1
|
Wang N, Tan S, Liu H, Wang M, Xia J, Zhang W, Wang M, Liu H, Sha Z. SHP-1 alleviates acute liver injury caused by Escherichia coli sepsis through negatively regulating the canonical and non-canonical NFκB signaling pathways. Int Immunopharmacol 2024; 143:113371. [PMID: 39413645 DOI: 10.1016/j.intimp.2024.113371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
SHP-1, as a protein tyrosine phosphatase, plays a key role in inflammation-related diseases. However, its function and regulatory mechanism in the imbalance of inflammatory response and acute liver injury during sepsis are still unknown. Herein, we constructed a murine model of Escherichia coli (E. coli) sepsis and demonstrated the function and novel mechanism of SHP-1 in sepsis. Overexpression of SHP-1 significantly reduced the mortality rate of mice and alleviated the histopathological deterioration of liver. In addition, it inhibited the expression and release of pro-inflammatory mediators in liver tissue and serum, but upregulated the expression of anti-inflammatory molecules. Silencing SHP-1 exhibited the completely opposite effects. Furthermore, the transcriptome data of mice liver showed that SHP-1 suppressed the progression of sepsis by negatively regulating the activation of multiple inflammation-related signaling pathways. More importantly, we fully revealed the regulation mechanism of SHP-1 on both canonical and non-canonical nuclear factor kappa-B (NFκB) signaling pathways during sepsis for the first time. SHP-1 significantly inhibited the phosphorylation and nuclear translocation of p50, while p65 inhibition was mainly achieved by inhibiting its transcription and translation levels. Meanwhile, SHP-1 inhibited the phosphorylation and nuclear translocation of p52, thereby inhibiting the activation of non-canonical NFκB signaling pathways. In summary, SHP-1 negatively regulated canonical and non-canonical NFκB signaling pathways, thereby blocking the occurrence of excessive inflammatory response and acute liver injury caused by E. coli sepsis. Our findings systematically elucidate the role and mechanism of SHP-1 during sepsis, providing new insights into the prevention and treatment of inflammation and immune-related diseases.
Collapse
Affiliation(s)
- Ningning Wang
- College of Basic Medicine, Qingdao University, Qingdao 266071, China; Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muyuan Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jinqi Xia
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Weijun Zhang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Minmin Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Hui Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Tang X, Chen H, Zhao M, Yang W, Shuang R, Xu S. α7nAChR-mediated astrocytic activation: A novel mechanism of Xiongzhi Dilong decoction in ameliorating chronic migraine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118509. [PMID: 38971346 DOI: 10.1016/j.jep.2024.118509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpha 7 nicotinic acetylcholine receptor (α7nAChR)-mediated astrocytic activation is closely related to central sensitization of chronic migraine (CM). Xiongzhi Dilong decoction (XZDL), originated from Xiongzhi Shigao decoction of Yi-zong-jin-jian, has been confirmed to relieve CM in experiment and clinic. However, its underlying mechanism for treating CM has not been elucidated. AIM OF THE STUDY To reveal the underlying mechanisms of XZDL to alleviate CM in vivo focusing mainly on α7nAChR-mediated astrocytic activation and central sensitization in TNC. MATERIALS AND METHODS CM rat model was established by subcutaneous injection of nitroglycerin (NTG) recurrently, and treated with XZDL simultaneously. Migraine-like behaviors of rats (ear redness, head scratching, and cage climbing) and pain-related reactions (mechanical hind-paw withdrawal threshold) of rats were evaluated before and after NTG injection and XZDL administration at different points in time for nine days. The immunofluorescence single and double staining were applied to detect the levels of CGRP, c-Fos, GFAP and α7nAChR in NTG-induced CM rats. ELISA kits were employed to quantify levels of TNF-α, IL-1β, and IL-6 in medulla oblongata of CM rats. The expression levels of target proteins were examined using western blotting. Finally, methyllycaconitine citrate (MLA, a specific antagonist of α7nAChR) was applied to further validate the mechanisms of XZDL in vivo. RESULTS XZDL significantly attenuated the pain-related behaviors of the NTG-induced CM rats, manifesting as constraints of aberrant migraine-like behaviors including elongated latency of ear redness and decreased numbers of head scratching and cage climbing, and increment of mechanical withdrawal threshold. Moreover, XZDL markedly lowered levels of CGRP and c-Fos, as well as inflammatory cytokines (IL-1β, IL-6 and TNF-α) in CM rats. Furthermore, XZDL significantly enhanced α7nAChR expression and its co-localization with GFAP, while markedly inhibited the expression of GFAP and the activation of JAK2/STAT3/NF-κB pathway in the TNC of CM rats. Finally, blocking α7nAChR with MLA reversed the effects of XZDL on astrocytic activation, central sensitization, and the pain-related behaviors in vivo. CONCLUSION XZDL inhibited astrocytic activation and central sensitization in NTG-induced CM rats by facilitating α7nAChR expression and suppressing JAK2/STAT3/NF-κB pathway, implying that the regulation of α7nAChR-mediated astrocytic activation represents a novel mechanism of XZDL for relieving CM.
Collapse
Affiliation(s)
- Xueqian Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ruonan Shuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
3
|
Krishnan A, Sendra VG, Patel D, Lad A, Greene MK, Smyth P, Gallaher SA, Herron ÚM, Scott CJ, Genead M, Tolentino M. PolySialic acid-nanoparticles inhibit macrophage mediated inflammation through Siglec agonism: a potential treatment for age related macular degeneration. Front Immunol 2023; 14:1237016. [PMID: 38045700 PMCID: PMC10690618 DOI: 10.3389/fimmu.2023.1237016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a chronic, progressive retinal disease characterized by an inflammatory response mediated by activated macrophages and microglia infiltrating the inner layer of the retina. In this study, we demonstrate that inhibition of macrophages through Siglec binding in the AMD eye can generate therapeutically useful effects. We show that Siglecs-7, -9 and -11 are upregulated in AMD associated M0 and M1 macrophages, and that these can be selectively targeted using polysialic acid (PolySia)-nanoparticles (NPs) to control dampen AMD-associated inflammation. In vitro studies showed that PolySia-NPs bind to macrophages through human Siglecs-7, -9, -11 as well as murine ortholog Siglec-E. Following treatment with PolySia-NPs, we observed that the PolySia-NPs bound and agonized the macrophage Siglecs resulting in a significant decrease in the secretion of IL-6, IL-1β, TNF-α and VEGF, and an increased secretion of IL-10. In vivo intravitreal (IVT) injection of PolySia-NPs was found to be well-tolerated and safe making it effective in preventing thinning of the retinal outer nuclear layer (ONL), inhibiting macrophage infiltration, and restoring electrophysiological retinal function in a model of bright light-induced retinal degeneration. In a clinically validated, laser-induced choroidal neovascularization (CNV) model of exudative AMD, PolySia-NPs reduced the size of neovascular lesions with associated reduction in macrophages. The PolySia-NPs described herein are therefore a promising therapeutic strategy for repolarizing pro-inflammatory macrophages to a more anti-inflammatory, non-angiogenic phenotype, which play a key role in the pathophysiology of non-exudative AMD.
Collapse
Affiliation(s)
| | | | - Diyan Patel
- Aviceda Therapeutics Inc., Cambridge, MA, United States
| | - Amit Lad
- Aviceda Therapeutics Inc., Cambridge, MA, United States
| | - Michelle K. Greene
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Peter Smyth
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Samantha A. Gallaher
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Úna M. Herron
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Christopher J. Scott
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Michael Tolentino
- Aviceda Therapeutics Inc., Cambridge, MA, United States
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL, United States
| |
Collapse
|
4
|
Kretzschmar F, Piecha R, Jahn J, Potru PS, Spittau B. Characterization of the Leucocyte Immunoglobulin-like Receptor B4 (Lilrb4) Expression in Microglia. BIOLOGY 2021; 10:biology10121300. [PMID: 34943215 PMCID: PMC8698765 DOI: 10.3390/biology10121300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In the present study, we provide a detailed characterization of Lilrb4 expression in microglia and peripheral myeloid cells. Our data demonstrate that LILRB4 is a marker for microglia activation, as evidenced by upregulation after lipopolysaccharide treatment and inhibition of microglial TGFβ signaling. Moreover, we provide evidence that microglia express low levels of Lilrb4 in vivo and high levels in vitro, and we clearly demonstrate that LILRB4 is also expressed by bone marrow-derived monocytes and, to a greater extent, by peritoneal macrophages, defining LILRB4 as a surface marker of myeloid cells and not as a microglia-specific marker. Abstract As resident innate immune cells of the CNS, microglia play important essential roles during physiological and pathological situations. Recent reports have described the expression of Lilrb4 in disease-associated and aged microglia. Here, we characterized the expression of Lilrb4 in microglia in vitro and in vivo in comparison with bone marrow-derived monocytes and peritoneal macrophages in mice. Using BV2 cells, primary microglia cultures as well as ex vivo isolated microglia and myeloid cells in combination with qPCR and flow cytometry, we were able to provide a comprehensive characterization of Lilrb4 expression in distinct mouse myeloid cells. Whereas microglia in vivo display low expression of Lilrb4, primary microglia cultures present high levels of surface LILRB4. Among the analyzed peripheral myeloid cells, peritoneal macrophages showed the highest expression levels of Lilrb4. Moreover, LPS treatment and inhibition of microglial TGFβ signaling resulted in significant increases of LILRB4 cell surface levels. Taken together, our data indicate that LILRB4 is a reliable surface marker for activated microglia and further demonstrate that microglial TGFβ signaling is involved in the regulation of Lilrb4 expression during LPS-induced microglia activation.
Collapse
Affiliation(s)
- Felix Kretzschmar
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Robin Piecha
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Jannik Jahn
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Phani Sankar Potru
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Björn Spittau
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
5
|
Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021; 15:648617. [PMID: 33867926 PMCID: PMC8044809 DOI: 10.3389/fnins.2021.648617] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer's disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
6
|
Zhuang X, Ma J, Xu S, Sun Z, Zhang R, Zhang M, Xu G. SHP-1 suppresses endotoxin-induced uveitis by inhibiting the TAK1/JNK pathway. J Cell Mol Med 2021; 25:147-160. [PMID: 33207073 PMCID: PMC7810969 DOI: 10.1111/jcmm.15888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated how Src-homology 2-domain phosphatase-1 (SHP-1) regulates the inflammatory response in endotoxin-induced uveitis (EIU), and the signalling pathways involved. One week after intravitreal injection of short hairpin RNA targeting SHP-1 or SHP-1 overexpression lentivirus in rats, we induced ocular inflammation with an intravitreal injection of lipopolysaccharide (LPS). We then assessed the extent of inflammation and performed full-field electroretinography. The concentrations and retinal expression of various inflammatory mediators were examined with enzyme-linked immunosorbent assays and Western blotting, respectively. SHP-1 overexpression and knockdown were induced in Müller cells to study the role of SHP-1 in the LPS-induced inflammatory response in vitro. Retinal SHP-1 expression was up-regulated by LPS. SHP-1 knockdown exacerbated LPS-induced retinal dysfunction and increased the levels of proinflammatory mediators in the retina, which was abrogated by a c-Jun N-terminal kinase (JNK) inhibitor (SP600125). SHP-1 overexpression had the opposite effects. In Müller cells, the LPS-induced inflammatory response was enhanced by SHP-1 knockdown and suppressed by SHP-1 overexpression. SHP-1 negatively regulated the activation of the transforming growth factor-β-activated kinase-1 (TAK1)/JNK pathway, but not the nuclear factor-κB pathway. These results indicate that SHP-1 represses EIU, at least in part, by inhibiting the TAK1/JNK pathway and suggest that SHP-1 is a potential therapeutic target for uveitis.
Collapse
Affiliation(s)
- Xiaonan Zhuang
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Jun Ma
- Eye InstituteEye & ENT HospitalFudan UniversityShanghaiChina
| | - Sisi Xu
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Zhongcui Sun
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Rong Zhang
- Eye InstituteEye & ENT HospitalFudan UniversityShanghaiChina
| | - Meng Zhang
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
| | - Gezhi Xu
- Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationFudan UniversityShanghaiChina
- NHC Key Laboratory of MyopiaFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Liao H, Klaus C, Neumann H. Control of Innate Immunity by Sialic Acids in the Nervous Tissue. Int J Mol Sci 2020; 21:ijms21155494. [PMID: 32752058 PMCID: PMC7432451 DOI: 10.3390/ijms21155494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sialic acids (Sias) are the most abundant terminal sugar residues of glycoproteins and glycolipids on the surface of mammalian cells. The nervous tissue is the organ with the highest expression level of Sias. The ‘sialylation’ of glycoconjugates is performed via sialyltransferases, whereas ‘desialylation’ is done by sialidases or is a possible consequence of oxidative damage. Sialic acid residues on the neural cell surfaces inhibit complement and microglial activation, as well as phagocytosis of the underlying structures, via binding to (i) complement factor H (CFH) or (ii) sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors. In contrast, activated microglial cells show sialidase activity that desialylates both microglia and neurons, and further stimulates innate immunity via microglia and complement activation. The desialylation conveys neurons to become susceptible to phagocytosis, as well as triggers a microglial phagocytosis-associated oxidative burst and inflammation. Dysfunctions of the ‘Sia–SIGLEC’ and/or ‘Sia–complement’ axes often lead to neurological diseases. Thus, Sias on glycoconjugates of the intact glycocalyx and its desialylation are major regulators of neuroinflammation.
Collapse
Affiliation(s)
| | | | - Harald Neumann
- Correspondence: ; Tel.: +49-228-6885-500; Fax: +49-228-6885-501
| |
Collapse
|
8
|
Mao ZF, Ouyang SH, Zhang QY, Wu YP, Wang GE, Tu LF, Luo Z, Li WX, Kurihara H, Li YF, He RR. New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: Inhibition of CORT-induced microglia activation. FASEB J 2020; 34:10998-11014. [PMID: 32619083 DOI: 10.1096/fj.202000146rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
Chronic stress-evoked depression has been implied to associate with the decline of adult hippocampal neurogenesis. Caffeine has been known to combat stress-evoked depression. Herein, we aim to investigate whether the protective effect of caffeine on depression is related with improving adult hippocampus neurogenesis and explore the mechanisms. Mouse chronic water immersion restraint stress (CWIRS) model, corticosterone (CORT)-established cell stress model, a coculture system containing CORT-treated BV-2 cells and hippocampal neural stem cells (NSCs) were utilized. Results showed that CWIRS caused obvious depressive-like disorders, abnormal 5-HT signaling, and elevated-plasma CORT levels. Notably, microglia activation-evoked brain inflammation and inhibited neurogenesis were also observed in the hippocampus of stressed mice. In comparison, intragastric administration of caffeine (10 and 20 mg/kg, 28 days) significantly reverted CWIRS-induced depressive behaviors, neurogenesis recession and microglia activation in the hippocampus. Further evidences from both in vivo and in vitro mechanistic experiments demonstrated that caffeine treatment significantly suppressed microglia activation via the A2AR/MEK/ERK/NF-κB signaling pathway. The results suggested that CORT-induced microglia activation contributes to stress-mediated neurogenesis recession. The antidepression effect of caffeine was associated with unlocking microglia activation-induced neurogenesis inhibition.
Collapse
Affiliation(s)
- Zhong-Fu Mao
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiong-Yi Zhang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Guo-En Wang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Long-Fang Tu
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhuo Luo
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Xi Li
- School of Traditional Chinese Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Rong-Rong He
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Garg M, Wahid M, Khan F. Regulation of peripheral and central immunity: Understanding the role of Src homology 2 domain-containing tyrosine phosphatases, SHP-1 & SHP-2. Immunobiology 2019; 225:151847. [PMID: 31561841 DOI: 10.1016/j.imbio.2019.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Abstract
Protein tyrosine phosphorylation is a potent post-translational regulatory mechanism necessary for maintaining normal physiological functioning of immune cells and it is under the stringent control of antagonizing actions of Protein tyrosine phosphatases and kinases. Two such important Non-Receptor protein tyrosine phosphatases, SHP-1 and SHP-2, have been found to be expressed in immune cells and reported to be key regulators of immune cell development, functions, and differentiation by modulating the duration and amplitude of the downstream cascade transduced via receptors. They also have been conceded as the immune checkpoints & therapeutic targets and hence, it is important to understand their significance intricately. This review compares the roles of these two important cytoplasmic PTPs, SHP1 & SHP-2 in the regulation of peripheral as well as central immunity.
Collapse
Affiliation(s)
- Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India.
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia.
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India.
| |
Collapse
|
10
|
Liu Q, Liu C, Jiang L, Li M, Long T, He W, Qin G, Chen L, Zhou J. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J Pain Res 2018; 11:1129-1140. [PMID: 29942148 PMCID: PMC6007207 DOI: 10.2147/jpr.s159146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Evidence suggests that the activation of α7 nicotinic acetylcholine receptor (α7nAChR) can greatly decrease the neuroinflammation response. Neuroinflammation plays a pivotal role in the pathogenesis of chronic migraine (CM). Clinical observations also show that nicotine gum induces analgesic effects in migraine patients. However, whether α7nAChR is involved in CM is unclear. Objective To investigate the role of α7nAChR in CM and provide a new therapeutic target for CM. Materials and methods Thirty-six male Sprague–Dawley rats were distributed randomly into control, CM, PNU-282987, and α-bungarotoxin groups (n=9 rats in each group). The CM model was established by the recurrent daily administration of inflammatory soup on the dura over the course of 1 week. The hind paw threshold and facial allodynia were assessed by the von Frey test. The expression levels of α7nAChR, tumor necrosis factor-alpha, and interleukin-1 beta were analyzed by Western blot and real-time fluorescence quantitative polymerase chain reaction. The location of α7nAChR in the hippocampus was quantified by immunofluorescence, as well as the microglial and astrocyte alterations. Changes in the calcitonin gene-related peptide and the phosphorylated JNK protein among different groups were measured by Western blot. Results We found that the expression of α7nAChR was reduced after repeated inflammatory soup administration. The increased expression of tumor necrosis factor-alpha, interleukin-1 beta, and calcitonin gene-related peptide in CM group were significantly decreased by PNU-282987 and aggravated by α-bungarotoxin. Moreover, PNU-282987 decreased the numbers of astrocytes and microglia compared with the numbers in the CM group in both hippocampal CA1 and CA3 regions. In contrast, α-bungarotoxin activated the astrocytes and microglia, but the differences with respect to the CM group were not significant. Activated c-Jun N-terminal kinase signaling was observed in CM rats and was also blocked by PNU-282987. Conclusion The activation of α7nAChR increased the mechanical threshold and alleviated pain in the CM rat model. α7nAChR activation also decreased the upregulation of astrocytes and microglia through the p-c-Jun N-terminal kinase–mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chaoyang Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Maolin Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ting Long
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei He
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Chen X, Nie X, Mao J, Zhang Y, Yin K, Sun P, Luo J, Liu Y, Jiang S, Sun L. Perfluorooctane sulfonate mediates secretion of IL-1β through PI3K/AKT NF-кB pathway in astrocytes. Neurotoxicol Teratol 2018; 67:65-75. [DOI: 10.1016/j.ntt.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/09/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
|
12
|
Abram CL, Lowell CA. Shp1 function in myeloid cells. J Leukoc Biol 2017; 102:657-675. [PMID: 28606940 DOI: 10.1189/jlb.2mr0317-105r] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
The motheaten mouse was first described in 1975 as a model of systemic inflammation and autoimmunity, as a result of immune system dysregulation. The phenotype was later ascribed to mutations in the cytoplasmic tyrosine phosphatase Shp1. This phosphatase is expressed widely throughout the hematopoietic system and has been shown to impact a multitude of cell signaling pathways. The determination of which cell types contribute to the different aspects of the phenotype caused by global Shp1 loss or mutation and which pathways within these cell types are regulated by Shp1 is important to further our understanding of immune system regulation. In this review, we focus on the role of Shp1 in myeloid cells and how its dysregulation affects immune function, which can impact human disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Schneble N, Müller J, Kliche S, Bauer R, Wetzker R, Böhmer FD, Wang ZQ, Müller JP. The protein-tyrosine phosphatase DEP-1 promotes migration and phagocytic activity of microglial cells in part through negative regulation of fyn tyrosine kinase. Glia 2016; 65:416-428. [DOI: 10.1002/glia.23100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Nadine Schneble
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
- Leibniz Institute on Aging; Beutenberstraße 11 Jena Germany
| | - Julia Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Stefanie Kliche
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University; Leipziger Str. 44 Magdeburg Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Reinhard Wetzker
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Frank-D. Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging; Beutenberstraße 11 Jena Germany
| | - Jörg P. Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| |
Collapse
|
14
|
Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:339-51. [DOI: 10.1016/j.bbadis.2015.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
|
15
|
Regulatory dendritic cells in autoimmunity: A comprehensive review. J Autoimmun 2015; 63:1-12. [PMID: 26255250 DOI: 10.1016/j.jaut.2015.07.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APC) with significant phenotypic heterogeneity and functional plasticity. DCs play crucial roles in initiating effective adaptive immune responses for elimination of invading pathogens and also in inducing immune tolerance toward harmless components to maintain immune homeostasis. The regulatory capacity of DCs depends on their immature state and distinct subsets, yet not restricted to the immature state and one specialized subset. The tolerogenicity of DC is controlled by a complex network of environmental signals and cellular intrinsic mechanisms. Regulatory DCs play an important role in the maintenance of immunological tolerance via the induction of T cell unresponsiveness or apoptosis, and generation of regulatory T cells. DCs play essential roles in driving autoimmunity via promoting the activation of effector T cells such as T helper 1 and T helper 17 cells, and/or suppressing the generation of regulatory T cells. Besides, a breakdown of DCs-mediated tolerance due to abnormal environmental signals or breakdown of intrinsic regulatory mechanisms is closely linked with the pathogenesis of autoimmune diseases. Novel immunotherapy taking advantage of the tolerogenic potential of regulatory DCs is being developed for treatment of autoimmune diseases. In this review, we will describe the current understanding on the generation of regulatory DC and the role of regulatory DCs in promoting tolerogenic immune responses and suppressing autoimmune responses. The emerging roles of DCs dysfunction in the pathogenesis of autoimmune diseases and the potential application of regulatory DCs in the treatment of autoimmune diseases will also be discussed.
Collapse
|
16
|
Hooten KG, Beers DR, Zhao W, Appel SH. Protective and Toxic Neuroinflammation in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12:364-75. [PMID: 25567201 PMCID: PMC4404435 DOI: 10.1007/s13311-014-0329-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically heterogeneous disorder characterized by loss of motor neurons, resulting in paralysis and death. Multiple mechanisms of motor neuron injury have been implicated based upon the more than 20 different genetic causes of familial ALS. These inherited mutations compromise diverse motor neuron pathways leading to cell-autonomous injury. In the ALS transgenic mouse models, however, motor neurons do not die alone. Cell death is noncell-autonomous dependent upon a well orchestrated dialogue between motor neurons and surrounding glia and adaptive immune cells. The pathogenesis of ALS consists of 2 stages: an early neuroprotective stage and a later neurotoxic stage. During early phases of disease progression, the immune system is protective with glia and T cells, especially M2 macrophages/microglia, and T helper 2 cells and regulatory T cells, providing anti-inflammatory factors that sustain motor neuron viability. As the disease progresses and motor neuron injury accelerates, a second rapidly progressing phase develops, characterized by M1 macrophages/microglia, and proinflammatory T cells. In rapidly progressing ALS patients, as in transgenic mice, neuroprotective regulatory T cells are significantly decreased and neurotoxicity predominates. Our own therapeutic efforts are focused on modulating these neuroinflammatory pathways. This review will focus on the cellular players involved in neuroinflammation in ALS and current therapeutic strategies to enhance neuroprotection and suppress neurotoxicity with the goal of arresting the progressive and devastating nature of ALS.
Collapse
Affiliation(s)
- Kristopher G. Hooten
- />Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
- />Department of Neurological Surgery, University of Florida, Box 100265, Gainesville, FL 32610-0261 USA
| | - David R. Beers
- />Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Weihua Zhao
- />Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Stanley H. Appel
- />Department of Neurology, Houston Methodist Neurological Institute, Peggy and Gary Edwards ALS Research Laboratory, Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| |
Collapse
|
17
|
Sierra A, Navascués J, Cuadros MA, Calvente R, Martín-Oliva D, Ferrer-Martín RM, Martín-Estebané M, Carrasco MC, Marín-Teva JL. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. PLoS One 2014; 9:e106048. [PMID: 25170849 PMCID: PMC4149512 DOI: 10.1371/journal.pone.0106048] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/28/2014] [Indexed: 12/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS upregulation.
Collapse
Affiliation(s)
- Ana Sierra
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Julio Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel A. Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ruth Calvente
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - David Martín-Oliva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rosa M. Ferrer-Martín
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María Martín-Estebané
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María-Carmen Carrasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José L. Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
18
|
Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience 2014; 275:113-24. [PMID: 24924144 DOI: 10.1016/j.neuroscience.2014.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 11/22/2022]
Abstract
Sialic acid binding immunoglobulin-like lectins (Siglecs) are cell surface receptors of microglia and oligodendrocytes that recognize the sialic acid cap of healthy neurons and neighboring glial cells. Upon ligand binding, Siglecs typically signal through an immunoreceptor tyrosine-based inhibition motif (ITIM) to keep the cell in a homeostatic status and support healthy neighboring cells. Siglecs can be divided into two groups; the first, being conserved among different species. The conserved Siglec-4/myelin-associated glycoprotein is expressed on oligodendrocytes and Schwann cells. Siglec-4 protects neurons from acute toxicity via interaction with sialic acids bound to neuronal gangliosides. The second group of Siglecs, named CD33-related Siglecs, is almost exclusively expressed on immune cells and is highly variable among different species. Microglial expression of Siglec-11 is human lineage-specific and prevents neurotoxicity via interaction with α2.8-linked sialic acid oligomers exposed on the neuronal glycocalyx. Microglial Siglec-E is a mouse CD33-related Siglec member that prevents microglial phagocytosis and the associated oxidative burst. Mouse Siglec-E of microglia binds to α2.8- and α2.3-linked sialic acid residues of the healthy glycocalyx of neuronal and glial cells. Recently, polymorphisms of the human Siglec-3/CD33 were linked to late onset Alzheimer's disease by genome-wide association studies. Human Siglec-3 is expressed on microglia and produces inhibitory signaling that decreases uptake of particular molecules such as amyloid-β aggregates. Thus, glial ITIM-signaling Siglecs recognize the intact glycocalyx of neurons and are involved in the modulation of neuron-glia interaction in healthy and diseased brain.
Collapse
|
19
|
|
20
|
Kim JH, Choi DJ, Jeong HK, Kim J, Kim DW, Choi SY, Park SM, Suh YH, Jou I, Joe EH. DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: A novel anti-inflammatory function of DJ-1. Neurobiol Dis 2013; 60:1-10. [PMID: 23969237 DOI: 10.1016/j.nbd.2013.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/22/2013] [Accepted: 08/07/2013] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder caused by the death of dopaminergic neurons in the substantia nigra. Importantly, altered astrocyte and microglial functions could contribute to neuronal death in PD. In this study, we demonstrate a novel mechanism by which DJ-1 (PARK7), an early onset autosomal-recessive PD gene, negatively regulates inflammatory responses of astrocytes and microglia by facilitating the interaction between STAT1 and its phosphatase, SHP-1 (Src-homology 2-domain containing protein tyrosine phosphatase-1). Astrocytes and microglia cultured from DJ-1-knockout (KO) mice exhibited increased expression of inflammatory mediators and phosphorylation levels of STAT1 (p-STAT1) in response to interferon-gamma (IFN-γ) compared to cells from wild-type (WT) mice. DJ-1 deficiency also attenuated IFN-γ-induced interactions of SHP-1 with p-STAT1 and STAT1, measured 1 and 12h after IFN-γ treatment, respectively. Subsequent experiments showed that DJ-1 directly interacts with SHP-1, p-STAT1, and STAT1. Notably, DJ-1 bound to SHP-1 independently of IFN-γ, whereas the interactions of DJ-1 with p-STAT1 and STAT1 were dependent on IFN-γ. Similar results were obtained in brain slice cultures, where IFN-γ induced much stronger STAT1 phosphorylation and inflammatory responses in KO slices than in WT slices. Moreover, IFN-γ treatment induced neuronal damage in KO slices. Collectively, these findings suggest that DJ-1 may function as a scaffold protein that facilitates SHP-1 interactions with p-STAT1 and STAT1, thereby preventing extensive and prolonged STAT1 activation. Thus, the loss of DJ-1 function may increase the risk of PD by enhancing brain inflammation.
Collapse
Affiliation(s)
- Jong-hyeon Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 442-721, Republic of Korea; National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon 442-721, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon 442-721, Republic of Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 442-721, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Okenwa C, Kumar A, Rego D, Konarski Y, Nilchi L, Wright K, Kozlowski M. SHP-1-Pyk2-Src protein complex and p38 MAPK pathways independently regulate IL-10 production in lipopolysaccharide-stimulated macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 191:2589-603. [PMID: 23904162 DOI: 10.4049/jimmunol.1300466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of tyrosine phosphatase Src homology region 2 domain-containing phosphatase (SHP)-1 in LPS-activated cytokine production and inflammation was investigated by determining TNF-α and IL-10 production in splenic macrophages employing SHP-1-null (me/me) mouse model. LPS-stimulated me/me splenic macrophages secreted significantly less IL-10 with concomitantly elevated levels of TNF-α compared with wild-type (WT) macrophages irrespective of LPS dose and duration of stimulation. IL-10 significantly inhibited LPS-induced TNF-α production in both me/me and WT macrophages. The critical requirement for SHP-1 in regulating LPS-induced IL-10 and TNF-α production was confirmed by interfering with SHP-1 expression in WT macrophages and by reconstituting me/me macrophages with the SHP-1 gene. To delineate the role of SHP-1 in positive regulation of LPS-induced IL-10 production, signaling proteins representing SHP-1 targets were examined. The results reveal that tyrosine kinases Src and proline-rich tyrosine kinase 2 (Pyk2) regulate SHP-1-dependent LPS-induced IL-10 production and infer that optimal LPS-induced IL-10 production requires an assembly of a protein complex consisting of SHP-1-Pyk2-Src proteins. Moreover, LPS-induced IL-10 production also requires activation of the p38 MAPK independent of SHP-1 function. Overall, to our knowledge our results show for the first time that SHP-1 acts as a positive regulator of LPS-induced IL-10 production in splenic macrophages through two distinct and independent SHP-1-Pyk2-Src and p38 MAPK pathways.
Collapse
Affiliation(s)
- Chinonso Okenwa
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Regulation of avoidant behaviors and pain by the anti-inflammatory tyrosine phosphatase SHP-1. ACTA ACUST UNITED AC 2012; 2:235-46. [PMID: 18250891 DOI: 10.1017/s1740925x07000476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The protein tyrosine phosphatase SHP-1 is a critical regulator of cytokine signaling and inflammation. Mice homozygous for a null allele at the SHP-1 locus have a phenotype of severe inflammation and are hyper-responsive to the TLR4 ligand LPS. TLR4 stimulation in the CNS has been linked to both neuropathic pain and sickness behaviors. To determine if reduction in SHP-1 expression affects LPS-induced behaviors, responses of heterozygous SHP-1-deficient (me/+) and wild-type (+/+) mice to LPS were measured. Chronic (4-week) treatment with LPS induced avoidant behaviors indicative of fear/anxiety in me/+, but not +/+, mice. These behaviors were correlated with a LPS-induced type 2 cytokine, cytokine receptor, and immune effector arginase profile in the brains of me/+ mice not found in +/+ mice. Me/+ mice also had a constitutively greater level of TLR4 in the CNS than +/+ mice. Additionally, me/+ mice displayed constitutively increased thermal sensitivity compared to +/+ mice, measured by the tail-flick test. Moreover, me/+ glial cultures were more responsive to LPS than +/+ glia. Therefore, the reduced expression of SHP-1 in me/+ imparts haploinsufficiency with respect to the control of CNS TLR4 and pain signaling. Furthermore, type 2 cytokines become prevalent during chronic TLR4 hyperstimulation in the CNS and are associated positively with behaviors that are usually linked to type 1 pro-inflammatory cytokines. These findings question the notion that type 2 immunity is solely anti-inflammatory in the CNS and indicate that type 2 immunity induces/potentiates CNS inflammatory processes.
Collapse
|
23
|
Lu R, Pan H, Shively JE. CEACAM1 negatively regulates IL-1β production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex. PLoS Pathog 2012; 8:e1002597. [PMID: 22496641 PMCID: PMC3320586 DOI: 10.1371/journal.ppat.1002597] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/08/2012] [Indexed: 01/07/2023] Open
Abstract
LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation. Pathogens often evade the immune system by directly binding to and inhibiting neutrophils, abundant white cells that accumulate at the site of infection. For example Gram-negative Neisseria pathogens, such as those that cause gonorrhea or meningitis, bind the neutrophil receptor CEACAM1. Gram-negative bacteria express lipopolysaccharide (LPS) that interacts with toll-like receptor-4 (TLR4) on neutrophils. Since CEACAM1 is an inhibitory receptor, we hypothesized that LPS activation of TLR4 would be inhibited. In this paper we show that this is the case and that the mechanism of LPS inhibition involves induction of a complex between the LPS receptor TLR4, CEACAM1 and an activating kinase called Syk. In the presence of CEACAM1, an inhibitory phosphatase (opposes the kinase) is recruited to the complex that prevents the activation of Syk. The net effect is the inhibition of the pathway that normally leads to the production of the pro-inflammatory cytokine IL-1β. We show that this inhibition is lost in CEACAM1 deficient neutrophils leading to hyper production of IL-1β. We think that CEACAM1 fine-tunes the normal inflammatory response at the site of infection preventing hyper-inflammation, but in the case of Gram-negative pathogens that actually bind to neutrophils, inflammation is further blunted, favoring the infectious process.
Collapse
Affiliation(s)
- Rongze Lu
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, United States of America
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Hao Pan
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, United States of America
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - John E. Shively
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Logan MA, Hackett R, Doherty J, Sheehan A, Speese SD, Freeman MR. Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury. Nat Neurosci 2012; 15:722-30. [PMID: 22426252 PMCID: PMC3337949 DOI: 10.1038/nn.3066] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/13/2012] [Indexed: 12/16/2022]
Abstract
Neuronal injury elicits potent cellular responses from glia, but molecular pathways modulating glial activation, phagocytic function, and termination of reactive responses remain poorly defined. Here we show that positive or negative regulation of glial reponses to axon injury are molecularly encoded by unique isoforms of the Drosophila engulfment receptor Draper. Draper-I promotes engulfment of axonal debris through an immunoreceptor tyrosine-based activation motif (ITAM). In contrast, Draper-II, an alternative splice variant, potently inhibits glial engulfment function. Draper-II suppresses Draper-I signaling through a novel immunoreceptor tyrosine-based inhibitory motif (ITIM)-like domain and the tyrosine phosphatase Corkscrew (Csw). Intriguingly, loss of Draper-II/Csw signaling prolongs expression of glial engulfment genes after axotomy and reduces the ability of glia to respond to secondary axotomy. Our work highlights a novel role for Draper-II in inhibiting glial responses to neurodegeneration, and indicates a balance of opposing Draper-I/-II signaling events is essential to maintain glial sensitivity to brain injury.
Collapse
Affiliation(s)
- Mary A Logan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Wang X, Mitra N, Cruz P, Deng L, Varki N, Angata T, Green ED, Mullikin J, Hayakawa T, Varki A. Evolution of siglec-11 and siglec-16 genes in hominins. Mol Biol Evol 2012; 29:2073-86. [PMID: 22383531 DOI: 10.1093/molbev/mss077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously reported a human-specific gene conversion of SIGLEC11 by an adjacent paralogous pseudogene (SIGLEC16P), generating a uniquely human form of the Siglec-11 protein, which is expressed in the human brain. Here, we show that Siglec-11 is expressed exclusively in microglia in all human brains studied-a finding of potential relevance to brain evolution, as microglia modulate neuronal survival, and Siglec-11 recruits SHP-1, a tyrosine phosphatase that modulates microglial biology. Following the recent finding of a functional SIGLEC16 allele in human populations, further analysis of the human SIGLEC11 and SIGLEC16/P sequences revealed an unusual series of gene conversion events between two loci. Two tandem and likely simultaneous gene conversions occurred from SIGLEC16P to SIGLEC11 with a potentially deleterious intervening short segment happening to be excluded. One of the conversion events also changed the 5' untranslated sequence, altering predicted transcription factor binding sites. Both of the gene conversions have been dated to ~1-1.2 Ma, after the emergence of the genus Homo, but prior to the emergence of the common ancestor of Denisovans and modern humans about 800,000 years ago, thus suggesting involvement in later stages of hominin brain evolution. In keeping with this, recombinant soluble Siglec-11 binds ligands in the human brain. We also address a second-round more recent gene conversion from SIGLEC11 to SIGLEC16, with the latter showing an allele frequency of ~0.1-0.3 in a worldwide population study. Initial pseudogenization of SIGLEC16 was estimated to occur at least 3 Ma, which thus preceded the gene conversion of SIGLEC11 by SIGLEC16P. As gene conversion usually disrupts the converted gene, the fact that ORFs of hSIGLEC11 and hSIGLEC16 have been maintained after an unusual series of very complex gene conversion events suggests that these events may have been subject to hominin-specific selection forces.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang Y, Zhu Z, Church TD, Lugogo NL, Que LG, Francisco D, Ingram JL, Huggins M, Beaver DM, Wright JR, Kraft M. SHP-1 as a critical regulator of Mycoplasma pneumoniae-induced inflammation in human asthmatic airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3371-81. [PMID: 22371396 DOI: 10.4049/jimmunol.1100573] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory disease in which airway epithelial cells are the first line of defense against exposure of the airway to infectious agents. Src homology protein (SHP)-1, a protein tyrosine phosphatase, is a negative regulator of signaling pathways that are critical to the development of asthma and host defense. We hypothesize that SHP-1 function is defective in asthma, contributing to the increased inflammatory response induced by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. M. pneumoniae significantly activated SHP-1 in airway epithelial cells collected from nonasthmatic subjects by bronchoscopy with airway brushing but not in cells from asthmatic subjects. In asthmatic airway epithelial cells, M. pneumoniae induced significant PI3K/Akt phosphorylation, NF-κB activation, and IL-8 production compared with nonasthmatic cells, which were reversed by SHP-1 overexpression. Conversely, SHP-1 knockdown significantly increased IL-8 production and PI3K/Akt and NF-κB activation in the setting of M. pneumoniae infection in nonasthmatic cells, but it did not exacerbate these three parameters already activated in asthmatic cells. Thus, SHP-1 plays a critical role in abrogating M. pneumoniae-induced IL-8 production in nonasthmatic airway epithelial cells through inhibition of PI3K/Akt and NF-κB activity, but it is defective in asthma, resulting in an enhanced inflammatory response to infection.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Microglial carbohydrate-binding receptors for neural repair. Cell Tissue Res 2012; 349:215-27. [DOI: 10.1007/s00441-012-1342-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/25/2012] [Indexed: 01/04/2023]
|
28
|
Nesterovitch AB, Szanto S, Gonda A, Bardos T, Kis-Toth K, Adarichev VA, Olasz K, Ghassemi-Najad S, Hoffman MD, Tharp MD, Mikecz K, Glant TT. Spontaneous insertion of a b2 element in the ptpn6 gene drives a systemic autoinflammatory disease in mice resembling neutrophilic dermatosis in humans. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1701-14. [PMID: 21435452 DOI: 10.1016/j.ajpath.2010.12.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 01/01/2023]
Abstract
We found a spontaneous autosomal mutation in a mouse leading to neutrophil infiltration with ulceration in the upper dermis of homozygous offspring. These animals had increased neutrophil numbers, associated with normal lymphocyte count, in peripheral blood and bone marrow, suggesting a myeloproliferative disorder; however, granulocyte precursor proliferation in bone marrow was actually reduced (because circulating neutrophils were less susceptible to apoptosis). Neutrophil infiltration of the skin and other organs and high serum levels of immunoglobulins and autoantibodies, cytokines, and acute-phase proteins were additional abnormalities, all of which could be reduced by high-dose corticosteroid treatment or neutrophil depletion by antibodies. Use of genome-wide screening localized the mutation within an 0.4-Mbp region on mouse chromosome 6. We identified insertion of a B2 element in exon 6 of the Ptpn6 gene (protein tyrosine phosphatase, non-receptor type 6; also known as Shp-1). This insertion involves amino acid substitutions that significantly reduced the enzyme activity in mice homozygous for the mutation. Disease onset was delayed, and the clinical phenotype was milder than the phenotypes of other Ptpn6-mutants described in motheaten (me, mev) mice; we designated this new genotype as Ptpn6(meB2/meB2) and the phenotype as meB2. This new phenotype encompasses an autoinflammatory disease showing similarities to many aspects of the so-called neutrophilic dermatoses, a heterogeneous group of skin diseases with unknown etiology in humans.
Collapse
|
29
|
Linnartz B, Wang Y, Neumann H. Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimers Dis 2010; 2010. [PMID: 20721346 PMCID: PMC2915791 DOI: 10.4061/2010/587463] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/13/2010] [Indexed: 11/20/2022] Open
Abstract
Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein-β1, and complement receptor-3 (CD11b/CD18) signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM-) signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs). Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.
Collapse
Affiliation(s)
- Bettina Linnartz
- Neural Regeneration, Institute of Reconstructive Neurobiology, University Hospital Bonn, University Bonn, 53127 Bonn, Germany
| | | | | |
Collapse
|
30
|
Abstract
Sialic acid-binding Ig superfamily lectins (Siglecs) are members of the Ig superfamily that recognize sialic acid residues of glycoproteins. Siglec-11 is a recently identified human-specific CD33-related Siglec that binds to alpha2,8-linked polysialic acids and is expressed on microglia, the brain resident innate immune cells. Polysialylated neuronal cell adhesion molecule (PSA-NCAM) is a putative ligand of Siglec-11. We observed gene transcription and protein expression of Siglec-11 splice variant 2 in human brain tissue samples by RT-PCR and Western blot analysis. Siglec-11 was detected on microglia in human brain tissue by immunohistochemistry. Human Siglec-11 splice variant 2 was ectopically expressed by a lentiviral vector system in cultured murine microglial cells. Stimulation of Siglec-11 by cross-linking suppressed the lipopolysaccharides (LPS)-induced gene transcription of the proinflammatory mediators interleukin-1beta and nitric oxide synthase-2 in microglia. Furthermore, phagocytosis of apoptotic neuronal material was reduced in Siglec-11 transduced microglia. Expression of PSA-NCAM was detected on microglia and neurons by immunohistochemistry and RT-PCR. Coculture of microglia transduced with Siglec-11 and neurons demonstrated neuroprotective function of Siglec-11. The neuroprotective effect of Siglec-11 was dependent on polysialic acid (PSA) residues on neurons, but independent on PSA on microglia. Thus, data demonstrate that human Siglec-11 ectopically expressed on murine microglia interacts with PSA on neurons, reduces LPS-induced gene transcription of proinflammatory mediators, impairs phagocytosis and alleviates microglial neurotoxicity.
Collapse
|
31
|
Zhou D, Collins CA, Wu P, Brown EJ. Protein tyrosine phosphatase SHP-1 positively regulates TLR-induced IL-12p40 production in macrophages through inhibition of phosphatidylinositol 3-kinase. J Leukoc Biol 2010; 87:845-55. [DOI: 10.1189/jlb.0409289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
32
|
Kuo E, Park DK, Tzvetanova ID, Leiton CV, Cho BS, Colognato H. Tyrosine phosphatases Shp1 and Shp2 have unique and opposing roles in oligodendrocyte development. J Neurochem 2010; 113:200-12. [PMID: 20132481 DOI: 10.1111/j.1471-4159.2010.06596.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oligodendrocyte progenitor cells first proliferate to generate sufficient cell numbers and then differentiate into myelin-producing oligodendrocytes. The signal transduction mediators that underlie these events, however, remain poorly understood. The tyrosine phosphatase Shp1 has been linked to oligodendrocyte differentiation as Shp1-deficient mice show hypomyelination. The Shp1 homolog, Shp2, has recently been shown to regulate astrogliogenesis, but its role in oligodendrocyte development remains unknown. Here, we report that Shp2 protein levels were developmentally regulated in oligodendrocytes, with Shp2 phosphorylation being promoted by oligodendroglial mitogens but suppressed by laminin, an extracellular matrix protein that promotes oligodendroglial differentiation. In contrast, oligodendrocyte progenitors were found to be unresponsive to mitogens following Shp2, but not Shp1, depletion. In agreement with previous studies, Shp1 depletion led to decreased levels of myelin basic protein in differentiating oligodendrocytes, as well as reduced outgrowth of myelin membrane sheets. Shp2 depletion in contrast did not prevent oligodendrocyte differentiation but promoted expanded myelin membrane outgrowth. Taken together these data suggest that Shp1 and Shp2 have distinct functions in oligodendrocyte development: Shp2 regulates oligodendrocyte progenitor proliferation and Shp1 regulates oligodendrocyte differentiation. Adhesion to laminin may additionally provide extrinsic regulation of Shp2 activity and thus promote the transition from progenitor to differentiating oligodendrocyte.
Collapse
Affiliation(s)
- Emory Kuo
- Department of Pharmacology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | |
Collapse
|
33
|
Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype. J Transl Med 2009; 89:742-59. [PMID: 19398961 PMCID: PMC2725397 DOI: 10.1038/labinvest.2009.32] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that may be important in controlling macrophage-mediated demyelination in MS.
Collapse
|
34
|
Interferon-beta treatment in multiple sclerosis attenuates inflammatory gene expression through inducible activity of the phosphatase SHP-1. Clin Immunol 2009; 133:27-44. [PMID: 19559654 DOI: 10.1016/j.clim.2009.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 12/23/2022]
Abstract
Interferon-beta is a current treatment for multiple sclerosis (MS). Interferon-beta is thought to exert its therapeutic effects on MS by down-modulating the immune response by multiple potential pathways. Here, we document that treatment of MS patients with interferon beta-1a (Rebif) results in a significant increase in the levels and function of the protein tyrosine phosphatase SHP-1 in PBMCs. SHP-1 is a crucial negative regulator of cytokine signaling, inflammatory gene expression, and CNS demyelination as evidenced in mice deficient in SHP-1. In order to examine the functional significance of SHP-1 induction in MS PBMCs, we analyzed the activity of proinflammatory signaling molecules STAT1, STAT6, and NF-kappaB, which are known SHP-1 targets. Interferon-beta treatment in vivo resulted in decreased NF-kappaB and STAT6 activation and increased STAT1 activation. Further analysis in vitro showed that cultured PBMCs of MS patients and normal subjects had a significant SHP-1 induction following interferon-beta treatment that correlated with decreased NF-kappaB and STAT6 activation. Most importantly, experimental depletion of SHP-1 in cultured PBMCs abolished the anti-inflammatory effects of interferon-beta treatment, indicating that SHP-1 is a predominant mediator of interferon-beta activity. In conclusion, interferon-beta treatment upregulates SHP-1 expression resulting in decreased transcription factor activation and inflammatory gene expression important in MS pathogenesis.
Collapse
|
35
|
Chang CC, Liu Z, Vlad G, Qin H, Qiao X, Mancini DM, Marboe CC, Cortesini R, Suciu-Foca N. Ig-like transcript 3 regulates expression of proinflammatory cytokines and migration of activated T cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:5208-16. [PMID: 19380766 DOI: 10.4049/jimmunol.0804048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ig-like transcript 3 (ILT3), an inhibitory receptor expressed by APC is involved in functional shaping of T cell responses toward a tolerant state. We have previously demonstrated that membrane (m) and soluble (s) ILT3 induce allogeneic tolerance to human islet cells in humanized NOD/SCID mice. Recombinant sILT3 induces the differentiation of CD8(+) T suppressor cells both in vivo and in vitro. To better understand the molecular mechanisms by which ILT3 suppresses immune responses, we have generated ILT3 knockdown (ILT3KD) dendritic cells (DC) and analyzed the phenotypic and functional characteristics of these cells. In this study, we report that silencing of ILT3 expression in DC (ILT3KD DC) increases TLR responsiveness to their specific ligands as reflected in increased synthesis and secretion of proinflammatory cytokines such as IL-1alpha, IL-1beta, and IL-6 and type I IFN. ILT3KD-DC also secretes more CXCL10 and CXCL11 chemokines in response to TLR ligation, thus accelerating T cell migration in diffusion chamber experiments. ILT3KD-DC elicit increased T cell proliferation and synthesis of proinflammatory cytokines IFN-gamma and IL-17A both in MLC and in culture with autologous DC pulsed with CMV protein. ILT3 signaling results in inhibition of NF-kappaB and, to a lesser extent, MAPK p38 pathways in DC. Our results suggest that ILT3 plays a critical role in the control of inflammation.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Pathology, Columbia University, NewYork, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Orellana JA, Sáez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MVL, Sáez JC. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 2009; 11:369-99. [PMID: 18816186 PMCID: PMC2713807 DOI: 10.1089/ars.2008.2130] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In normal brain, neurons, astrocytes, and oligodendrocytes, the most abundant and active cells express pannexins and connexins, protein subunits of two families forming membrane channels. Most available evidence indicates that in mammals endogenously expressed pannexins form only hemichannels and connexins form both gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activity, hemichannels communicate the intra- and extracellular compartments and serve as a diffusional pathway for ions and small molecules. A subthreshold stimulation by acute pathological threatening conditions (e.g., global ischemia subthreshold for cell death) enhances neuronal Cx36 and glial Cx43 hemichannel activity, favoring ATP release and generation of preconditioning. If the stimulus is sufficiently deleterious, microglia become overactivated and release bioactive molecules that increase the activity of hemichannels and reduce gap junctional communication in astroglial networks, depriving neurons of astrocytic protective functions, and further reducing neuronal viability. Continuous glial activation triggered by low levels of anomalous proteins expressed in several neurodegenerative diseases induce glial hemichannel and gap junction channel disorders similar to those of acute inflammatory responses triggered by ischemia or infectious diseases. These changes are likely to occur in diverse cell types of the CNS and contribute to neurodegeneration during inflammatory process.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Teeling JL, Perry VH. Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 2008; 158:1062-73. [PMID: 18706982 DOI: 10.1016/j.neuroscience.2008.07.031] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/07/2008] [Accepted: 07/12/2008] [Indexed: 01/23/2023]
Abstract
We have all at some time experienced the non-specific symptoms that arise from being ill following a systemic infection. These symptoms, such as fever, malaise, lethargy and loss of appetite are often referred to as "sickness behavior" and are a consequence of systemically produced pro-inflammatory mediators. These inflammatory mediators signal to the brain, leading to activation of microglial cells, which in turn, signal to neurons to induce adaptive metabolic and behavioral changes. In normal healthy persons this response is a normal part of our defense, to protect us from infection, to maintain homeostasis and causes no damage to neurons. However, in animals and patients with chronic neurodegenerative disease, multiple sclerosis, stroke and even during normal aging, systemic inflammation leads to inflammatory responses in the brain, an exaggeration of clinical symptoms and increased neuronal death. These observations imply that, as the population ages and the number of individuals with CNS disorders increases, relatively common systemic infections and inflammation will become significant risk factors for disease onset or progression. In this review we discuss the underlying mechanisms responsible for sickness behavior induced by systemic inflammation in the healthy brain and how they might be different in individuals with CNS pathology.
Collapse
Affiliation(s)
- J L Teeling
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | |
Collapse
|
38
|
Miyake A, Murata Y, Okazawa H, Ikeda H, Niwayama Y, Ohnishi H, Hirata Y, Matozaki T. Negative regulation by SHPS-1 of Toll-like receptor-dependent proinflammatory cytokine production in macrophages. Genes Cells 2008; 13:209-19. [PMID: 18233962 DOI: 10.1111/j.1365-2443.2007.01161.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SHPS-1 is a transmembrane protein predominantly expressed in macrophages. The possible role of SHPS-1 in regulation of Toll-like receptor (TLR)-dependent production of proinflammatory cytokines by macrophages has remained unknown, however. We now show that expression either of a mutant version of mouse SHPS-1 (SHPS-1-4F) in which the four tyrosine phosphorylation sites in the cytoplasmic region are replaced by phenylalanine or of a chimeric protein comprising the extracellular and transmembrane regions of human CD8 fused to the cytoplasmic region of SHPS-1-4F (CD8-4F) markedly promoted the production of tumor necrosis factor-alpha (TNF-alpha) or interleukin-6 (IL-6) induced by lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid [poly(I : C)] in RAW264.7 macrophages. In contrast, expression of a mutant form of SHPS-1 that lacks most of the cytoplasmic region did not promote such responses. Expression of SHPS-1-4F promoted the LPS- or poly(I : C)-induced activation of NF-kappaB. LPS and poly(I : C) each induced the tyrosine phosphorylation of SHPS-1 through a Src family kinase and the association of SHPS-1 with SHP-1 and SHP-2. These results suggest that LPS or poly(I : C) induces tyrosine phosphorylation of SHPS-1 and the association of SHPS-1 with SHP-1 and SHP-2 in a manner dependent on a Src family kinase. SHPS-1 then negatively regulates TLR4- or TLR3-dependent cytokine production through inhibition of NF-kappaB-dependent signaling.
Collapse
Affiliation(s)
- Atsuko Miyake
- The Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|