these retinal degenerative events were reduced after cultured mixtures of adult olfactory ensheathing cells (OECs) and olfactory nerve fibroblasts (ONFs) were transplanted into the subretinal space of 1-month-old RCS rat, a classic model of RP. MATERIALS AND METHODS The changes in retinal photoreceptors and Müller cells of RCS rats after cell transplantation were observed by the expression of recoverin and glial fibrillary acidic protein (GFAP), counting peanut agglutinin (PNA)-positive cone outer segments and calculating the relative apoptotic area. The retinal function was also evaluated by Flash electroretinography (ERG). To further investigate the mechanisms, by which OECs/ONFs play important roles in the transplanted retinas, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) secretion of the cultured cells were analyzed by ELISA. The ability of OECs/ONFs to ingest porcine retinal outer segments and the amount of phagocytosis were compared with retinal pigment epithelium (RPE) cells. RESULTS Our research showed that the transplantation of OECs/ONFs mixtures restored recoverin expression, protected retinal outer segments, increased PNA-positive cone outer segments, reduced caspase-positive apoptotic figures, downregulated GFAP, and maintained the b-wave of the ERG. Cultured OECs/ONFs expressed and secreted NGF, BDNF, and bFGF which made contributions to assist survival of the photoreceptors. An in vitro phagocytosis assay showed that OECs, but not ONFs, phagocytosed porcine retinal outer segments, and the phagocytic ability of OECs was even superior to that of RPE cells. CONCLUSIONS These findings demonstrate that transplantation of OECs/ONFs cleaned up the accumulated debris in subretinal space, and provided an intrinsic continuous supply of neurotrophic factors. It suggested that transplantation of OECs/ONFs might be a possible future route for protection of the retina and reducing retinal degeneration in RP.
Collapse
Affiliation(s)
- Shu Jia Huo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chong Qing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hansmann F, Pringproa K, Ulrich R, Sun Y, Herder V, Kreutzer M, Baumgärtner W, Wewetzer K. Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and nondemyelinated central nervous system. Cell Transplant 2012; 21:1161-75. [PMID: 22420305 DOI: 10.3727/096368911x627444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Understanding the basic mechanisms that control CNS remyelination is of direct clinical relevance. Suitable model systems include the analysis of naturally occurring and genetically generated mouse mutants and the transplantation of oligodendrocyte precursor cells (OPCs) following experimental demyelination. However, aforementioned studies were exclusively carried out in rats and little is known about the in vivo behavior of transplanted murine OPCs. Therefore in the present study, we (i) established a model of ethidium bromide-induced demyelination of the caudal cerebellar peduncle (CCP) in the adult mouse and (ii) studied the distribution and marker expression of the murine OPC line BO-1 expressing the enhanced green fluorescent protein (eGFP) 10 and 17 days after stereotaxic implantation. Injection of ethidium bromide (0.025%) in the CCP resulted in a severe loss of myelin, marked astrogliosis, and mild to moderate axonal alterations. Transplanted cells formed an invasive and liquorogenic metastasizing tumor, classified as murine giant cell glioblastoma. Transplanted BO-1 cells displayed substantially reduced CNPase expression as compared to their in vitro phenotype, low levels of MBP and GFAP, prominent upregulation of NG2, PDGFRα, nuclear p53, and an unaltered expression of signal transducer and activator of transcription (STAT)-3. Summarized environmental signaling in the brain stem was not sufficient to trigger oligodendrocytic differentiation of BO-1 cells and seemed to block CNPase expression. Moreover, the lack of the remyelinating capacity was associated with tumor formation indicating that BO-1 cells may serve as a versatile experimental model to study tumorigenesis of glial tumors.
Collapse
Affiliation(s)
- Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgärtner W, Wewetzer K. Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 2011; 60:358-71. [PMID: 22072443 DOI: 10.1002/glia.22270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide regeneration-promoting cells recruitable for therapeutic purposes. There is accumulating evidence that aldynoglial cells with Schwann cell-like growth-promoting properties emerge in the lesioned CNS. However, the characterization of these cells and the signals triggering their in situ generation have remained enigmatic. In the present study, we used the p75 neurotrophin receptor (p75(NTR) ) as a marker for Schwann cells to study gliogenesis in the well-defined canine distemper virus (CDV)-induced demyelination model. White matter lesions of CDV-infected dogs contained bi- to multipolar, p75(NTR) -expressing cells that neither expressed MBP, GFAP, BS-1, or P0 identifying oligodendroglia, astrocytes, microglia, and myelinating Schwann cells nor CDV antigen. Interestingly, p75(NTR) -expression became apparent prior to the onset of demyelination in parallel to the expression of β-amyloid precursor protein (β-APP), nonphosphorylated neurofilament (n-NF), BS-1, and CD3, and peaked in subacute lesions with inflammation. To study the role of infiltrating immune cells during differentiation of Schwann cell-like glia, organotypic slice cultures from the normal olfactory bulb were established. Despite the absence of infiltrating lymphocytes and macrophages, a massive appearance of p75(NTR) -positive Schwann-like cells and BS-1-positive microglia was noticed at 10 days in vitro. It is concluded that axonal damage as an early signal triggers the differentiation of tissue-resident precursor cells into p75(NTR) -expressing aldynoglial Schwann cells that retain an immature pre-myelin state. Further studies have to address the role of microglia during this process and the regenerative potential of aldynoglial cells in CDV infection and other demyelinating diseases.
Collapse
Affiliation(s)
- Ilka Imbschweiler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD. Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Exp Neurol 2011; 229:88-98. [DOI: 10.1016/j.expneurol.2011.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/10/2011] [Accepted: 01/16/2011] [Indexed: 01/07/2023]
|
36
|
Higginson JR, Barnett SC. The culture of olfactory ensheathing cells (OECs)--a distinct glial cell type. Exp Neurol 2011; 229:2-9. [PMID: 20816825 PMCID: PMC3089736 DOI: 10.1016/j.expneurol.2010.08.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/04/2010] [Accepted: 08/22/2010] [Indexed: 11/26/2022]
Abstract
Olfactory ensheathing cells (OECs) have become a popular candidate for the transplant-mediated repair of the damaged CNS. In this review a description is made of the origins of these cells and a historical development of their purification and maintenance in culture. In addition, we illustrate the cellular and molecular characteristics of OECs and emphasise that although they share many properties with Schwann cells, they possess several inherent differences which may allow them to be more beneficial for CNS repair. In summary, OECs are distinct glial cells and the detailed understanding of their biological and molecular properties is essential in ensuring their clinical efficacy after cell transplantation. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
| | - Susan C. Barnett
- Institute of Infection, Immunity and Inflammation College of Medical, Veterinary & Life Sciences (MVLS), Glasgow Biomedical Research Centre (GBRC), 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
37
|
Defining the morphological phenotype: 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is a novel marker for in situ detection of canine but not rat olfactory ensheathing cells. Cell Tissue Res 2011; 344:391-405. [PMID: 21519895 DOI: 10.1007/s00441-011-1168-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
Olfactory ensheathing cells (OECs) are the non-myelinating glial cells of the olfactory nerves and bulb. The fragmentary characterization of OECs in situ during normal development may be due to their small size requiring intricate ultrastructural analysis and to the fact that available markers for in situ detection are either expressed only by OEC subpopulations or lost during development. In the present study, we searched for markers with stable expression in OECs and investigated the spatiotemporal distribution of CNPase, an early oligodendrocyte/Schwann cell marker, in comparison with the prototype marker p75(NTR). Anti-CNPase antibodies labeled canine but not rat OECs in situ, while Schwann cells and oligodendrocytes were positive in both species. CNPase immunoreactivity in the dog was confined to all OECs throughout the postnatal development and associated with the entire cell body, including its finest processes, while p75(NTR) was mainly detected in perineural cells and only in some neonatal OECs. Adult olfactory bulb slices displayed CNPase expression after 4 and 10 days, while p75(NTR) was detectable only after 10 days in vitro. Finally, treatment of purified adult canine OECs with fibroblast growth factor-2 significantly reduced CNPase expression at the protein and mRNA level. Taken together, we conclude that CNPase but not p75(NTR) is a stable marker suitable for in situ visualization of OECs that will facilitate their light-microscopic characterization and challenge our general view of OEC marker expression in situ. The fact that canine but not rat OECs expressed CNPase supports the idea that glia from large animals differs substantially from rodents.
Collapse
|
38
|
Roet KCD, Bossers K, Franssen EHP, Ruitenberg MJ, Verhaagen J. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011; 229:10-45. [PMID: 21396936 DOI: 10.1016/j.expneurol.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022]
Abstract
Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Cell surface expression of 27C7 by neonatal rat olfactory ensheathing cells in situ and in vitro is independent of axonal contact. Histochem Cell Biol 2011; 135:397-408. [DOI: 10.1007/s00418-011-0796-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/09/2023]
|
40
|
Radtke C, Wewetzer K, Reimers K, Vogt PM. Transplantation of Olfactory Ensheathing Cells as Adjunct Cell Therapy for Peripheral Nerve Injury. Cell Transplant 2011; 20:145-52. [DOI: 10.3727/096368910x522081] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Traumatic events, such as work place trauma or motor vehicle accident violence, result in a significant number of severe peripheral nerve lesions, including nerve crush and nerve disruption defects. Transplantation of myelin-forming cells, such as Schwann cells (SCs) or olfactory ensheathing cells (OECs), may be beneficial to the regenerative process because the applied cells could mediate neurotrophic and neuroprotective effects by secretion of chemokines. Moreover, myelin-forming cells are capable of bridging the repair site by establishing an environment permissive to axonal regeneration. The cell types that are subject to intense investigation include SCs and OECs either derived from the olfactory bulb or the olfactory mucosa, stromal cells from bone marrow (mesenchymal stem cells, MSCs), and adipose tissue-derived cells. OECs reside in the peripheral and central nervous system and have been suggested to display unique regenerative properties. However, so far OECs were mainly used in experimental studies to foster central regeneration and it was not until recently that their regeneration-promoting activity for the peripheral nervous system was recognized. In the present review, we summarize recent experimental evidence regarding the regenerative effects of OECs applied to the peripheral nervous system that may be relevant to design novel autologous cell transplantation therapies.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Konstantin Wewetzer
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Functional and Applied Anatomy, Center of Anatomy, Hannover Medical School, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
| | - Kerstin Reimers
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter M. Vogt
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
41
|
Macedo-Ramos H, Campos FSO, Carvalho LA, Ramos IB, Teixeira LM, De Souza W, Cavalcante LA, Baetas-da-Cruz W. Olfactory ensheathing cells as putative host cells for Streptococcus pneumoniae: evidence of bacterial invasion via mannose receptor-mediated endocytosis. Neurosci Res 2010; 69:308-13. [PMID: 21192991 DOI: 10.1016/j.neures.2010.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 12/10/2010] [Accepted: 12/19/2010] [Indexed: 11/17/2022]
Abstract
Olfactory ensheathing cells (OECs) are a special glia that ensheath olfactory receptor axons that enter the brain via olfactory phila, thus, providing a potential route for access of pathogens. Streptococcus pneumoniae (Sp), that has a capsule rich in mannosyl residues, is the most common cause of rhinosinusitis that may evolve to meningitis. We have tested whether OECs in vitro express the mannose receptor (MR), and could internalize Sp via MR. Cultures were infected by a suspension of Sp (ATCC 49619), recognized by an anti-Sp antibody, in a 100:1 bacteria:cells ratio. Competition assays, by means of mannan, showed around a 15-fold reduction in the number of internalized bacteria. To verify whether MR could be involved in Sp uptake, OECs were reacted with an antibody against the MR C-terminal peptide (anti-cMR) and bacteria were visualized with Sytox Green. Selective cMR-immunoreaction was seen in perinuclear compartments containing bacteria whereas mannan-treated cultures showed an extremely low percentage of internalized bacteria and only occasional adhered bacteria. Our data suggest the involvement of MR in adhesion of bacteria to OEC surface, and in their internalization. Data are also coherent with a role of OECs as a host cell prior to (and during) bacterial invasion of the brain.
Collapse
Affiliation(s)
- Hugo Macedo-Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Novikova LN, Lobov S, Wiberg M, Novikov LN. Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation. Exp Neurol 2010; 229:132-42. [PMID: 20932826 DOI: 10.1016/j.expneurol.2010.09.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/27/2022]
Abstract
Olfactory ensheathing cells (OEC) have been shown to stimulate regeneration, myelination and functional recovery in different spinal cord injury models. However, recent reports from several laboratories have challenged this treatment strategy. The discrepancy in results could be attributed to many factors including variations in culture protocols. The present study investigates whether the differences in culture preparation could influence neuroprotective and growth-promoting effects of OEC after transplantation into the injured spinal cord. Primary OEC cultures were purified using method of differential cell adhesion (a-OEC) or separated with immunomagnetic beads (b-OEC). After cervical C4 hemisection in adult rats, short-term (3 weeks) or long-term (7 weeks) cultured OEC were transplanted into the lateral funiculus at 1mm rostral and caudal to the transection site. At 3-8 weeks after transplantation, labeled OEC were mainly found in the injection sites and in the trauma zone. Short-term cultured a-OEC supported regrowth of rubrospinal, raphaespinal and CGRP-positive fibers, and attenuated retrograde degeneration in the red nucleus. Short-term cultured b-OEC failed to promote axonal regrowth but increased the density of rubrospinal axons within the dorsolateral funiculus and provided significant neuroprotection for axotomized rubrospinal neurons. In addition, short-term cultured OEC attenuated sprouting of rubrospinal terminals. In contrast, long-term cultured OEC neither enhanced axonal growth nor prevented retrograde cell death. The results suggest that the age of OEC in culture and the method of cell purification could affect the efficacy of OEC to support neuronal survival and regeneration after spinal cord injury. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Liudmila N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
43
|
Chen L, Huang H, Xi H, Xie Z, Liu R, Jiang Z, Zhang F, Liu Y, Chen D, Wang Q, Wang H, Ren Y, Zhou C. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant 2010; 19:185-91. [PMID: 20350360 DOI: 10.3727/096368910x492652] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Successful repair of damage in cerebral palsy (CP) needs effective clinical interventions other than simply symptomatic treatments. To elucidate the feasibility of using olfactory ensheathing cells (OECs) to treat CP in children and adolescents, we conducted a randomized controlled clinical trial (RCT) on 33 patients. The patients were randomly assigned into two groups (treatment group, n = 18; control group, n = 15), and OECs derived from aborted fetal tissue were injected into the bilateral corona radiata in the frontal lobes (a key point for neural network restoration, KPNNR). The Gross Motor Function Measure (GMFM-66) and the Caregiver Questionnaire Scale were used to evaluate the patients' neurological function and overall health status. Among the 14 patients who completed the 6-month study, six received the cell transplantation and the other eight served as controls. In OEC treatment group, GMFM-66 scores were 26.67 +/- 25.33 compared with 19.00 +/- 20.00 for the control group. Concurrently, the Caregiver Questionnaire Scale score decreased to 77.83 +/- 15.99 in the treatment group in comparison to 138.66 +/- 64.06 of the control group. This trial, albeit small in sample size, indicates OEC KPNNR transplantation is effective for functional improvement in children and adolescents with CP, yet without obvious side effects. This small-scale study suggests that the procedure may be a plausible alternative method to treat this not yet curable disorder, and we urge further evaluation with a large-scale RCT.
Collapse
Affiliation(s)
- Lin Chen
- Center for Neurorestoratology, Beijing, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Huang H, Chen L, Sanberg P. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era. CELL MEDICINE 2010; 1:15-46. [PMID: 21359168 DOI: 10.3727/215517910x516673] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology.
Collapse
Affiliation(s)
- Hongyun Huang
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | |
Collapse
|
45
|
Harris JA, West AK, Chuah MI. Olfactory ensheathing cells: Nitric oxide production and innate immunity. Glia 2009; 57:1848-57. [DOI: 10.1002/glia.20899] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Chiu SC, Hung HS, Lin SZ, Chiang E, Liu DD. Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases. J Mol Med (Berl) 2009; 87:1179-89. [PMID: 19756447 DOI: 10.1007/s00109-009-0528-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
The regenerative capacity of the olfactory system has generated interest in potential clinical application of cells from the olfactory epithelium in the treatment of neurodegenerative diseases. Experimental evidence from animal models and clinical studies suggest that transplantation of olfactory ensheathing cells (OEC), specialized glia in the olfactory system, may be therapeutically useful in neurodegenerative diseases such as spinal cord injury and stroke. This review article describes the different experimental approaches in OEC transplantation. We also discuss the possible effects of OEC implantation on the underlying pathophysiology in neurological disease, including neuroplasticity. Our recent study of this particular population of cells has disclosed some of the molecular basis of the regenerative mechanism of OECs. In summary OECs produce several neurotrophic factors such as stromal cell-derived factor 1alpha and brain-derived neurotrophic factor and enhance axonal regeneration to promote neuroplasticity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Techangamsuwan S, Haas L, Rohn K, Baumgärtner W, Wewetzer K. Distinct cell tropism of canine distemper virus strains to adult olfactory ensheathing cells and Schwann cells in vitro. Virus Res 2009; 144:195-201. [PMID: 19433119 DOI: 10.1016/j.virusres.2009.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
Canine distemper virus (CDV) can enter the brain via infection of olfactory neurons. Whether olfactory ensheathing cells (OECs) are also infected by CDV, and if yes, how they respond to the virus has remained enigmatic. Here, we exposed adult canine OECs in vitro to several attenuated (CDV-2544, CDV-R252, CDV-Ond, CDV-OndeGFP) and one virulent CDV strain (CDV-5804PeGFP) and studied their susceptibility compared to Schwann cells, a closely related cell type sharing the phagocytizing activity. We show that OECs and Schwann cells were infected by CDV strains albeit to different levels. Ten days post-infection (dpi), a mild to severe cytopathic effect ranging from single cell necrosis to layer detachment was noted. The percentage of infection increased during 10 dpi and viral progenies were detected in each culture using virus titration. Interestingly, CDV-2544, CDV-OndeGFP, and CDV-5804PeGFP predominantly infected OECs, while CDV-Ond targeted Schwann cells. No significant differences were found between the virulent and attenuated CDV strains. The observation of a CDV strain-specific cell tropism is evidence for significant molecular differences between OECs and Schwann cells. Whether these differences are either related to strain-specific distemper pathogenesis or support a role of OECs during CDV infection and virus spread needs to be addressed in future studies.
Collapse
Affiliation(s)
- Somporn Techangamsuwan
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
48
|
Kawaja MD, Boyd JG, Smithson LJ, Jahed A, Doucette R. Technical Strategies to Isolate Olfactory Ensheathing Cells for Intraspinal Implantation. J Neurotrauma 2009; 26:155-77. [DOI: 10.1089/neu.2008.0709] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael D. Kawaja
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - J. Gordon Boyd
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
| | - Laura J. Smithson
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Ali Jahed
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
| | - Ron Doucette
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
- Cameco MS Neuroscience Research Center, City Hospital, Saskatoon, Canada
| |
Collapse
|
49
|
Orlando EA, Imbschweiler I, Gerhauser I, Baumgärtner W, Wewetzer K. In vitro characterization and preferential infection by canine distemper virus of glial precursors with Schwann cell characteristics from adult canine brain. Neuropathol Appl Neurobiol 2009; 34:621-37. [PMID: 19076697 DOI: 10.1111/j.1365-2990.2008.00958.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Canine distemper virus (CDV)-induced demyelinating leukoencephalomyelitis is a naturally occurring model for multiple sclerosis. The aim of this study was to establish primary glial cell cultures from adult canine brain for the analysis of CDV spread and cell tropism. METHODS Cultures were inoculated with the CDV-R252 and a CDV-Onderstepoort strain expressing the green fluorescent protein (CDV-OndeGFP). CDV antigen expression was studied using cell type-specific antibodies at different days post infection. Glial cells expressing p75(NTR) were purified using antibody-based techniques and characterized with regard to antigen expression and proliferation. RESULTS Three weeks after seeding, cultures contained spindle-shaped cells expressing p75(NTR), oligodendrocytic cells, astrocytes, microglia and fibroblasts. Both CDV strains induced a mild to moderate cytopathic effect that consisted of single necrotic and few syncytial giant cells, but displayed in part a differential cell tropism. Whereas CDV-OndeGFP expression in microglia and astrocytes did not exceed 1% and 50%, respectively, CDV-R252 infected 100% and 80% of both cell types, respectively. The cells most early infected by both CDV strains expressed p75(NTR) and may correlate to cells previously identified as aldynoglia. Treatment of p75(NTR+) cells with Schwann cell mitogens and serum deprivation increased proliferation and A2B5 expression, respectively, indicating common properties compared with Schwann cells and oligodendrocyte precursors. CONCLUSIONS Infection of adult canine astrocytes and microglia revealed CDV strain-specific cell tropism. Moreover, this is the first identification of a glial cell type with Schwann cell-like properties in adult canine brain and, more importantly, these cells displayed a high susceptibility to CDV infection.
Collapse
Affiliation(s)
- E A Orlando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
50
|
Kocsis JD, Lankford KL, Sasaki M, Radtke C. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neurosci Lett 2009; 456:137-42. [PMID: 19429149 DOI: 10.1016/j.neulet.2008.08.093] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/06/2008] [Accepted: 08/15/2008] [Indexed: 12/19/2022]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells that guide olfactory receptor axons from the nasal mucosa into the brain where they make synaptic contacts in the olfactory bulb. While a number of studies have demonstrated that in vivo transplantation of OECs into injured spinal cord results in improved functional outcome, precise cellular mechanisms underlying this improvement are not fully understood. Current thinking is that OECs can encourage axonal regeneration, provide trophic support for injured neurons and for angiogenesis, and remyelinate axons. However, Schwann cell (SC) transplantation also results in significant functional improvement in animal models of spinal cord injury. In culture SCs and OECs share a number of phenotypic properties such as expression of the low affinity NGF receptor (p75). An important area of research has been to distinguish potential differences in the in vivo behavior of OECs and SCs to determine if one cell type may offer greater advantage as a cellular therapeutic candidate. In this review we focus on several unique features of OECs when they are transplanted into the spinal cord.
Collapse
Affiliation(s)
- Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06516, USA.
| | | | | | | |
Collapse
|