1
|
Lin NH, Jian WS, Snider N, Perng MD. Glial fibrillary acidic protein is pathologically modified in Alexander disease. J Biol Chem 2024; 300:107402. [PMID: 38782207 PMCID: PMC11259701 DOI: 10.1016/j.jbc.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Here, we describe pathological events potentially involved in the disease pathogenesis of Alexander disease (AxD). This is a primary genetic disorder of astrocyte caused by dominant gain-of-function mutations in the gene coding for an intermediate filament protein glial fibrillary acidic protein (GFAP). Pathologically, this disease is characterized by the upregulation of GFAP and its accumulation as Rosenthal fibers. Although the genetic basis linking GFAP mutations with Alexander disease has been firmly established, the initiating events that promote GFAP accumulation and the role of Rosenthal fibers (RFs) in the disease process remain unknown. Here, we investigate the hypothesis that disease-associated mutations promote GFAP aggregation through aberrant posttranslational modifications. We found high molecular weight GFAP species in the RFs of AxD brains, indicating abnormal GFAP crosslinking as a prominent pathological feature of this disease. In vitro and cell-based studies demonstrate that cystine-generating mutations promote GFAP crosslinking by cysteine-dependent oxidation, resulting in defective GFAP assembly and decreased filament solubility. Moreover, we found GFAP was ubiquitinated in RFs of AxD patients and rodent models, supporting this modification as a critical factor linked to GFAP aggregation. Finally, we found that arginine could increase the solubility of aggregation-prone mutant GFAP by decreasing its ubiquitination and aggregation. Our study suggests a series of pathogenic events leading to AxD, involving interplay between GFAP aggregation and abnormal modifications by GFAP ubiquitination and oxidation. More important, our findings provide a basis for investigating new strategies to treat AxD by targeting abnormal GFAP modifications.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wan-Syuan Jian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Forró T, Manu DR, Băjenaru OL, Bălașa R. GFAP as Astrocyte-Derived Extracellular Vesicle Cargo in Acute Ischemic Stroke Patients-A Pilot Study. Int J Mol Sci 2024; 25:5726. [PMID: 38891912 PMCID: PMC11172178 DOI: 10.3390/ijms25115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The utility of serum glial fibrillary acidic protein (GFAP) in acute ischemic stroke (AIS) has been extensively studied in recent years. Here, we aimed to assess its potential role as a cargo protein of extracellular vesicles (EVs) secreted by astrocytes (ADEVs) in response to brain ischemia. Plasma samples from eighteen AIS patients at 24 h (D1), 7 days (D7), and one month (M1) post-symptoms onset, and nine age, sex, and cardiovascular risk factor-matched healthy controls were obtained to isolate EVs using the Exoquick ULTRA EV kit. Subsets of presumed ADEVs were identified further by the expression of the glutamate aspartate transporter (GLAST) as a specific marker of astrocytes with the Basic Exo-Flow Capture kit. Western blotting has tested the presence of GFAP in ADEV cargo. Post-stroke ADEV GFAP levels were elevated at D1 and D7 but not M1 compared to controls (p = 0.007, p = 0.019, and p = 0.344, respectively). Significant differences were highlighted in ADEV GFAP content at the three time points studied (n = 12, p = 0.027) and between D1 and M1 (z = 2.65, p = 0.023). A positive correlation was observed between the modified Rankin Scale (mRS) at D7 and ADEV GFAP at D1 (r = 0.58, p = 0.010) and D7 (r = 0.57, p = 0.013), respectively. ADEV GFAP may dynamically reflect changes during the first month post-ischemia. Profiling ADEVs from peripheral blood could provide a new way to assess the central nervous system pathology.
Collapse
Affiliation(s)
- Timea Forró
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ovidiu-Lucian Băjenaru
- Discipline of Geriatrics and Gerontology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- National Institute of Gerontology and Geriatrics “Ana Aslan”, 11241 Bucharest, Romania
| | - Rodica Bălașa
- 1st Neurology Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
3
|
de Reus AJEM, Basak O, Dykstra W, van Asperen JV, van Bodegraven EJ, Hol EM. GFAP-isoforms in the nervous system: Understanding the need for diversity. Curr Opin Cell Biol 2024; 87:102340. [PMID: 38401182 DOI: 10.1016/j.ceb.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein expressed in specific types of glial cells in the nervous system. The expression of GFAP is highly regulated during brain development and in neurological diseases. The presence of distinct GFAP-isoforms in various cell types, developmental stages, and diseases indicates that GFAP (post-)transcriptional regulation has a role in glial cell physiology and pathology. GFAP-isoforms differ in sub-cellular localisation, IF-network assembly properties, and IF-dynamics which results in distinct molecular interactions and mechanical properties of the IF-network. Therefore, GFAP (post-)transcriptional regulation is likely a mechanism by which radial glia, astrocytes, and glioma cells can modulate cellular function.
Collapse
Affiliation(s)
- Alexandra J E M de Reus
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Werner Dykstra
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Unversité Claude Bernard Lyon 1 CNRS UMR 5261, INSERM U1315, Lyon, France
| | - Emma J van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
van der Knaap MS, Bugiani M, Abbink TEM. Vanishing white matter. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:77-94. [PMID: 39322396 DOI: 10.1016/b978-0-323-99209-1.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
"Vanishing white matter" (VWM) is a leukodystrophy caused by autosomal recessive pathogenic variants in the genes encoding the subunits of eukaryotic initiation factor 2B (eIF2B). Disease onset and disease course are extremely variable. Onset varies from the antenatal period until senescence. The age of onset is predictive of disease severity. VWM is characterized by chronic neurologic deterioration and, additionally, episodes of rapid and major neurologic decline, provoked by stresses such as febrile infections and minor head trauma. The disease is dominated by degeneration of the white matter of the central nervous system due to dysfunction of oligodendrocytes and in particular astrocytes. Organs other than the brain are rarely affected, with the exception of the ovaries. The reason for the selective vulnerability of the white matter of the central nervous system and, less consistently, the ovaries is poorly understood. eIF2B is a central regulatory factor in the integrated stress response (ISR). Genetic variants decrease eIF2B activity and thereby cause constitutive activation of the ISR downstream of eIF2B. Strikingly, the ISR is specifically activated in astrocytes. Modulation of eIF2B activity and ISR activation in VWM mouse models impacts disease severity, revealing eIF2B-regulated pathways as potential druggable targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Luinenburg MJ, Scheper M, Sørensen FNF, Anink JJ, Van Hecke W, Korshunova I, Jansen FE, Riney K, van Eijsden P, Gosselaar P, Mills JD, Kalf RS, Zimmer TS, Broekaart DWM, Khodosevich K, Aronica E, Mühlebner A. Loss of maturity and homeostatic functions in Tuberous Sclerosis Complex-derived astrocytes. Front Cell Neurosci 2023; 17:1284394. [PMID: 38089143 PMCID: PMC10713821 DOI: 10.3389/fncel.2023.1284394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Constitutive activation of the mTOR pathway, as observed in Tuberous Sclerosis Complex (TSC), leads to glial dysfunction and subsequent epileptogenesis. Although astrocytes are considered important mediators for synaptic clearance and phagocytosis, little is known on how astrocytes contribute to the epileptogenic network. METHODS We employed singlenuclei RNA sequencing and a hybrid fetal calf serum (FCS)/FCS-free cell culture model to explore the capacity of TSC-derived astrocytes to maintain glutamate homeostasis and clear debris in their environment. RESULTS We found that TSC astrocytes show reduced maturity on RNA and protein level as well as the inability to clear excess glutamate through the loss of both enzymes and transporters complementary to a reduction of phagocytic capabilities. DISCUSSION Our study provides evidence of mechanistic alterations in TSC astrocytes, underscoring the significant impairment of their supportive functions. These insights enhance our understanding of TSC pathophysiology and hold potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Mark J Luinenburg
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mirte Scheper
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Frederik N F Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jasper J Anink
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Wim Van Hecke
- ERN EpiCare, Department of Pathology, Brain Center, University Medical Center, Utrecht, Netherlands
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Floor E Jansen
- ERN EpiCare, Department of Child Neurology, Brain Center, University Medical Center, Utrecht, Netherlands
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Pieter van Eijsden
- Department of Neurosurgery, University Medical Center, Utrecht, Netherlands
| | - Peter Gosselaar
- Department of Neurosurgery, University Medical Center, Utrecht, Netherlands
| | - James D Mills
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
| | - Rozemarijn S Kalf
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Till S Zimmer
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Diede W M Broekaart
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eleonora Aronica
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Angelika Mühlebner
- ERN EpiCare, Department of Pathology, Brain Center, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
6
|
Swanson MJ, Lewis KN, Carpenter R, Whetzel A, Bae NS. The human RAP1 and GFAPɛ proteins increase γ-secretase activity in a yeast model system. G3 (BETHESDA, MD.) 2023; 13:jkad057. [PMID: 36929840 PMCID: PMC10411568 DOI: 10.1093/g3journal/jkad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Alzheimer's disease (AD) is an age-related disorder that results in progressive cognitive impairment and memory loss. Deposition of amyloid β (Aβ) peptides in senile plaques is a hallmark of AD. γ-secretase produces Aβ peptides, mostly as the soluble Aβ40 with fewer insoluble Aβ42 peptides. Rare, early-onset AD (EOAD) occurs in individuals under 60 years of age. Most EOAD cases are due to unknown genetic causes, but a subset is due to mutations in the genes encoding the amyloid precursor protein that is processed into Aβ peptides or the presenilins (PS1 and PS2) that process APP. PS1 interacts with the epsilon isoform of glial fibrillary acidic protein (GFAPɛ), a protein found in the subventricular zone of the brain. We have found that GFAPɛ interacts with the telomere protection factor RAP1 (TERF2IP). RAP1 can also interact with PS1 alone or with GFAPɛ in vitro. Our data show that the nuclear protein RAP1 has an extratelomeric role in the cytoplasm through its interactions with GFAPɛ and PS1. GFAPɛ coprecipitated with RAP1 from human cell extracts. RAP1, GFAPɛ, and PS1 all colocalized in human SH-SY5Y cells. Using a genetic model of the γ-secretase complex in Saccharomyces cerevisiae, RAP1 increased γ-secretase activity, and this was potentiated by GFAPɛ. Our studies are the first to connect RAP1 with an age-related disorder.
Collapse
Affiliation(s)
- Mark J Swanson
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA
| | - Kelsey N Lewis
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA
| | - Robert Carpenter
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Alexis Whetzel
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA
| | - Nancy S Bae
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
7
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Yang AW, Lin NH, Yeh TH, Snider N, Perng MD. Effects of Alexander disease-associated mutations on the assembly and organization of GFAP intermediate filaments. Mol Biol Cell 2022; 33:ar69. [PMID: 35511821 PMCID: PMC9635275 DOI: 10.1091/mbc.e22-01-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/02/2023] Open
Abstract
Alexander disease is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP). How single-amino-acid changes can lead to cytoskeletal catastrophe and brain degeneration remains poorly understood. In this study, we have analyzed 14 missense mutations located in the GFAP rod domain to investigate how these mutations affect in vitro filament assembly. Whereas the internal rod mutants assembled into filaments that were shorter than those of wild type, the rod end mutants formed structures with one or more of several atypical characteristics, including short filament length, irregular width, roughness of filament surface, and filament aggregation. When transduced into primary astrocytes, GFAP mutants with in vitro assembly defects usually formed cytoplasmic aggregates, which were more resistant to biochemical extraction. The resistance of GFAP to solubilization was also observed in brain tissues of patients with Alexander disease, in which a significant proportion of insoluble GFAP were accumulated in Rosenthal fiber fractions. These findings provide clinically relevant evidence that link GFAP assembly defects to disease pathology at the tissue level and suggest that altered filament assembly and properties as a result of GFAP mutation are critical initiating factors for the pathogenesis of Alexander disease.
Collapse
Affiliation(s)
- Ai-Wen Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Hung Yeh
- Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Targeting the Subventricular Zone to Promote Myelin Repair in the Aging Brain. Cells 2022; 11:cells11111809. [PMID: 35681504 PMCID: PMC9180001 DOI: 10.3390/cells11111809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
The subventricular zone (SVZ) is the largest and most active germinal zone in the adult forebrain. Neural stem cells (NSCs) of the SVZ generate olfactory interneurons throughout life and retain the intrinsic ability to generate oligodendrocytes (OLs), the myelinating cells of the central nervous system. OLs and myelin are targets in demyelinating diseases such as multiple sclerosis (MS). Remyelination is dependent on the ability of oligodendrocyte progenitor cells (OPCs) to proliferate, migrate, and terminally differentiate into myelinating OLs. During aging, there is a gradual decrease in the regenerative capacity of OPCs, and the consequent loss of OLs and myelin is a contributing factor in cognitive decline and the failure of remyelination in MS and other pathologies with aging contexts, including Alzheimer’s disease (AD) and stroke. The age-related decrease in oligodendrogenesis has not been fully characterised but is known to reflect changes in intrinsic and environmental factors affecting the ability of OPCs to respond to pro-differentiation stimuli. Notably, SVZ-derived OPCs are an important source of remyelinating OLs in addition to parenchymal OPCs. In this mini-review, we briefly discuss differences between SVZ-derived and parenchymal OPCs in their responses to demyelination and highlight challenges associated with their study in vivo and how they can be targeted for regenerative therapies in the aged brain.
Collapse
|
10
|
Radu R, Petrescu GED, Gorgan RM, Brehar FM. GFAPδ: A Promising Biomarker and Therapeutic Target in Glioblastoma. Front Oncol 2022; 12:859247. [PMID: 35372061 PMCID: PMC8971704 DOI: 10.3389/fonc.2022.859247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
GFAPδ, the delta isoform of the glial fibrillary acidic protein, is mainly expressed in the subventricular zone of the brain, together with other neural stem cell markers like nestin. The authors of this paper were among the first that described in detail the expression of GFAPδ and its correlation with malignancy and invasiveness in cerebral astrocytoma. Later, several papers confirmed these findings, showing that the alternative splice variant GFAPδ is overexpressed in glioblastoma (CNS WHO grade 4) compared with lower grade gliomas. Other studies suggested that a high GFAPδ/α ratio is associated with a more malignant and invasive behavior of glioma cells. Moreover, the changing of GFAPδ/α ratio affects the expression of high-malignant genes. It is now suggested that discriminating between predominant GFAP isoforms, GFAPδ or GFAPα, is useful for assessing the malignancy state of astrocytoma, and may even contribute to the classification of gliomas. Therefore, the purpose of this paper is to review the literature with emphasize on the role of GFAPδ as a potential biomarker, and as a possible therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Roxana Radu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, Bucharest, Romania
| | - George E. D. Petrescu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, Bucharest, Romania
- *Correspondence: George E. D. Petrescu,
| | - Radu M. Gorgan
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, Bucharest, Romania
| | - Felix M. Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, Bucharest, Romania
| |
Collapse
|
11
|
Kim H, Lee EJ, Lim YM, Kim KK. Glial Fibrillary Acidic Protein in Blood as a Disease Biomarker of Neuromyelitis Optica Spectrum Disorders. Front Neurol 2022; 13:865730. [PMID: 35370870 PMCID: PMC8968934 DOI: 10.3389/fneur.2022.865730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein found in astrocytes in the brain. Damaged astrocytes release GFAP into cerebrospinal fluid and blood. Thus, GFAP levels in these body fluids may reflect the disease state of neuromyelitis optica spectrum disorder (NMOSD), which includes astrocytopathy, characterized by pathogenic antibodies against aquaporin 4 located on astrocytes. Recently, single-molecule array technology that can detect these synaptic proteins in blood, even in the subfemtomolar range, has been developed. Emerging evidence suggests that GFAP protein is a strong biomarker candidate for NMOSD. This mini-review provides basic information about GFAP protein and innovative clinical data that show the potential clinical value of blood GFAP levels as a biomarker for NMOSD.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Uceda-Castro R, van Asperen JV, Vennin C, Sluijs JA, van Bodegraven EJ, Margarido AS, Robe PAJ, van Rheenen J, Hol EM. GFAP splice variants fine-tune glioma cell invasion and tumour dynamics by modulating migration persistence. Sci Rep 2022; 12:424. [PMID: 35013418 PMCID: PMC8748899 DOI: 10.1038/s41598-021-04127-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
Glioma is the most common form of malignant primary brain tumours in adults. Their highly invasive nature makes the disease incurable to date, emphasizing the importance of better understanding the mechanisms driving glioma invasion. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocyte- and neural stem cell-derived gliomas. Glioma malignancy is associated with changes in GFAP alternative splicing, as the canonical isoform GFAPα is downregulated in higher-grade tumours, leading to increased dominance of the GFAPδ isoform in the network. In this study, we used intravital imaging and an ex vivo brain slice invasion model. We show that the GFAPδ and GFAPα isoforms differentially regulate the tumour dynamics of glioma cells. Depletion of either isoform increases the migratory capacity of glioma cells. Remarkably, GFAPδ-depleted cells migrate randomly through the brain tissue, whereas GFAPα-depleted cells show a directionally persistent invasion into the brain parenchyma. This study shows that distinct compositions of the GFAPnetwork lead to specific migratory dynamics and behaviours of gliomas.
Collapse
Affiliation(s)
- Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Emma J van Bodegraven
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Andreia S Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
van Asperen JV, Robe PA, Hol EM. GFAP Alternative Splicing and the Relevance for Disease – A Focus on Diffuse Gliomas. ASN Neuro 2022; 14:17590914221102065. [PMID: 35673702 PMCID: PMC9185002 DOI: 10.1177/17590914221102065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is
characteristic for astrocytes and neural stem cells, and their malignant analogues in
glioma. Since the discovery of the protein 50 years ago, multiple alternative splice
variants of the GFAP gene have been discovered, leading to different GFAP isoforms. In
this review, we will describe GFAP isoform expression from gene to protein to network,
taking the canonical isoforms GFAPα and the main alternative variant GFAPδ as the starting
point. We will discuss the relevance of studying GFAP and its isoforms in disease, with a
specific focus on diffuse gliomas.
Collapse
Affiliation(s)
- Jessy V. van Asperen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Pierre A.J.T. Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Abstract
Fifty years have passed since the discovery of glial fibrillary acidic protein (GFAP) by Lawrence Eng and colleagues. Now recognized as a member of the intermediate filament family of proteins, it has become a subject for study in fields as diverse as structural biology, cell biology, gene expression, basic neuroscience, clinical genetics and gene therapy. This review covers each of these areas, presenting an overview of current understanding and controversies regarding GFAP with the goal of stimulating continued study of this fascinating protein.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, University of Wisconsin-Madison.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham
| |
Collapse
|
15
|
Lin NH, Yang AW, Chang CH, Perng MD. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. FASEB J 2021; 35:e21614. [PMID: 33908669 DOI: 10.1096/fj.202100087r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Alexander disease (AxD) caused by mutations in the coding region of GFAP is a neurodegenerative disease characterized by astrocyte dysfunction, GFAP aggregation, and Rosenthal fiber accumulation. Although how GFAP mutations cause disease is not fully understood, Rosenthal fibers could be induced by forced overexpression of human GFAP and this could be lethal in mice implicate that an increase in GFAP levels is central to AxD pathogenesis. Our recent studies demonstrated that intronic GFAP mutations cause disease by altering GFAP splicing, suggesting that an increase in GFAP isoform expression could lead to protein aggregation and astrocyte dysfunction that typify AxD. Here we test this hypothesis by establishing primary astrocyte cultures from transgenic mice overexpressing human GFAP. We found that GFAP-δ and GFAP-κ were disproportionately increased in transgenic astrocytes and both were enriched in Rosenthal fibers of human AxD brains. In vitro assembly studies showed that while the major isoform GFAP-α self-assembled into typical 10-nm filaments, minor isoforms including GFAP-δ, -κ, and -λ were assembly-compromised and aggregation prone. Lentiviral transduction showed that expression of these minor GFAP isoforms decreased filament solubility and increased GFAP stability, leading to the formation of Rosenthal fibers-like aggregates that also disrupted the endogenous intermediate filament networks. The aggregate-bearing astrocytes lost their normal morphology and glutamate buffering capacity, which had a toxic effect on neighboring neurons. In conclusion, our findings provide evidence that links elevated GFAP isoform expression with GFAP aggregation and impaired glutamate transport, and suggest a potential non-cell-autonomous mechanism underlying neurodegeneration through astrocyte dysfunction.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ai-Wen Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Borodinova AA, Balaban PM, Bezprozvanny IB, Salmina AB, Vlasova OL. Genetic Constructs for the Control of Astrocytes' Activity. Cells 2021; 10:cells10071600. [PMID: 34202359 PMCID: PMC8306323 DOI: 10.3390/cells10071600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
In the current review, we aim to discuss the principles and the perspectives of using the genetic constructs based on AAV vectors to regulate astrocytes’ activity. Practical applications of optogenetic approaches utilizing different genetically encoded opsins to control astroglia activity were evaluated. The diversity of astrocytic cell-types complicates the rational design of an ideal viral vector for particular experimental goals. Therefore, efficient and sufficient targeting of astrocytes is a multiparametric process that requires a combination of specific AAV serotypes naturally predisposed to transduce astroglia with astrocyte-specific promoters in the AAV cassette. Inadequate combinations may result in off-target neuronal transduction to different degrees. Potentially, these constraints may be bypassed with the latest strategies of generating novel synthetic AAV serotypes with specified properties by rational engineering of AAV capsids or using directed evolution approach by searching within a more specific promoter or its replacement with the unique enhancer sequences characterized using modern molecular techniques (ChIP-seq, scATAC-seq, snATAC-seq) to drive the selective transgene expression in the target population of cells or desired brain regions. Realizing these strategies to restrict expression and to efficiently target astrocytic populations in specific brain regions or across the brain has great potential to enable future studies.
Collapse
Affiliation(s)
- Anastasia A. Borodinova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
| | - Pavel M. Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Correspondence:
| | - Ilya B. Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Alla B. Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
- Research Institute of Molecular Medicine and Pathobiochemistry, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (I.B.B.); (A.B.S.); (O.L.V.)
| |
Collapse
|
17
|
The Potential of Fibroblast Transdifferentiation to Neuron Using Hydrogels. Processes (Basel) 2021. [DOI: 10.3390/pr9040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Currently there is a big drive to generate neurons from differentiated cells which would be of great benefit for regenerative medicine, tissue engineering and drug screening. Most studies used transcription factors, epigenetic reprogramming and/or chromatin remodeling drugs which might reflect incomplete reprogramming or progressive deregulation of the new program. In this review, we present a potential different method for cellular reprogramming/transdifferentiation to potentially enhance regeneration of neurons. We focus on the use of biomaterials, specifically hydrogels, to act as non-invasive tools to direct transdifferentiation, and we draw parallel with existing transcriptional and epigenetic methods. Hydrogels are attractive materials because the properties of hydrogels can be modified, and various natural and synthetic substances can be employed. Incorporation of extracellular matrix (ECM) substances and composite materials allows mechanical properties and degradation rate to be controlled. Moreover, hydrogels in combinations with other physical and mechanical stimuli such as electric current, shear stress and tensile force will be mentioned in this review.
Collapse
|
18
|
Bodegraven EJ, Sluijs JA, Tan AK, Robe PAJT, Hol EM. New GFAP splice isoform (GFAPµ) differentially expressed in glioma translates into 21 kDa N‐terminal GFAP protein. FASEB J 2021; 35:e21389. [DOI: 10.1096/fj.202001767r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Emma J. Bodegraven
- Department of Translational Neurosciences University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
| | - Jacqueline A. Sluijs
- Department of Translational Neurosciences University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
| | - A. Katherine Tan
- Department of Translational Neurosciences University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
- Department of Neurology and Neurosurgery University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
| | - Pierre A. J. T. Robe
- Department of Neurology and Neurosurgery University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
| | - Elly M. Hol
- Department of Translational Neurosciences University Medical Center Utrecht Brain CenterUtrecht University Utrecht The Netherlands
| |
Collapse
|
19
|
Bozic I, Savic D, Lavrnja I. Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histol Histopathol 2020; 36:267-290. [PMID: 33226087 DOI: 10.14670/hh-18-284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
20
|
Alternative splicing landscape of the neural transcriptome in a cytoplasmic-predominant Pten expression murine model of autism-like Behavior. Transl Psychiatry 2020; 10:380. [PMID: 33159038 PMCID: PMC7648763 DOI: 10.1038/s41398-020-01068-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing (AS) is a posttranscriptional mechanism regulating gene expression that complex organisms utilize to expand proteome diversity from a comparatively limited set of genes. Recent research has increasingly associated AS with increased functional complexity in the central nervous systems in higher order mammals. This work has heavily implicated aberrant AS in several neurocognitive and neurodevelopmental disorders, including autism. Due to the strong genetic association between germline PTEN mutations and autism spectrum disorder (ASD), we hypothesized that germline PTEN mutations would alter AS patterns, contributing to the pathophysiology of ASD. In a murine model of constitutional mislocalization of Pten, recapitulating an autism-like phenotype, we found significant changes in AS patterns across the neural transcriptome by analyzing RNA-sequencing data with the program rMATS. A few hundred significant alternative splicing events (ASEs) that differentiate each m3m4 genotype were identified. These ASEs occur in genes enriched in PTEN signaling, inositol metabolism, and several other pathways relevant to the pathophysiology of ASD. In addition, we identified expression changes in several splicing factors known to be enriched in the nervous system. For instance, the master regulator of microexons, Srrm4, has decreased expression, and consequently, we found decreased inclusion of microexons in the Ptenm3m4/m3m4 cortex (~10% decrease). We also demonstrated that the m3m4 mutation disrupts the interaction between Pten and U2af2, a member of the spliceosome. In sum, our observations point to germline Pten disruption changing the landscape of alternative splicing in the brain, and these changes may be relevant to the pathogenesis and/or maintenance of PTEN-ASD phenotypes.
Collapse
|
21
|
de Sonnaville SFAM, van Strien ME, Middeldorp J, Sluijs JA, van den Berge SA, Moeton M, Donega V, van Berkel A, Deering T, De Filippis L, Vescovi AL, Aronica E, Glass R, van de Berg WDJ, Swaab DF, Robe PA, Hol EM. The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Commun 2020; 2:fcaa150. [PMID: 33376983 PMCID: PMC7750937 DOI: 10.1093/braincomms/fcaa150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging.
Collapse
Affiliation(s)
- Sophia F A M de Sonnaville
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Simone A van den Berge
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martina Moeton
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vanessa Donega
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Annemiek van Berkel
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Tasmin Deering
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Lidia De Filippis
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo L Vescovi
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Rainer Glass
- Department of Neurosurgical Research, Clinic for Neurosurgery, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam University Medical Centre, Location VU, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Potokar M, Morita M, Wiche G, Jorgačevski J. The Diversity of Intermediate Filaments in Astrocytes. Cells 2020; 9:E1604. [PMID: 32630739 PMCID: PMC7408014 DOI: 10.3390/cells9071604] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/02/2023] Open
Abstract
Despite the remarkable complexity of the individual neuron and of neuronal circuits, it has been clear for quite a while that, in order to understand the functioning of the brain, the contribution of other cell types in the brain have to be accounted for. Among glial cells, astrocytes have multiple roles in orchestrating neuronal functions. Their communication with neurons by exchanging signaling molecules and removing molecules from extracellular space takes place at several levels and is governed by different cellular processes, supported by multiple cellular structures, including the cytoskeleton. Intermediate filaments in astrocytes are emerging as important integrators of cellular processes. Astrocytes express five types of intermediate filaments: glial fibrillary acidic protein (GFAP); vimentin; nestin; synemin; lamins. Variability, interactions with different cellular structures and the particular roles of individual intermediate filaments in astrocytes have been studied extensively in the case of GFAP and vimentin, but far less attention has been given to nestin, synemin and lamins. Similarly, the interplay between different types of cytoskeleton and the interaction between the cytoskeleton and membranous structures, which is mediated by cytolinker proteins, are understudied in astrocytes. The present review summarizes the basic properties of astrocytic intermediate filaments and of other cytoskeletal macromolecules, such as cytolinker proteins, and describes the current knowledge of their roles in normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
| | - Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe 657-8501, Japan;
| | - Gerhard Wiche
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
| |
Collapse
|
23
|
Ahmadipour Y, Gembruch O, Pierscianek D, Sure U, Jabbarli R. Does the expression of glial fibrillary acid protein (GFAP) stain in glioblastoma tissue have a prognostic impact on survival? Neurochirurgie 2020; 66:150-154. [PMID: 32278699 DOI: 10.1016/j.neuchi.2019.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/15/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Several parameters are known to predict the survival of glioblastoma (GB), including extent of resection and MGMT promotor methylation. Staining for glial fibrillary acidic protein (GFAP) is a common component of routine histological work-up, but its clinical utility in GB is unclear. The aim of the present study was to analyze the predictive value of quantitative GFAP measurements for survival of patients with GB. METHODS All subjects in our institutional database of patients with primary GB who underwent surgery between 2011 and 2014 with examination of immunohistochemical staining of GFAP were included. Percentage GFAP staining was measured in 5% increments (5-100%). Univariate and multivariate analyses were performed between GFAP values and survival data. Clinically relevant cut-offs for GFAP staining were identified by receiver operating characteristic (ROC) curves. RESULTS The final cohort consisted of 272GB patients with available quantitative GFAP measurements (mean age, 62 (±11.1) years, 117 females [43%]). Overall survival was 11.4 months (±8.6). Median GFAP value was 70% (range, 5-100%). The ROC curve showed the clinically relevant cut-off for GFAP at 75% (area under the curve: 0.691). Accordingly, GB patients with GFAP≥75% presented poorer survival on Kaplan-Meier survival estimation (P=0.021). Multivariate analysis adjusted for age, extent of resection, preoperative Karnofsky performance status scale, IDH1 mutation and MGMT methylation status confirmed the independent predictive value of GFAP≥75% for overall survival (P=0.032). Finally, patients with GFAP≥75% showed significantly poorer long-term survival than those with GFAP<75%: 5.8% vs. 15.2% (P=0.0183) and 0.8% vs. 8% (P=0.0076) for 2- and 3-year survival, respectively. CONCLUSION Quantitative immunohistochemical assessment of GFAP staining could provide a novel biomarker for overall and especially long-term survival of patients with GB. Prospective multi-center validation of the prognostic value of GFAP for GB survival is needed.
Collapse
Affiliation(s)
- Y Ahmadipour
- Department of Neurosurgery, University Hospital Essen, Essen, Germany.
| | - O Gembruch
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - D Pierscianek
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - U Sure
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - R Jabbarli
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
24
|
Berendsen S, van Bodegraven E, Seute T, Spliet WGM, Geurts M, Hendrikse J, Schoysman L, Huiszoon WB, Varkila M, Rouss S, Bell EH, Kroonen J, Chakravarti A, Bours V, Snijders TJ, Robe PA. Adverse prognosis of glioblastoma contacting the subventricular zone: Biological correlates. PLoS One 2019; 14:e0222717. [PMID: 31603915 PMCID: PMC6788733 DOI: 10.1371/journal.pone.0222717] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The subventricular zone (SVZ) in the brain is associated with gliomagenesis and resistance to treatment in glioblastoma. In this study, we investigate the prognostic role and biological characteristics of subventricular zone (SVZ) involvement in glioblastoma. METHODS We analyzed T1-weighted, gadolinium-enhanced MR images of a retrospective cohort of 647 primary glioblastoma patients diagnosed between 2005-2013, and performed a multivariable Cox regression analysis to adjust the prognostic effect of SVZ involvement for clinical patient- and tumor-related factors. Protein expression patterns of a.o. markers of neural stem cellness (CD133 and GFAP-δ) and (epithelial-) mesenchymal transition (NF-κB, C/EBP-β and STAT3) were determined with immunohistochemistry on tissue microarrays containing 220 of the tumors. Molecular classification and mRNA expression-based gene set enrichment analyses, miRNA expression and SNP copy number analyses were performed on fresh frozen tissue obtained from 76 tumors. Confirmatory analyses were performed on glioblastoma TCGA/TCIA data. RESULTS Involvement of the SVZ was a significant adverse prognostic factor in glioblastoma, independent of age, KPS, surgery type and postoperative treatment. Tumor volume and postoperative complications did not explain this prognostic effect. SVZ contact was associated with increased nuclear expression of the (epithelial-) mesenchymal transition markers C/EBP-β and phospho-STAT3. SVZ contact was not associated with molecular subtype, distinct gene expression patterns, or markers of stem cellness. Our main findings were confirmed in a cohort of 229 TCGA/TCIA glioblastomas. CONCLUSION In conclusion, involvement of the SVZ is an independent prognostic factor in glioblastoma, and associates with increased expression of key markers of (epithelial-) mesenchymal transformation, but does not correlate with stem cellness, molecular subtype, or specific (mi)RNA expression patterns.
Collapse
Affiliation(s)
- Sharon Berendsen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Emma van Bodegraven
- UMC Utrecht Brain Center, Department of Translational Neuroscience, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Tatjana Seute
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Wim G. M. Spliet
- Department of Pathology, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Marjolein Geurts
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Laurent Schoysman
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
- Department of Radiology, Liège University Hospital, Liège, Belgium
| | - Willemijn B. Huiszoon
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Meri Varkila
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Soufyan Rouss
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Erica H. Bell
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - Jérôme Kroonen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
| | - Arnab Chakravarti
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - Vincent Bours
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
| | - Tom J. Snijders
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Pierre A. Robe
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Cipriani S, Ferrer I, Aronica E, Kovacs GG, Verney C, Nardelli J, Khung S, Delezoide AL, Milenkovic I, Rasika S, Manivet P, Benifla JL, Deriot N, Gressens P, Adle-Biassette H. Hippocampal Radial Glial Subtypes and Their Neurogenic Potential in Human Fetuses and Healthy and Alzheimer's Disease Adults. Cereb Cortex 2019; 28:2458-2478. [PMID: 29722804 DOI: 10.1093/cercor/bhy096] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Neuropathological conditions might affect adult granulogenesis in the adult human dentate gyrus. However, radial glial cells (RGCs) have not been well characterized during human development and aging. We have previously described progenitor and neuronal layer establishment in the hippocampal pyramidal layer and dentate gyrus from embryonic life until mid-gestation. Here, we describe RGC subtypes in the hippocampus from 13 gestational weeks (GW) to mid-gestation and characterize their evolution and the dynamics of neurogenesis from mid-gestation to adulthood in normal and Alzheimer's disease (AD) subjects. In the pyramidal ventricular zone (VZ), RGC density declined with neurogenesis from mid-gestation until the perinatal period. In the dentate area, morphologic and antigenic differences among RGCs were observed from early ages of development to adulthood. Density and proliferative capacity of dentate RGCs as well as neurogenesis were strongly reduced during childhood until 5 years, few DCX+ cells are seen in adults. The dentate gyrus of both control and AD individuals showed Nestin+ and/or GFAPδ+ cells displaying different morphologies. In conclusion, pools of morphologically, antigenically, and topographically diverse neural progenitor cells are present in the human hippocampus from early developmental stages until adulthood, including in AD patients, while their neurogenic potential seems negligible in the adult.
Collapse
Affiliation(s)
- Sara Cipriani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge Campus, L'Hospitalet de Llobregat, Spain; Centre for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Catherine Verney
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jeannette Nardelli
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Suonavy Khung
- APHP, Service de Biologie du Développement, Hôpital Robert-Debré, APHP, Paris, France
| | - Anne-Lise Delezoide
- APHP, Service de Biologie du Développement, Hôpital Robert-Debré, APHP, Paris, France
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Philippe Manivet
- APHP, Plateforme de Bio-Pathologie et de Technologies Innovantes en Santé, Centre de Ressources Biologiques BB-0033-00064, Hôpital Lariboisière, Paris, France
| | - Jean-Louis Benifla
- APHP, Service de Gynécologie-Obstétrique, Hôpital Lariboisère, Paris, France
| | - Nicolas Deriot
- APHP, Plateforme de Bio-Pathologie et de Technologies Innovantes en Santé, Centre de Ressources Biologiques BB-0033-00064, Hôpital Lariboisière, Paris, France.,Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisère, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Homa Adle-Biassette
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,APHP, Plateforme de Bio-Pathologie et de Technologies Innovantes en Santé, Centre de Ressources Biologiques BB-0033-00064, Hôpital Lariboisière, Paris, France.,Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisère, Paris, France
| |
Collapse
|
27
|
van Bodegraven EJ, van Asperen JV, Sluijs JA, van Deursen CBJ, van Strien ME, Stassen OMJA, Robe PAJ, Hol EM. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner. FASEB J 2019; 33:12941-12959. [PMID: 31480854 DOI: 10.1096/fj.201900916r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gliomas are the most common primary brain tumors. Their highly invasive character and the heterogeneity of active oncogenic pathways within single tumors complicate the development of curative therapies and cause poor patient prognosis. Glioma cells express the intermediate filament protein glial fibrillary acidic protein (GFAP), and the level of its alternative splice variant GFAP-δ, relative to its canonical splice variant GFAP-α, is higher in grade IV compared with lower-grade and lower malignant glioma. In this study we show that a high GFAP-δ/α ratio induces the expression of the dual-specificity phosphatase 4 (DUSP4) in focal adhesions. By focusing on pathways up- and downstream of DUSP4 that are involved in the cell-extracellular matrix interaction, we show that a high GFAP-δ/α ratio equips glioma cells to better invade the brain. This study supports the hypothesis that glioma cells with a high GFAP-δ/α ratio are highly invasive and more malignant cells, thus making GFAP alternative splicing a potential therapeutic target.-Van Bodegraven, E. J., van Asperen, J. V., Sluijs, J. A., van Deursen, C. B. J., van Strien, M. E., Stassen, O. M. J. A., Robe, P. A. J., Hol, E. M. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner.
Collapse
Affiliation(s)
- Emma J van Bodegraven
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Coen B J van Deursen
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Oscar M J A Stassen
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease. Acta Neuropathol Commun 2019; 7:84. [PMID: 31159890 PMCID: PMC6545684 DOI: 10.1186/s40478-019-0736-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023] Open
Abstract
It is currently accepted that the human brain has a limited neurogenic capacity and an impaired regenerative potential. We have previously shown the existence of CD271-expressing neural stem cells (NSCs) in the subventricular zone (SVZ) of Parkinson's disease (PD) patients, which proliferate and differentiate towards neurons and glial cells in vitro. To study the molecular profile of these NSCs in detail, we performed RNA sequencing and mass spectrometry on CD271+ NSCs isolated from human post-mortem SVZ and on homogenates of the SVZ. CD271+ cells were isolated through magnetic cell separation (MACS). We first compared the molecular profile of CD271+ NSCs to the SVZ homogenate from control donors and then compared CD271+ cells to CD11b+ microglia. These results confirmed their neural stem cell identity. Finally we compared controls and PD patients to establish a specific molecular profile of NSCs and the SVZ in PD. While our transcriptome analysis did not identify any differentially expressed genes in the SVZ between control and PD patients, our proteome analysis revealed several proteins that were differentially expressed in PD. Some of these proteins are involved in cytoskeletal organization and mitochondrial function. Transcriptome and proteome analyses of NSCs from PD revealed changes in the expression of genes and proteins involved in metabolism, transcriptional activity and cytoskeletal organization. Our data suggest that NSCs may transit into a primed-quiescent state, that is in an "alert" non-proliferative phase in PD. Our results not only confirm pathological hallmarks of PD (e.g. impaired mitochondrial function), but also show that the NSCs from SVZ undergo significant changes at both transcriptome and proteome level following PD.
Collapse
|
29
|
Magnetic resonance imaging in immune-mediated myelopathies. J Neurol 2019; 267:1233-1244. [PMID: 30694379 DOI: 10.1007/s00415-019-09206-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
Immune-mediated myelopathies are a heterogeneous group of inflammatory spinal cord disorders including autoimmune disorders with known antibodies, e.g. aquaporin-4 IgG channelopathy or anti-myelin oligodendrocyte glycoprotein-associated myelitis, myelopathies in the context of multiple sclerosis and systemic autoimmune disorders with myelopathy, as well as post-infectious and paraneoplastic myelopathies. Although magnetic resonance imaging of the spinal cord is still challenging due to the small dimension of the cord cross-section and frequent movement and susceptibility artifacts, recent methodological advances have led to improved diagnostic evaluation and characterization of immune-mediated myelopathies. Topography, length and width of the lesion, gadolinium enhancement pattern, and changes in morphology over time help in narrowing the broad differential diagnosis. In this review, we give an overview of recent advances in magnetic resonance imaging of immune-mediated myelopathies and its role in the differential diagnosis and monitoring of this heterogeneous group of disorders.
Collapse
|
30
|
Bugiani M, Vuong C, Breur M, van der Knaap MS. Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain Pathol 2019; 28:408-421. [PMID: 29740943 DOI: 10.1111/bpa.12606] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
VWM is one of the most prevalent leukodystrophies with unique clinical, pathological and molecular features. It mostly affects children, but may develop at all ages, from birth to senescence. It is dominated by cerebellar ataxia and susceptible to stresses that act as factors provoking disease onset or episodes of rapid neurological deterioration possibly leading to death. VWM is caused by mutations in any of the genes encoding the five subunits of the eukaryotic translation initiation factor 2B (eIF2B). Although eIF2B is ubiquitously expressed, VWM primarily manifests as a leukodystrophy with increasing white matter rarefaction and cystic degeneration, meager astrogliosis with no glial scarring and dysmorphic immature astrocytes and increased numbers of oligodendrocyte progenitor cells that are restrained from maturing into myelin-forming cells. Recent findings point to a central role for astrocytes in driving the brain pathology, with secondary effects on both oligodendroglia and axons. In this, VWM belongs to the growing group of astrocytopathies, in which loss of essential astrocytic functions and gain of detrimental functions drive degeneration of the white matter. Additional disease mechanisms include activation of the unfolded protein response with constitutive predisposition to cellular stress, failure of astrocyte-microglia crosstalk and possibly secondary effects on the oxidative phosphorylation. VWM involves a translation initiation factor. The group of leukodystrophies due to defects in mRNA translation is also growing, suggesting that this may be a common disease mechanism. The combination of all these features makes VWM an intriguing natural model to understand the biology and pathology of the white matter.
Collapse
Affiliation(s)
- Marianna Bugiani
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline Vuong
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjolein Breur
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
31
|
van Bodegraven EJ, van Asperen JV, Robe PAJ, Hol EM. Importance of GFAP isoform-specific analyses in astrocytoma. Glia 2019; 67:1417-1433. [PMID: 30667110 PMCID: PMC6617972 DOI: 10.1002/glia.23594] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Gliomas are a heterogenous group of malignant primary brain tumors that arise from glia cells or their progenitors and rely on accurate diagnosis for prognosis and treatment strategies. Although recent developments in the molecular biology of glioma have improved diagnosis, classical histological methods and biomarkers are still being used. The glial fibrillary acidic protein (GFAP) is a classical marker of astrocytoma, both in clinical and experimental settings. GFAP is used to determine glial differentiation, which is associated with a less malignant tumor. However, since GFAP is not only expressed by mature astrocytes but also by radial glia during development and neural stem cells in the adult brain, we hypothesized that GFAP expression in astrocytoma might not be a direct indication of glial differentiation and a less malignant phenotype. Therefore, we here review all existing literature from 1972 up to 2018 on GFAP expression in astrocytoma patient material to revisit GFAP as a marker of lower grade, more differentiated astrocytoma. We conclude that GFAP is heterogeneously expressed in astrocytoma, which most likely masks a consistent correlation of GFAP expression to astrocytoma malignancy grade. The GFAP positive cell population contains cells with differences in morphology, function, and differentiation state showing that GFAP is not merely a marker of less malignant and more differentiated astrocytoma. We suggest that discriminating between the GFAP isoforms GFAPδ and GFAPα will improve the accuracy of assessing the differentiation state of astrocytoma in clinical and experimental settings and will benefit glioma classification.
Collapse
Affiliation(s)
- Emma J van Bodegraven
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105, BA, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Dieriks BV, Dean JM, Aronica E, Waldvogel HJ, Faull RLM, Curtis MA. Differential Fatty Acid-Binding Protein Expression in Persistent Radial Glia in the Human and Sheep Subventricular Zone. Dev Neurosci 2018; 40:145-161. [PMID: 29680832 DOI: 10.1159/000487633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/18/2018] [Indexed: 01/19/2023] Open
Abstract
Fatty acid-binding proteins (FABPs) are a family of transport proteins that facilitate intracellular transport of fatty acids. Despite abundant expression in the brain, the role that FABPs play in the process of cell proliferation and migration in the subventricular zone (SVZ) remains unclear. Our results provide a detailed characterisation of FABP3, 5, and 7 expression in adult and fetal human and sheep SVZ. High FABP5 expression was specifically observed in the adult human SVZ and co-labelled with polysialylated neural cell adhesion molecule (PSA-NCAM), glial fibrillary acidic protein (GFAP), GFAPδ, and proliferating cell nuclear antigen (PCNA), indicating a role for FABP5 throughout the full maturation process of astrocytes and neuroblasts. Some FABP5+ cells had a radial glial-like appearance and co-labelled with the radial glia markers vimentin (40E-C) and GFAP. In the fetal human brain, FABP5 was expressed by radial glia cells throughout the ventricular zone. In contrast, radial glia-like cells in sheep highly expressed FABP3. Taken together, these differences highlight the species-specific expression profile of FABPs in the SVZ. In this study, we demonstrate the distribution of FABP in the adult human SVZ and fetal ventricular zone and reveal its expression on persistent radial glia that may be involved in adult neurogenesis.
Collapse
Affiliation(s)
- Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, the Netherlands
| | - Henry J Waldvogel
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Iorio R, Damato V, Evoli A, Gessi M, Gaudino S, Di Lazzaro V, Spagni G, Sluijs JA, Hol EM. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J Neurol Neurosurg Psychiatry 2018; 89:138-146. [PMID: 28951498 DOI: 10.1136/jnnp-2017-316583] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To report the clinical and immunological characteristics of 22 new patients with glial fibrillar acidic protein (GFAP) autoantibodies. METHODS From January 2012 to March 2017, we recruited 451 patients with suspected neurological autoimmune disease at the Catholic University of Rome. Patients' serum and cerebrospinal fluid (CSF) samples were tested for neural autoantibodies by immunohistochemistry on mouse and rat brain sections, by cell-based assays (CBA) and immunoblot. GFAP autoantibodies were detected by immunohistochemistry and their specificity confirmed by CBA using cells expressing human GFAPα and GFAPδ proteins, by immunoblot and immunohistochemistry on GFAP-/- mouse brain sections. RESULTS Serum and/or CSF IgG of 22/451 (5%) patients bound to human GFAP, of which 22/22 bound to GFAPα, 14/22 to both GFAPα and GFAPδ and none to the GFAPδ isoform only. The neurological presentation was: meningoencephalomyelitis or encephalitis in 10, movement disorder (choreoathetosis or myoclonus) in 3, anti-epileptic drugs (AED)-resistant epilepsy in 3, cerebellar ataxia in 3, myelitis in 2, optic neuritis in 1 patient. Coexisting neural autoantibodies were detected in five patients. Six patients had other autoimmune diseases. Tumours were found in 3/22 patients (breast carcinoma, 1; ovarian carcinoma, 1; thymoma, 1). Nineteen patients were treated with immunotherapy and 16 patients (84%) improved. Histopathology analysis of the leptomeningeal biopsy specimen from one patient revealed a mononuclear infiltrate with macrophages and CD8+ T cells. CONCLUSIONS GFAP autoimmunity is not rare. The clinical spectrum encompasses meningoencephalitis, myelitis, movement disorders, epilepsy and cerebellar ataxia. Coexisting neurological and systemic autoimmunity are relatively common. Immunotherapy is beneficial in most cases.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Istituto di Neurologia, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Damato
- Department of Neuroscience, Istituto di Neurologia, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Amelia Evoli
- Department of Neuroscience, Istituto di Neurologia, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Gessi
- Institute of Pathology, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Gaudino
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio.Medico di Roma, Rome, Italy
| | - Gregorio Spagni
- Department of Neuroscience, Istituto di Neurologia, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands.,Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Hol EM, Capetanaki Y. Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin. Cold Spring Harb Perspect Biol 2017; 9:9/12/a021642. [PMID: 29196434 DOI: 10.1101/cshperspect.a021642] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SummaryType III intermediate filament (IF) proteins assemble into cytoplasmic homopolymeric and heteropolymeric filaments with other type III and some type IV IFs. These highly dynamic structures form an integral component of the cytoskeleton of muscle, brain, and mesenchymal cells. Here, we review the current ideas on the role of type III IFs in health and disease. It turns out that they not only offer resilience to mechanical strains, but, most importantly, they facilitate very efficiently the integration of cell structure and function, thus providing the necessary scaffolds for optimal cellular responses upon biochemical stresses and protecting against cell death, disease, and aging.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
35
|
GFAPδ/GFAPα ratio directs astrocytoma gene expression towards a more malignant profile. Oncotarget 2017; 8:88104-88121. [PMID: 29152145 PMCID: PMC5675697 DOI: 10.18632/oncotarget.21540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Astrocytomas are the most common malignant brain tumours and are to date incurable. It is unclear how astrocytomas progress into higher malignant grades. The intermediate filament cytoskeleton is emerging as an important regulator of malignancy in several tumours. The majority of the astrocytomas express the intermediate filament protein Glial Fibrillary Acidic Protein (GFAP). Several GFAP splice variants have been identified and the main variants expressed in human astrocytoma are the GFAPα and GFAPδ isoforms. Here we show a significant downregulation of GFAPα in grade IV astrocytoma compared to grade II and III, resulting in an increased GFAPδ/α ratio. Mimicking this increase in GFAPδ/α ratio in astrocytoma cell lines and comparing the subsequent transcriptomic changes with the changes in the patient tumours, we have identified a set of GFAPδ/α ratio-regulated high-malignant and low-malignant genes. These genes are involved in cell proliferation and protein phosphorylation, and their expression correlated with patient survival. We additionally show that changing the ratio of GFAPδ/α, by targeting GFAP expression, affected expression of high-malignant genes. Our data imply that regulating GFAP expression and splicing are novel therapeutic targets that need to be considered as a treatment for astrocytoma.
Collapse
|
36
|
Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL. Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell 2017; 16:1195-1199. [PMID: 28766905 PMCID: PMC5595679 DOI: 10.1111/acel.12641] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 12/02/2022] Open
Abstract
Reduced neurogenesis in the aging mammalian hippocampus has been linked to cognitive deficits and increased risk of dementia. We utilized postmortem human hippocampal tissue from 26 subjects aged 18–88 years to investigate changes in expression of six genes representing different stages of neurogenesis across the healthy adult lifespan. Progressive and significant decreases in mRNA levels of the proliferation marker Ki67 (MKI67) and the immature neuronal marker doublecortin (DCX) were found in the healthy human hippocampus over the lifespan. In contrast, expression of genes for the stem cell marker glial fibrillary acidic protein delta and the neuronal progenitor marker eomesodermin was unchanged with age. These data are consistent with a persistence of the hippocampal stem cell population with age. Age‐associated expression of the proliferation and immature neuron markers MKI67 and DCX, respectively, was unrelated, suggesting that neurogenesis‐associated processes are independently altered at these points in the development from stem cell to neuron. These data are the first to demonstrate normal age‐related decreases at specific stages of adult human hippocampal neurogenesis.
Collapse
Affiliation(s)
- Kathryn J. Mathews
- Discipline of Biomedical Science and Brain and Mind Centre; Sydney Medical School; The University of Sydney; Sydney NSW 2006 Australia
| | - Katherine M. Allen
- Neuroscience Research Australia; Randwick NSW 2031 Australia
- Schizophrenia Research Institute; Randwick NSW 2031 Australia
| | - Danny Boerrigter
- Neuroscience Research Australia; Randwick NSW 2031 Australia
- Schizophrenia Research Institute; Randwick NSW 2031 Australia
| | - Helen Ball
- Biostatistics and Bioinformatics Facility; Bosch Institute; The University of Sydney; Sydney NSW 2006 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia; Randwick NSW 2031 Australia
- Schizophrenia Research Institute; Randwick NSW 2031 Australia
- School of Psychiatry; The University of New South Wales; Sydney NSW 2052 Australia
| | - Kay L. Double
- Discipline of Biomedical Science and Brain and Mind Centre; Sydney Medical School; The University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
37
|
Lin NH, Messing A, Perng MD. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One 2017; 12:e0180694. [PMID: 28700643 PMCID: PMC5503259 DOI: 10.1371/journal.pone.0180694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022] Open
Abstract
Alexander disease (AxD) is a neurodegenerative disease caused by heterozygous mutations in the GFAP gene, which encodes the major intermediate filament protein of astrocytes. This disease is characterized by the accumulation of cytoplasmic protein aggregates, known as Rosenthal fibers. Antibodies specific to GFAP could provide invaluable tools to facilitate studies of the normal biology of GFAP and to elucidate the pathologic role of this IF protein in disease. While a large number of antibodies to GFAP are available, few if any of them have defined epitopes. Here we described the characterization of a panel of commonly used anti-GFAP antibodies, which recognized epitopes at regions extending across the rod domain of GFAP. We show that all of the antibodies are useful for immunoblotting and immunostaining, and identify a subset that preferentially recognized human GFAP. Using these antibodies, we demonstrate the presence of biochemically modified forms of GFAP in brains of human AxD patients and mouse AxD models. These data suggest that this panel of anti-GFAP antibodies will be useful for studies of animal and cell-based models of AxD and related diseases in which cytoskeletal defects associated with GFAP modifications occur.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Flanagan EP, Hinson SR, Lennon VA, Fang B, Aksamit AJ, Morris PP, Basal E, Honorat JA, Alfugham NB, Linnoila JJ, Weinshenker BG, Pittock SJ, McKeon A. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients. Ann Neurol 2017; 81:298-309. [PMID: 28120349 DOI: 10.1002/ana.24881] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A novel autoimmune central nervous system (CNS) disorder with glial fibrillary acidic protein (GFAP)-IgG as biomarker was recently characterized. Here, 102 patients with GFAP-IgG positivity are described. METHODS The 102 included patients had: (1) serum, cerebrospinal fluid (CSF), or both that yielded a characteristic astrocytic pattern of mouse tissue immunostaining; (2) confirmation of IgG reactive with specific GFAP isoforms (α, ɛ, or κ) by cell-based assays; and (3) clinical data available. Control specimens (n = 865) were evaluated by tissue (n = 542) and cell-based (n = 323) assays. RESULTS Median symptom onset age was 44 years (range = 8-103), and 54% were women. The predominant phenotype (83 patients; 81%) was inflammation of meninges, brain, spinal cord, or all 3 (meningoencephalomyelitis). Among patients, highest specificity for those phenotypes was observed for CSF testing (94%), and highest sensitivity was for the GFAPα isoform (100%). Rare GFAP-IgG positivity was encountered in serum controls by tissue-based assay (0.5%) or cell-based assay (1.5%), and in CSF controls by cell-based assay (0.9%). Among patients, striking perivascular radial enhancement was found on brain magnetic resonance imaging in 53%. Although cases frequently mimicked vasculitis, angiography was uniformly negative, and spinal imaging frequently demonstrated longitudinally extensive myelitic lesions. Diverse neoplasms encountered were found prospectively in 22%. Ovarian teratoma was most common and was predicted best when both N-methyl-D-aspartate receptor-IgG and aquaporin-4-IgG coexisted (71%). Six patients with prolonged follow-up had brisk corticosteroid response, but required additional immunosuppression to overcome steroid dependency. INTERPRETATION GFAPα-IgG, when detected in CSF, is highly specific for an immunotherapy-responsive autoimmune CNS disorder, sometimes with paraneoplastic cause. Ann Neurol 2017;81:298-309.
Collapse
Affiliation(s)
- Eoin P Flanagan
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Shannon R Hinson
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Vanda A Lennon
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN.,Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Boyan Fang
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Allen J Aksamit
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN
| | - P Pearse Morris
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Eati Basal
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Josephe A Honorat
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Nora B Alfugham
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Jenny J Linnoila
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Brian G Weinshenker
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Sean J Pittock
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Andrew McKeon
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
39
|
Kheirandish M, Gavgani SP, Samiee S. The effect of hypoxia preconditioning on the neural and stemness genes expression profiling in human umbilical cord blood mesenchymal stem cells. Transfus Apher Sci 2017; 56:392-399. [PMID: 28428031 DOI: 10.1016/j.transci.2017.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022]
Abstract
In recent years, human umbilical cord blood-derived mesenchymal stem cell (hUB-MSCs) has been regarded as an alternative source for stem cell therapy. In this study, we evaluated the effect of hypoxia preconditioning (HPC) on the expression of Nt-3, GFAP, Nestin, Oct-4 and Nanog genes and proliferative capacity of hUB-MSCs in comparison with normoxic conditions. HPC+Hypoxia protocol includes cultured hUB-MSCs for 15min at 2.5% O2 and after that reoxygenation for 30min at 21% O2 (HPC), and then hypoxia preconditioned hUB-MSCs subjected to 2.5% O2 for 72h (Hypoxia). Conclusively, the results showed that hypoxic preconditioning is an effective strategy for enhancing proliferation capacity of hUB-MSCs, and also can trigger expression of some of the neural genes. In addition, the concept of involvement of oxygen tension in the expression of some of the neural genes of hUB-MSCs would be a good sign of enhanced neural differentiation potential in vitro.
Collapse
Affiliation(s)
- Maryam Kheirandish
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Somaie Piri Gavgani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
40
|
Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol 2016; 42:621-638. [PMID: 27424496 PMCID: PMC5125837 DOI: 10.1111/nan.12337] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
AIMS Neurogenesis in the postnatal human brain occurs in two neurogenic niches; the subventricular zone (SVZ) in the wall of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. The extent to which this physiological process continues into adulthood is an area of ongoing research. This study aimed to characterize markers of cell proliferation and assess the efficacy of antibodies used to identify neurogenesis in both neurogenic niches of the human brain. METHODS Cell proliferation and neurogenesis were simultaneously examined in the SVZ and SGZ of 23 individuals aged 0.2-59 years, using immunohistochemistry and immunofluorescence in combination with unbiased stereology. RESULTS There was a marked decline in proliferating cells in both neurogenic niches in early infancy with levels reaching those seen in the adjacent parenchyma by 4 and 1 year of age, in the SVZ and SGZ, respectively. Furthermore, the phenotype of these proliferating cells in both niches changed with age. In infants, proliferating cells co-expressed neural progenitor (epidermal growth factor receptor), immature neuronal (doublecortin and beta III tubulin) and oligodendrocytic (Olig2) markers. However, after 3 years of age, microglia were the only proliferating cells found in either niche or in the adjacent parenchyma. CONCLUSIONS This study demonstrates a marked decline in neurogenesis in both neurogenic niches in early childhood, and that the sparse proliferating cells in the adult brain are largely microglia.
Collapse
Affiliation(s)
- C V Dennis
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - L S Suh
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - M L Rodriguez
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - J J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - G T Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
41
|
Moeton M, Stassen OMJA, Sluijs JA, van der Meer VWN, Kluivers LJ, van Hoorn H, Schmidt T, Reits EAJ, van Strien ME, Hol EM. GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions. Cell Mol Life Sci 2016; 73:4101-20. [PMID: 27141937 PMCID: PMC5043008 DOI: 10.1007/s00018-016-2239-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 11/01/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is the characteristic intermediate filament (IF) protein in astrocytes. Expression of its main isoforms, GFAPα and GFAPδ, varies in astrocytes and astrocytoma implying a potential regulatory role in astrocyte physiology and pathology. An IF-network is a dynamic structure and has been functionally linked to cell motility, proliferation, and morphology. There is a constant exchange of IF-proteins with the network. To study differences in the dynamic properties of GFAPα and GFAPδ, we performed fluorescence recovery after photobleaching experiments on astrocytoma cells with fluorescently tagged GFAPs. Here, we show for the first time that the exchange of GFP-GFAPδ was significantly slower than the exchange of GFP-GFAPα with the IF-network. Furthermore, a collapsed IF-network, induced by GFAPδ expression, led to a further decrease in fluorescence recovery of both GFP-GFAPα and GFP-GFAPδ. This altered IF-network also changed cell morphology and the focal adhesion size, but did not alter cell migration or proliferation. Our study provides further insight into the modulation of the dynamic properties and functional consequences of the IF-network composition.
Collapse
Affiliation(s)
- Martina Moeton
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Oscar M J A Stassen
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Soft Tissue Biomechanics & Engineering, Department of biomedical engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Vincent W N van der Meer
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Liselot J Kluivers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Hedde van Hoorn
- Physics of Life Processes, Leiden Institute of Physics, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden, The Netherlands
| | - Eric A J Reits
- Cell Biology and Histology, AMC Medical Center, Amsterdam, The Netherlands
| | - Miriam E van Strien
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Elly M Hol
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma. Oncotarget 2016; 6:10950-63. [PMID: 25860932 PMCID: PMC4484431 DOI: 10.18632/oncotarget.3459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133(+), Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy.
Collapse
|
43
|
Guichet PO, Guelfi S, Ripoll C, Teigell M, Sabourin JC, Bauchet L, Rigau V, Rothhut B, Hugnot JP. Asymmetric Distribution of GFAP in Glioma Multipotent Cells. PLoS One 2016; 11:e0151274. [PMID: 26953813 PMCID: PMC4783030 DOI: 10.1371/journal.pone.0151274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.
Collapse
Affiliation(s)
- Pierre-Olivier Guichet
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Sophie Guelfi
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Chantal Ripoll
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Marisa Teigell
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Jean-Charles Sabourin
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Luc Bauchet
- CHU Montpellier, Hopital Gui de Chaulliac, 80, avenue Augustin Fliche, 34295 Montpellier, France
| | - Valérie Rigau
- CHU Montpellier, Hopital Gui de Chaulliac, 80, avenue Augustin Fliche, 34295 Montpellier, France
| | - Bernard Rothhut
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
| | - Jean-Philippe Hugnot
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34091 Montpellier Cedex 05, France
- Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- * E-mail: ;
| |
Collapse
|
44
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|
45
|
Perng MD, Huang YS, Quinlan RA. Purification of Protein Chaperones and Their Functional Assays with Intermediate Filaments. Methods Enzymol 2016; 569:155-75. [DOI: 10.1016/bs.mie.2015.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Takayama Y, Matsumura N, Nobusawa S, Ikota H, Minegishi T, Yokoo H. Immunophenotypic features of immaturity of neural elements in ovarian teratoma. Virchows Arch 2015; 468:337-43. [DOI: 10.1007/s00428-015-1891-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/08/2015] [Accepted: 11/23/2015] [Indexed: 11/29/2022]
|
47
|
van Vuurden DG, Aronica E, Hulleman E, Wedekind LE, Biesmans D, Malekzadeh A, Bugiani M, Geerts D, Noske DP, Vandertop WP, Kaspers GJL, Cloos J, Würdinger T, van der Stoop PPM. Pre-B-cell leukemia homeobox interacting protein 1 is overexpressed in astrocytoma and promotes tumor cell growth and migration. Neuro Oncol 2015; 16:946-59. [PMID: 24470547 DOI: 10.1093/neuonc/not308] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glial brain tumors cause considerable mortality and morbidity in children and adults. Innovative targets for therapy are needed to improve survival and reduce long-term sequelae. The aim of this study was to find a candidate tumor-promoting protein, abundantly expressed in tumor cells but not in normal brain tissues, as a potential target for therapy. METHODS In silico proteomics and genomics, immunohistochemistry, and immunofluorescence microscopy validation were performed. RNA interference was used to ascertain the functional role of the overexpressed candidate target protein. RESULTS In silico proteomics and genomics revealed pre-B-cell leukemia homeobox (PBX) interacting protein 1 (PBXIP1) overexpression in adult and childhood high-grade glioma and ependymoma compared with normal brain. PBXIP1 is a PBX-family interacting microtubule-binding protein with a putative role in migration and proliferation of cancer cells. Immunohistochemical studies in glial tumors validated PBXIP1 expression in astrocytoma and ependymoma but not in oligodendroglioma. RNAi-mediated PBXIP1-knockdown in glioblastoma cell lines strongly reduced proliferation and migration and induced morphological changes, indicating that PBXIP1 knockdown decreases glioma cell viability and motility through rearrangements of the actin cytoskeleton. Furthermore, expression of PBXIP1 was observed in radial glia and astrocytic progenitor cells in human fetal tissues, suggesting that PBXIP1 is an astroglial progenitor cell marker during human embryonic development. CONCLUSION PBXIP1 is a novel protein overexpressed in astrocytoma and ependymoma, involved in tumor cell proliferation and migration, that warrants further exploration as a novel therapeutic target in these tumors.
Collapse
|
48
|
Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 2015; 38:364-74. [PMID: 25975510 PMCID: PMC4559283 DOI: 10.1016/j.tins.2015.04.003] [Citation(s) in RCA: 567] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA.
| |
Collapse
|
49
|
Inekci D, Jonesco DS, Kennard S, Karsdal MA, Henriksen K. The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer's disease. Front Neurol 2015; 6:90. [PMID: 26029153 PMCID: PMC4426721 DOI: 10.3389/fneur.2015.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of dementia is challenging and early stages are rarely detected limiting the possibilities for early intervention. Another challenge is the overlap in the clinical features across the different dementia types leading to difficulties in the differential diagnosis. Identifying biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer’s disease and other dementia treatment candidates. The cerebrospinal fluid (CSF) has been the most investigated source of biomarkers and several candidate proteins have been identified. However, looking solely at protein levels is too simplistic to provide enough detailed information to differentiate between dementias, as there is a significant crossover between the proteins involved in the different types of dementia. Additionally, CSF sampling makes these biomarkers challenging for presymptomatic identification. We need to focus on disease-specific protein fragmentation to find a fragment pattern unique for each separate dementia type – a form of protein fragmentology. Targeting protein fragments generated by disease-specific combinations of proteins and proteases opposed to detecting the intact protein could reduce the overlap between diagnostic groups as the extent of processing as well as which proteins and proteases constitute the major hallmark of each dementia type differ. In addition, the fragments could be detectable in blood as they may be able to cross the blood–brain barrier due to their smaller size. In this review, the potential of the fragment-based biomarker discovery for dementia diagnosis and prognosis is discussed, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development.
Collapse
Affiliation(s)
- Dilek Inekci
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark ; Systems Biology, Technical University of Denmark , Lyngby , Denmark
| | | | - Sophie Kennard
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| | | | - Kim Henriksen
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| |
Collapse
|
50
|
Sukhorukova EG, Korzhevskii DE, Alekseeva OS. Glial fibrillary acidic protein: The component of iintermediate filaments in the vertebrate brain astrocytes. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|