1
|
Pournajaf S, Afsordeh N, Pourgholami MH. In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs. Rev Neurosci 2024; 35:183-195. [PMID: 37651618 DOI: 10.1515/revneuro-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Glioblastoma multiform (GBM) is the most common primary brain tumor with a poor prognosis and few therapeutic choices. In vivo, tumor models are useful for enhancing knowledge of underlying GBM pathology and developing more effective therapies/agents at the preclinical level, as they recapitulate human brain tumors. The C6 glioma cell line has been one of the most widely used cell lines in neuro-oncology research as they produce tumors that share the most similarities with human GBM regarding genetic, invasion, and expansion profiles and characteristics. This review provides an overview of the distinctive features and the different animal models produced by the C6 cell line. We also highlight specific applications of various C6 in vivo models according to the purpose of the study and offer some technical notes for more convenient/repeatable modeling. This work also includes novel findings discovered in our laboratory, which would further enhance the feasibility of the model in preclinical GBM investigations.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | | |
Collapse
|
2
|
Formanski JP, Ngo HD, Grunwald V, Pöhlking C, Jonas JS, Wohlers D, Schwalbe B, Schreiber M. Transduction Efficiency of Zika Virus E Protein Pseudotyped HIV-1 gfp and Its Oncolytic Activity Tested in Primary Glioblastoma Cell Cultures. Cancers (Basel) 2024; 16:814. [PMID: 38398205 PMCID: PMC10887055 DOI: 10.3390/cancers16040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new tools against glioblastoma multiforme (GBM), the most aggressive and common cancer originating in the brain, remains of utmost importance. Lentiviral vectors (LVs) are among the tools of future concepts, and pseudotyping offers the possibility of tailoring LVs to efficiently transduce and inactivate GBM tumor cells. Zika virus (ZIKV) has a specificity for GBM cells, leaving healthy brain cells unharmed, which makes it a prime candidate for the development of LVs with a ZIKV coat. Here, primary GBM cell cultures were transduced with different LVs encased with ZIKV envelope variants. LVs were generated by using the pNLgfpAM plasmid, which produces the lentiviral, HIV-1-based, core particle with GFP (green fluorescent protein) as a reporter (HIVgfp). Using five different GBM primary cell cultures and three laboratory-adapted GBM cell lines, we showed that ZIKV/HIVgfp achieved a 4-6 times higher transduction efficiency compared to the commonly used VSV/HIVgfp. Transduced GBM cell cultures were monitored over a period of 9 days to identify GFP+ cells to study the oncolytic effect due to ZIKV/HIVgfp entry. Tests of GBM tumor specificity by transduction of GBM tumor and normal brain cells showed a high specificity for GBM cells.
Collapse
Affiliation(s)
- Jan Patrick Formanski
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Hai Dang Ngo
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Vivien Grunwald
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Celine Pöhlking
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Jana Sue Jonas
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Dominik Wohlers
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Birco Schwalbe
- Department of Neurosurgery, Asklepios Klinik Nord, Standort Heidberg, 22417 Hamburg, Germany;
| | - Michael Schreiber
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| |
Collapse
|
3
|
Volnitskiy A, Shabalin K, Pantina R, Varfolomeeva E, Kovalev R, Burdakov V, Emelianova S, Garaeva L, Yakimov A, Sogoyan M, Filatov M, Konevega AL, Shtam T. OCT4 Expression in Gliomas Is Dependent on Cell Metabolism. Curr Issues Mol Biol 2024; 46:1107-1120. [PMID: 38392188 PMCID: PMC10887564 DOI: 10.3390/cimb46020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
The OCT4 transcription factor is necessary to maintain cell stemness in the early stages of embryogenesis and is involved in the formation of induced pluripotent stem cells, but its role in oncogenesis is not yet entirely clear. In this work, OCT4 expression was investigated in malignant gliomas. Twenty glioma cell lines and a sample of normal adult brain tissue were used. OCT4 expression was found in all studied glioma cell lines but was not detected in normal adult brain tissue. For one of these lines, OCT4 knockdown caused tumor cell death. By varying the culture conditions of these cells, we unexpectedly found that OCT4 expression increased when cells were incubated in serum-free medium, and this effect was significantly enhanced in serum-free and L-glutamine-free medium. L-glutamine and the Krebs cycle, which is slowed down in serum-free medium according to our NMR data, are sources of α-KG. Thus, our data indicate that OCT4 expression in gliomas may be regulated by the α-KG-dependent metabolic reprogramming of cells.
Collapse
Affiliation(s)
- Andrey Volnitskiy
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Rimma Pantina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Elena Varfolomeeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Roman Kovalev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Svetlana Emelianova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Alexander Yakimov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Marina Sogoyan
- H.Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Parkovaya 64-68, Pushkin, 196603 St. Petersburg, Russia
| | - Michael Filatov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, 123182 Moscow, Russia
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
4
|
Yadav D, Sharma PK, Mishra PS, Malviya R. The Potential of Stem Cells in Treating Breast Cancer. Curr Stem Cell Res Ther 2024; 19:324-333. [PMID: 37132308 DOI: 10.2174/1574888x18666230428094056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 12/29/2022] [Indexed: 05/04/2023]
Abstract
There has been a lot of interest in stem cell therapy as a means of curing disease in recent years. Despite extensive usage of stem cell therapy in the treatment of a wide range of medical diseases, it has been hypothesized that it plays a key part in the progression of cancer. Breast cancer is still the most frequent malignancy in women globally. However, the latest treatments, such as stem cell targeted therapy, are considered to be more effective in preventing recurrence, metastasis, and chemoresistance of breast cancer than older methods like chemotherapy and radiation. This review discusses the characteristics of stem cells and how stem cells may be used to treat breast cancer.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prem Shankar Mishra
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Quintero JC, Díaz NF, Rodríguez-Dorantes M, Camacho-Arroyo I. Cancer Stem Cells and Androgen Receptor Signaling: Partners in Disease Progression. Int J Mol Sci 2023; 24:15085. [PMID: 37894767 PMCID: PMC10606328 DOI: 10.3390/ijms242015085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer stem cells exhibit self-renewal, tumorigenesis, and a high differentiation potential. These cells have been detected in every type of cancer, and different signaling pathways can regulate their maintenance and proliferation. Androgen receptor signaling plays a relevant role in the pathophysiology of prostate cancer, promoting cell growth and differentiation processes. However, in the case of prostate cancer stem cells, the androgen receptor negatively regulates their maintenance and self-renewal. On the other hand, there is evidence that androgen receptor activity positively regulates the generation of cancer stem cells in other types of neoplasia, such as breast cancer or glioblastoma. Thus, the androgen receptor role in cancer stem cells depends on the cellular context. We aimed to analyze androgen receptor signaling in the maintenance and self-renewal of different types of cancer stem cells and its action on the expression of transcription factors and surface markers associated with stemness.
Collapse
Affiliation(s)
- Juan Carlos Quintero
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
7
|
Yasmin IA, Dharmarajan A, Warrier S. iPSC-Derived Glioblastoma Cells Have Enhanced Stemness Wnt/β-Catenin Activity Which Is Negatively Regulated by Wnt Antagonist sFRP4. Cancers (Basel) 2023; 15:3622. [PMID: 37509281 PMCID: PMC10377620 DOI: 10.3390/cancers15143622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Growing evidence indicates that cancer stem cells (CSCs) endow the tumor with stem-like properties. Recently, induced pluripotent stem cells (iPSCs) have gained increased attention because of their easy derivation and availability and their potential to differentiate into any cell type. A CSC model derived from iPSCs of human origin would help understand the driving force of tumor initiation and early progression. We report the efficient generation of feeder-free SSEA4, TRA-1-60 and TRA-1-81 positive iPSCs from amniotic membrane-derived mesenchymal stem cells (AMMSCs), which successfully differentiated into three germ layers. We then developed human iPSC-derived glioblastoma multiforme (GBM) model using conditioned media (CM) from U87MG cell line and CSCs derived from U87MG, which confer iPSCs with GBM and GSC-like phenotypes within five days. Both cell types overexpress MGMT and GLI2, but only GSCs overexpress CD133, CD44, ABCG2 and ABCC2. We also observed overexpression of LEF1 and β-catenin in both cell types. Down-regulation of Wnt antagonist secreted frizzled-related protein 4 (sFRP4) in GBM and GSCs, indicating activation of the Wnt/β-catenin pathway, which could be involved in the conversion of iPSCs to CSCs. From future perspectives, our study will help in the creation of a rapid cell-based platform for understanding the complexity of GBM.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India
- School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| |
Collapse
|
8
|
Ponomarev AS, Gilazieva ZE, Solovyova VV, Rizvanov AA. Molecular Mechanisms of Tumor Cell Stemness Modulation during Formation of Spheroids. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:979-994. [PMID: 37751868 DOI: 10.1134/s0006297923070106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 09/28/2023]
Abstract
Cancer stem cells (CSCs), their properties and interaction with microenvironment are of interest in modern medicine and biology. There are many studies on the emergence of CSCs and their involvement in tumor pathogenesis. The most important property inherent to CSCs is their stemness. Stemness combines ability of the cell to maintain its pluripotency, give rise to differentiated cells, and interact with environment to maintain a balance between dormancy, proliferation, and regeneration. While adult stem cells exhibit these properties by participating in tissue homeostasis, CSCs behave as their malignant equivalents. High tumor resistance to therapy, ability to differentiate, activate angiogenesis and metastasis arise precisely due to the stemness of CSCs. These cells can be used as a target for therapy of different types of cancer. Laboratory models are needed to study cancer biology and find new therapeutic strategies. A promising direction is three-dimensional tumor models or spheroids. Such models exhibit properties resembling stemness in a natural tumor. By modifying spheroids, it becomes possible to investigate the effect of therapy on CSCs, thus contributing to the development of anti-tumor drug test systems. The review examines the niche of CSCs, the possibility of their study using three-dimensional spheroids, and existing markers for assessing stemness of CSCs.
Collapse
Affiliation(s)
- Aleksei S Ponomarev
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Zarema E Gilazieva
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Valeriya V Solovyova
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Albert A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia.
| |
Collapse
|
9
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
Han JM, Jung HJ. Synergistic Anticancer Effect of a Combination of Berbamine and Arcyriaflavin A against Glioblastoma Stem-like Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227968. [PMID: 36432068 PMCID: PMC9699626 DOI: 10.3390/molecules27227968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor. Relapse is frequent and rapid due to glioblastoma stem-like cells (GSCs) that induce tumor initiation, drug resistance, high cancer invasion, immune evasion, and recurrence. Therefore, suppression of GSCs is a powerful therapeutic approach for GBM treatment. Natural compounds berbamine and arcyriaflavin A (ArcA) are known to possess anticancer activity by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ) and cyclin-dependent kinase 4 (CDK4), respectively. In this study, we evaluated the effects of concurrent treatment with both compounds on GSCs. Combined treatment with berbamine and ArcA synergistically inhibited cell viability and tumorsphere formation in U87MG- and C6-drived GSCs. Furthermore, simultaneous administration of both compounds potently inhibited tumor growth in a U87MG GSC-grafted chick embryo chorioallantoic membrane (CAM) model. Notably, the synergistic anticancer effect of berbamine and ArcA on GSC growth is associated with the promotion of reactive oxygen species (ROS)- and calcium-dependent apoptosis via strong activation of the p53-mediated caspase cascade. Moreover, co-treatment with both compounds significantly reduced the expression levels of key GSC markers, including CD133, integrin α6, aldehyde dehydrogenase 1A1 (ALDH1A1), Nanog, Sox2, and Oct4. The combined effect of berbamine and ArcA on GSC growth also resulted in downregulation of cell cycle regulatory proteins, such as cyclins and CDKs, by potent inactivation of the CaMKIIγ-mediated STAT3/AKT/ERK1/2 signaling pathway. In addition, a genetic knockdown study using small interfering RNAs (siRNAs) targeting either CaMKIIγ or CDK4 demonstrated that the synergistic anticancer effect of the two compounds on GSCs resulted from dual inhibition of CaMKIIγ and CDK4. Collectively, our findings suggest that a novel combination therapy involving berbamine and ArcA could effectively eradicate GSCs.
Collapse
Affiliation(s)
- Jang Mi Han
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea
- Correspondence: ; Tel.: +82-41-530-2354; Fax: +82-41-530-2939
| |
Collapse
|
11
|
Helweg LP, Storm J, Witte KE, Schulten W, Wrachtrup L, Janotte T, Kitke A, Greiner JFW, Knabbe C, Kaltschmidt B, Simon M, Kaltschmidt C. Targeting Key Signaling Pathways in Glioblastoma Stem Cells for the Development of Efficient Chemo- and Immunotherapy. Int J Mol Sci 2022; 23:12919. [PMID: 36361720 PMCID: PMC9659205 DOI: 10.3390/ijms232112919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and most common malignant brain tumor with poor patient survival despite therapeutic intervention. On the cellular level, GBM comprises a rare population of glioblastoma stem cells (GSCs), driving therapeutic resistance, invasion, and recurrence. GSCs have thus come into the focus of therapeutic strategies, although their targeting remains challenging. In the present study, we took advantage of three GSCs-populations recently established in our lab to investigate key signaling pathways and subsequent therapeutic strategies targeting GSCs. We observed that NF-κB, a crucial transcription factor in GBM progression, was expressed in all CD44+/CD133+/Nestin+-GSC-populations. Exposure to TNFα led to activation of NF-κB-RELA and/or NF-κB-c-REL, depending on the GBM type. GSCs further expressed the proto-oncogene MYC family, with MYChigh GSCs being predominantly located in the tumor spheres ("GROW"-state) while NF-κB-RELAhigh GSCs were migrating out of the sphere ("GO"-state). We efficiently targeted GSCs by the pharmacologic inhibition of NF-κB using PTDC/Bortezomib or inhibition of MYC by KJ-Pyr-9, which significantly reduced GSC-viability, even in comparison to the standard chemotherapeutic drug temozolomide. As an additional cell-therapeutic strategy, we showed that NK cells could kill GSCs. Our findings offer new perspectives for developing efficient patient-specific chemo- and immunotherapy against GBM.
Collapse
Affiliation(s)
- Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Jonathan Storm
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Kaya E. Witte
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Wiebke Schulten
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Lennart Wrachtrup
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Till Janotte
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Angelika Kitke
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Matthias Simon
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Department of Neurosurgery and Epilepsy Surgery, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33617 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| |
Collapse
|
12
|
Rashad S, Byrne SR, Saigusa D, Xiang J, Zhou Y, Zhang L, Begley TJ, Tominaga T, Niizuma K. Codon Usage and mRNA Stability are Translational Determinants of Cellular Response to Canonical Ferroptosis Inducers. Neuroscience 2022; 501:103-130. [PMID: 35987429 PMCID: PMC10023133 DOI: 10.1016/j.neuroscience.2022.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a non-apoptotic cell death mechanism characterized by the generation of lipid peroxides. While many effectors in the ferroptosis pathway have been mapped, its epitranscriptional regulation is not yet fully understood. Ferroptosis can be induced via system xCT inhibition (Class I) or GPX4 inhibition (Class II). Previous works have revealed important differences in cellular response to different ferroptosis inducers. Importantly, blocking mRNA transcription or translation appears to protect cells against Class I ferroptosis inducing agents but not Class II. In this work, we examined the impact of blocking transcription (via Actinomycin D) or translation (via Cycloheximide) on Erastin (Class I) or RSL3 (Class II) induced ferroptosis. Blocking transcription or translation protected cells against Erastin but was detrimental against RSL3. Cycloheximide led to increased levels of GSH alone or when co-treated with Erastin via the activation of the reverse transsulfuration pathway. RNA sequencing analysis revealed early activation of a strong alternative splice program before observed changes in transcription. mRNA stability analysis revealed divergent mRNA stability changes in cellular response to Erastin or RSL3. Importantly, codon optimality biases were drastically different in either condition. Our data also implicated translation repression and rate as an important determinant of the cellular response to ferroptosis inducers. Given that mRNA stability and codon usage can be influenced via the tRNA epitranscriptome, we evaluated the role of a tRNA modifying enzyme in ferroptosis stress response. Alkbh1, a tRNA demethylase, led to translation repression and increased the resistance to Erastin but made cells more sensitive to RSL3.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shane R Byrne
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan; Department of Integrative Genomics, Tohoku University Medical Megabank Organization, Sendai, Japan
| | - Jingdong Xiang
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Liyin Zhang
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas J Begley
- The RNA Institute, University at Albany, Albany, NY, USA; Department of Biological Sciences, University at Albany, Albany, NY, USA; RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Sohn EJ. PIK3R3, a regulatory subunit of PI3K, modulates ovarian cancer stem cells and ovarian cancer development and progression by integrative analysis. BMC Cancer 2022; 22:708. [PMID: 35761259 PMCID: PMC9238166 DOI: 10.1186/s12885-022-09807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer is the most lethal gynecologic disease and is one of the most commonly diagnosed cancers among women worldwide. The phosphatidylinositol 3-kinase (PI3K) family plays an important regulatory role in various cancer signaling pathways, including those involved in ovarian cancer development; however, its exact function remains to be fully understood. We conducted this study to understand the role of P13K in the molecular mechanisms underlying ovarian cancer development. Methods To determine the differential gene expression of phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of PI3K, in normal, tumor, and metastatic ovary tissues, TNM plotter analysis was performed. The microarray dataset GSE53759 was downloaded from Gene Expression Omnibus. ROC plotter analysis was conducted to understand the potential of PIK3R3 as a predictive marker for effectiveness of therapy in ovarian cancer. muTarget was used to identify mutations that alter PIK3R3 expression in ovarian cancer. To determine the interacting partners for PIK3R3 in ovarian tissues, the interactome-atlas tool was used. The Kyoto encyclopedia of genes and genomes (KEGG) analysis was conducted to identify the pathways in which these interacting partners were primarily enriched. Results PIK3R3 was overexpressed in ovarian and metastatic tumors. Elevated PIK3R3 levels were observed in ovarian cancer stem cells, wherein inhibiting PIK3R3 expression significantly reduced the size of ovarian cancer spheroids. Treatment of ovarian cancer stem cells with PF-04691502 (10 μM), an inhibitor of both PI3K and mTOR kinases, also reduced the size of spheroids and the level of OCT4. PIK3R3 was highly expressed in ovarian cancer with several somatic mutations and was predicted better outcomes in patients undergoing Avastin® chemotherapy using bioinformatic tool. Protein interaction analysis showed that PIK3R3 interacts with 157 genes, including GRB2, EGFR, ERBB3, PTK2, HCK, IGF1R, YES1, and PIK3CA, in the ovary. KEGG enrichment analysis revealed that the interacting partners of PIK3R3 are involved in the ErbB signaling pathway, proteoglycans in cancer, FoxO, prolactin, chemokine, and insulin signaling pathways. Conclusions PIK3R3 plays a pivotal role in ovarian cancer development and is therefore a potential candidate for developing novel therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09807-7.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Pusan National University, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
14
|
Polat B, Wohlleben G, Kosmala R, Lisowski D, Mantel F, Lewitzki V, Löhr M, Blum R, Herud P, Flentje M, Monoranu CM. Differences in stem cell marker and osteopontin expression in primary and recurrent glioblastoma. Cancer Cell Int 2022; 22:87. [PMID: 35183162 PMCID: PMC8858483 DOI: 10.1186/s12935-022-02510-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Despite of a multimodal approach, recurrences can hardly be prevented in glioblastoma. This may be in part due to so called glioma stem cells. However, there is no established marker to identify these stem cells. Methods Paired samples from glioma patients were analyzed by immunohistochemistry for expression of the following stem cell markers: CD133, Musashi, Nanog, Nestin, octamer-binding transcription factor 4 (Oct4), and sex determining region Y-box 2 (Sox2). In addition, the expression of osteopontin (OPN) was investigated. The relative number of positively stained cells was determined. By means of Kaplan–Meier analysis, a possible association with overall survival by marker expression was investigated. Results Sixty tissue samples from 30 patients (17 male, 13 female) were available for analysis. For Nestin, Musashi and OPN a significant increase was seen. There was also an increase (not significant) for CD133 and Oct4. Patients with mutated Isocitrate Dehydrogenase-1/2 (IDH-1/2) status had a reduced expression for CD133 and Nestin in their recurrent tumors. Significant correlations were seen for CD133 and Nanog between OPN in the primary and recurrent tumor and between CD133 and Nestin in recurrent tumors. By confocal imaging we could demonstrate a co-expression of CD133 and Nestin within recurrent glioma cells. Patients with high CD133 expression had a worse prognosis (22.6 vs 41.1 months, p = 0.013). A similar trend was seen for elevated Nestin levels (24.9 vs 41.1 months, p = 0.08). Conclusions Most of the evaluated markers showed an increased expression in their recurrent tumor. CD133 and Nestin were associated with survival and are candidate markers for further clinical investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02510-4.
Collapse
|
15
|
Ponomarev A, Gilazieva Z, Solovyeva V, Allegrucci C, Rizvanov A. Intrinsic and Extrinsic Factors Impacting Cancer Stemness and Tumor Progression. Cancers (Basel) 2022; 14:970. [PMID: 35205716 PMCID: PMC8869813 DOI: 10.3390/cancers14040970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Tumor heterogeneity represents an important limitation to the development of effective cancer therapies. The presence of cancer stem cells (CSCs) and their differentiation hierarchies contribute to cancer complexity and confer tumors the ability to grow, resist treatment, survive unfavorable conditions, and invade neighboring and distant tissues. A large body of research is currently focusing on understanding the properties of CSCs, including their cellular and molecular origin, as well as their biological behavior in different tumor types. In turn, this knowledge informs strategies for targeting these tumor initiating cells and related cancer stemness. Cancer stemness is modulated by the tumor microenvironment, which influences CSC function and survival. Several advanced in vitro models are currently being developed to study cancer stemness in order to advance new knowledge of the key molecular pathways involved in CSC self-renewal and dormancy, as well as to mimic the complexity of patients' tumors in pre-clinical drug testing. In this review, we discuss CSCs and the modulation of cancer stemness by the tumor microenvironment, stemness factors and signaling pathways. In addition, we introduce current models that allow the study of CSCs for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alexey Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.); (Z.G.); (V.S.)
| | - Zarema Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.); (Z.G.); (V.S.)
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.); (Z.G.); (V.S.)
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.); (Z.G.); (V.S.)
| |
Collapse
|
16
|
Rios ÁFL, Tirapelli DPDC, Cirino MLDA, Rodrigues AR, Ramos ES, Carlotti CG. Expression of pluripotency-related genes in human glioblastoma. Neurooncol Adv 2022; 4:vdab163. [PMID: 35274101 PMCID: PMC8903226 DOI: 10.1093/noajnl/vdab163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Cancer is a group of heterogeneous diseases characterized by several disruptions of the genetic and epigenetic components of cell biology. Some types of cancer have been shown to be constituted by a mosaic of cells with variable differentiation states, with more aggressive tumors being more undifferentiated. In most cases, undifferentiated tumor cells express associated embryonic markers such as the OCT4, NANOG, SOX2, and CARM1 genes. The ectopic or reminiscent expression of some master regulator genes of pluripotency has been indicated as the cause of the poorly differentiated state of tumors, and based on the evidence of some reports, can be used as a possible therapeutic target. Considering this information, a more detailed investigation of the expression of pluripotency-associated genes is necessary to evaluate the roles of these genes in the etiology of some tumors and their use targets of therapy. Methods The expression of four pluripotency-related genes was investigated (OCT4, NANOG, SOX2, and CARM1) in the most malignant primary human brain tumor, glioblastoma (GBM). Results and Conclusion The results demonstrated a signature of OCT4/SOX2/CARM1 genes and a significant increase of CARM1 expression in GBM cases.
Collapse
Affiliation(s)
- Álvaro Fabrício Lopes Rios
- Laboratory of Biotechnology, Center for Biosciences and Biotechnology, North Fluminense State University, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Mucio Luiz de Assis Cirino
- Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andressa Romualdo Rodrigues
- Laboratory of Morphofunctional and Integrated Practices, Franca Medical School, University of Franca, Franca, São Paulo, Brazil
| | - Ester S Ramos
- Department of Genetics, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Nayak C, Singh SK. In silico identification of natural product inhibitors against Octamer-binding transcription factor 4 (Oct4) to impede the mechanism of glioma stem cells. PLoS One 2021; 16:e0255803. [PMID: 34613998 PMCID: PMC8494328 DOI: 10.1371/journal.pone.0255803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Octamer-binding transcription factor 4 (Oct4) is a core regulator in the retention of stemness, invasive, and self-renewal properties in glioma initiating cells (GSCs) and its overexpression inhibits the differentiation of glioma cells promoting tumor cell proliferation. The Pit-Oct-Unc (POU) domain comprising POU-specific domain (POUS) and POU-type homeodomain (POUHD) subdomains is the most critical part of the Oct4 for the generation of induced pluripotent stem cells from somatic cells that lead to tumor initiation, invasion, posttreatment relapse, and therapeutic resistance. Therefore, the present investigation hunts for natural product inhibitors (NPIs) against the POUHD domain of Oct4 by employing receptor-based virtual screening (RBVS) followed by binding free energy calculation and molecular dynamics simulation (MDS). RBVS provided 13 compounds with acceptable ranges of pharmacokinetic properties and good docking scores having key interactions with the POUHD domain. More Specifically, conformational and interaction stability analysis of 13 compounds through MDS unveiled two compounds ZINC02145000 and ZINC32124203 which stabilized the backbone of protein even in the presence of linker and POUS domain. Additionally, ZINC02145000 and ZINC32124203 exhibited stable and strong interactions with key residues W277, R242, and R234 of the POUHD domain even in dynamic conditions. Interestingly, ZINC02145000 and ZINC32124203 established communication not only with the POUHD domain but also with the POUS domain indicating their incredible potency toward thwarting the function of Oct4. ZINC02145000 and ZINC32124203 also reduced the flexibility and escalated the correlations between the amino acid residues of Oct4 evidenced by PCA and DCCM analysis. Finally, our examination proposed two NPIs that can impede the Oct4 function and may help to improve overall survival, diminish tumor relapse, and achieve a cure not only in deadly disease GBM but also in other cancers with minimal side effects.
Collapse
Affiliation(s)
- Chirasmita Nayak
- Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi Tamil Nadu, India
| |
Collapse
|
18
|
Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer 2021; 1876:188616. [PMID: 34419533 DOI: 10.1016/j.bbcan.2021.188616] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023]
Abstract
Temozolomide (TMZ) is a first-choice alkylating agent inducted as a gold standard therapy for glioblastoma multiforme (GBM) and astrocytoma. A majority of patients do not respond to TMZ during the course of their treatment. Activation of DNA repair pathways is the principal mechanism for this phenomenon that detaches TMZ-induced O-6-methylguanine adducts and restores genomic integrity. Current understanding in the domain of oncology adds several other novel mechanisms of resistance such as the involvement of miRNAs, drug efflux transporters, gap junction's activity, the advent of glioma stem cells as well as upregulation of cell survival autophagy. This review describes a multifaceted account of different mechanisms responsible for the intrinsic and acquired TMZ-resistance. Here, we summarize different strategies that intensify the TMZ effect such as MGMT inhibition, development of novel imidazotetrazine analog, and combination therapy; with an aim to incorporate a successful treatment and increased overall survival in GBM patients.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Chhitij Srivastava
- Department of Neurosurgery, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India.
| |
Collapse
|
19
|
Salinas-Jazmín N, Rosas-Cruz A, Velasco-Velázquez M. Reporter gene systems for the identification and characterization of cancer stem cells. World J Stem Cells 2021; 13:861-876. [PMID: 34367481 PMCID: PMC8316869 DOI: 10.4252/wjsc.v13.i7.861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are tumor cells that share functional characteristics with normal and embryonic stem cells. CSCs have increased tumor-initiating capacity and metastatic potential and lower sensitivity to chemo- and radiotherapy, with important roles in tumor progression and the response to therapy. Thus, a current goal of cancer research is to eliminate CSCs, necessitating an adequate phenotypic and functional characterization of CSCs. Strategies have been developed to identify, enrich, and track CSCs, many of which distinguish CSCs by evaluating the expression of surface markers, the initiation of specific signaling pathways, and the activation of master transcription factors that control stemness in normal cells. We review and discuss the use of reporter gene systems for identifying CSCs. Reporters that are under the control of aldehyde dehydrogenase 1A1, CD133, Notch, Nanog homeobox, Sex-determining region Y-box 2, and POU class 5 homeobox can be used to identify CSCs in many tumor types, track cells in real time, and screen for drugs. Thus, reporter gene systems, in combination with in vitro and in vivo functional assays, can assess changes in the CSCs pool. We present relevant examples of these systems in the evaluation of experimental CSCs-targeting therapeutics, demonstrating their value in CSCs research.
Collapse
Affiliation(s)
- Nohemí Salinas-Jazmín
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Arely Rosas-Cruz
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marco Velasco-Velázquez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
20
|
MicroRNA-424-5p enhances chemosensitivity of breast cancer cells to Taxol and regulates cell cycle, apoptosis, and proliferation. Mol Biol Rep 2021; 48:1345-1357. [PMID: 33555529 DOI: 10.1007/s11033-021-06193-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Combination therapy has been considered as a potential method to overcome the BC chemoresistance. MicroRNAs (miRs) have been suggested as a therapeutic factor in the combination therapy of BC. This project aimed at examining the possible activity and molecular function of miR-424-5p and Taxol combination in the human BC cell line. MDA-MB-231 cells were treated with miR-424-5p mimics and Taxol, in a combined manner or separately. We used the MTT test for assessing the cell proliferation. In addition, flow-cytometry was used for evaluating apoptosis and cell-cycle. Expression levels of underlying molecular factors of miR-424-5p were assessed using western-blotting and qRT-PCR. The obtained results demonstrated that miR-424-5p repressed BC cell proliferation and sensitized these cells to Taxol treatment through the induction of apoptosis. Further investigations showed that miR-424-5p might increase BC chemosensitivity through the regulation of apoptosis-related factors including P53, Caspase-3, Bcl-2, and Bax as well as the proliferation-related gene c-Myc. Moreover, miR-424-5p restoration in combination with Taxol treatment decreased the colony formation by regulating Oct-4 and led to G2 arrest via modulating Cdk-2 expression. Western-blotting demonstrated that miR-424-5p may perform its anti-chemoresistance role by regulating the PD-L1 expression and controlling PTEN/PI3K/AKT/mTOR. Overall, the upregulation of miR-424-5p was indicated to upregulate the sensitivity of BC cells to treatment with Taxol. MiR-424-5p might regulate the chemosensitivity of the BC cell line by modulating PD-L1 and controlling the PTEN/mTOR axis. Therefore, the combination of miR-424-5p with Taxol would represent a novel procedure to treat against BC.
Collapse
|
21
|
Wang SM, Lin WC, Lin HY, Chen YL, Ko CY, Wang JM. CCAAT/Enhancer-binding protein delta mediates glioma stem-like cell enrichment and ATP-binding cassette transporter ABCA1 activation for temozolomide resistance in glioblastoma. Cell Death Discov 2021; 7:8. [PMID: 33436575 PMCID: PMC7804954 DOI: 10.1038/s41420-020-00399-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and relapses after chemo- or radiotherapy in a short time. The anticancer drug temozolamide (TMZ) is commonly used for GBM treatment, but glioma stem-like cells (GSCs) often lead to drug resistance and therapeutic failure. To date, the mechanism of GSC formation in TMZ-treated GBM remains largely unknown. CCAAT/Enhancer-binding protein delta (CEBPD) is an inflammation-responsive transcription factor and is proposed to be oncogenic in the context of drug resistance, prompting us to clarify its role in TMZ-resistant GBM. In this study, we first found that the CEBPD protein levels in GBM patients were significantly increased and further contributed to TMZ resistance by promoting GSC formation. Accordingly, the protein levels of stemness transcription factors, namely, SRY-box transcription factor 2 (SOX2), octamer-binding transcription factor 4 (OCT4), NANOG, and ATP-binding cassette subfamily A member 1 (ABCA1), were increased in GSCs and TMZ-treated GBM cells. Increased binding of CEBPD to promoter regions was observed in GSCs, indicating the direct regulation of these GSC-related genes by CEBPD. In addition, an ABCA1 inhibitor increased the caspase 3/7 activity of TMZ-treated GSCs, suggesting that TMZ efflux is controlled by ABCA1 activity and that the expression levels of the ABCA1 gene are an indicator of the efficiency of TMZ treatment. Together, we revealed the mechanism of CEBPD-mediated GSC drug resistance and proposed ABCA1 inhibition as a potential strategy for the treatment of TMZ-resistant GBM.
Collapse
Affiliation(s)
- Shao-Ming Wang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD, 21224, USA.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chi Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Yi Lin
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Zhunan, Taiwan. .,TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Mechanisms of Anticancer Therapy Resistance: The Role of Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21239006. [PMID: 33260802 PMCID: PMC7730979 DOI: 10.3390/ijms21239006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Despite incredible progress in anticancer therapy development, resistance to therapy is the major factor limiting the cure of cancer patients [...].
Collapse
|
23
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
24
|
Tumor suppressive activity of miR-424-5p in breast cancer cells through targeting PD-L1 and modulating PTEN/PI3K/AKT/mTOR signaling pathway. Life Sci 2020; 259:118239. [PMID: 32784058 DOI: 10.1016/j.lfs.2020.118239] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
AIMS MicroRNAs (miRs) are key modulators of cellular processes such as proliferation, apoptosis, as well as anti-cancer immune responses. Here, we evaluated the role of miR-424-5p in breast cancer (BC) and investigated its effects on T cell-related immune response. MAIN METHODS BC tissues and cell lines were prepared and the expression of miR-424-5p and PD-L1, as well as the underlying molecular pathways, were assessed via qRT-PCR and western blotting. The MTT assay and flow cytometry were used to assess the effect of miR-424-5p on proliferation, apoptosis, autophagy, and cell cycle progression. The co-culture of T cells with MDA-MB-231 was performed for evaluating the role of miR-424-5p in rescuing T cell exhaustion. KEY FINDINGS The results indicated the down-regulation of miR-424-5p and up-regulation of PD-L1 expression in BC tissue specimens. MiR-424-5p transfection into PD-L1 overexpressing MDA-MB-231 cells decreased the expression of PD-L1. Also, miR-424-5p could reduce MDA-MB-231 cell viability through modulating apoptosis and autophagy pathways. Furthermore, miR-424-5p transfection leads to decreased colony formation and increased cell number at the G2/M phase. Western blot analysis illustrated that miR-424-5p could exert its anti-proliferative effect via modulating PTEN/PI3K/AKT/mTOR pathway. Moreover, it was demonstrated that suppression of PD-L1 by miR-424-5p could participate in regulating the expression of effector cytokines in T cells. SIGNIFICANCE MiR-424-5p could be considered as a potential tumor-suppressor miR in regulating BC cellular growth, apoptosis, and T cell-related immune response through targeting PD-L1, and its downstream mediators. Therefore, we recognized miR-424-5p as a promising candidate for miR restoration therapy in BC patients.
Collapse
|
25
|
Reddy RG, Bhat UA, Chakravarty S, Kumar A. Advances in histone deacetylase inhibitors in targeting glioblastoma stem cells. Cancer Chemother Pharmacol 2020; 86:165-179. [PMID: 32638092 DOI: 10.1007/s00280-020-04109-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is a lethal grade IV glioma (WHO classification) and widely prevalent primary brain tumor in adults. GBM tumors harbor cellular heterogeneity with the presence of a small subpopulation of tumor cells, described as GBM cancer stem cells (CSCs) that pose resistance to standard anticancer regimens and eventually mediate aggressive relapse or intractable progressive GBM. Existing conventional anticancer therapies for GBM do not target GBM stem cells and are mostly palliative; therefore, exploration of new strategies to target stem cells of GBM has to be prioritized for the development of effective GBM therapy. Recent developments in the understanding of GBM pathophysiology demonstrated dysregulation of epigenetic mechanisms along with the genetic changes in GBM CSCs. Altered expression/activity of key epigenetic regulators, especially histone deacetylases (HDACs) in GBM stem cells has been associated with poor prognosis; inhibiting the activity of HDACs using histone deacetylase inhibitors (HDACi) has been promising as mono-therapeutic in targeting GBM and in sensitizing GBM stem cells to an existing anticancer regimen. Here, we review the development of pan/selective HDACi as potential anticancer agents in targeting the stem cells of glioblastoma as a mono or combination therapy.
Collapse
Affiliation(s)
- R Gajendra Reddy
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Unis Ahmad Bhat
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
26
|
Kim DC, Jin H, Lee JS, Son E, Lee GW, Kim HJ. P2Y 2R has a significant correlation with Notch-4 in patients with breast cancer. Oncol Lett 2020; 20:647-654. [PMID: 32565989 PMCID: PMC7286009 DOI: 10.3892/ol.2020.11630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Our previous study found that highly metastatic breast cancer cells, such as MDA-MB-231 cells, release higher levels of ATP and exhibit greater P2Y2 receptor (P2Y2R) activity than lowly metastatic breast cancer cells, and that P2Y2R activation mediated by ATP plays a significant role in tumor progression and metastasis. In addition, we reported that radiotherapy-resistant (RT-R) breast cancer cells promote invasion and tumor growth through the activation of P2Y2R by ATP released from RT-R-breast cancer cells than breast cancer cells. Moreover, increased numbers of cancer stem cells (CSCs) were observed among the RT-R-breast cancer cell population. Therefore, in this study, we investigated the expression level of five CSC markers (CD24, CD44, Oct3/4, Notch-4 and ALDH1A1) as well as P2Y2R in the tumor tissues of patients with breast cancer and determined which CSC marker correlates with P2Y2R in breast cancer. According to the immunohistochemical analysis, CD44, Oct3/4 and Notch-4 but not ALDH1A1 were significantly expressed in the tumor tissues (n=180) compared with the normal epithelial tissues (n=20) of patients with breast cancer. It was demonstrated that P2Y2R expression was increased in tumor tissues of patients with breast cancer compared with normal epithelial tissue. Notably, it was identified that P2Y2R expression has a significant correlation with only the CSC marker Notch-4 in patients with breast cancer. The results of this study suggested for the first time to the best of our knowledge that Notch-4 has a notable correlation with P2Y2R, which has important roles in tumor progression and metastasis.
Collapse
Affiliation(s)
- Dong Chul Kim
- Department of Pathology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Hana Jin
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Jong Sil Lee
- Department of Pathology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Euna Son
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52828, Republic of Korea
| | - Gyeong Won Lee
- Division of Hematology-Oncology, Department of Internal Medicine, College of Medicine, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| |
Collapse
|
27
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1058] [Impact Index Per Article: 211.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
28
|
Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165432. [PMID: 30904611 DOI: 10.1016/j.bbadis.2019.03.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem-like cells (CSCs) contribute to the tumorigenicity, progression, and chemoresistance of cancers. It is not known whether CSCs arise from normal stem cells or if they arise from differentiated cancer cells by acquiring self-renewal features. These CSCs share stem cell markers that normal stem cells express. There is a rising interest in octamer-binding transcription factor 4 (OCT4), one of the stem cell factors that are essential in embryogenesis and pluripotency. OCT4 is also overexpressed in CSCs of various cancers. Although the majority of the studies in CSCs reported a positive association between the expression of OCT4 and chemoresistance and an inverse correlation between OCT4 and clinical prognosis, there are studies rebuking these findings, possibly due to the sparsity of stem cells within tumors and the heterogeneity of tumors. In addition, post-translational modification of OCT4 affects its activity and warrants further investigation for its association with chemoresistance and prognosis.
Collapse
|
29
|
Choi SH, Kim JK, Jeon HY, Eun K, Kim H. OCT4B Isoform Promotes Anchorage-Independent Growth of Glioblastoma Cells. Mol Cells 2019; 42:135-142. [PMID: 30622231 PMCID: PMC6399006 DOI: 10.14348/molcells.2018.0311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022] Open
Abstract
OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 (OCT4B19kDa) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of OCT4B19kDa promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, OCT4B19kDa may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841,
Korea
| | - Jun-Kyum Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841,
Korea
| | - Hee-Young Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841,
Korea
| | - Kiyoung Eun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841,
Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841,
Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841,
Korea
| |
Collapse
|
30
|
Pavlou MAS, Grandbarbe L, Buckley NJ, Niclou SP, Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog Neurobiol 2018; 174:36-52. [PMID: 30599178 DOI: 10.1016/j.pneurobio.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
31
|
Bouwens van der Vlis TAM, Kros JM, Mustafa DAM, van Wijck RTA, Ackermans L, van Hagen PM, van der Spek PJ. The complement system in glioblastoma multiforme. Acta Neuropathol Commun 2018; 6:91. [PMID: 30208949 PMCID: PMC6134703 DOI: 10.1186/s40478-018-0591-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human complement system is represents the main effector arm of innate immunity and its ambivalent function in cancer has been subject of ongoing dispute. Glioma stem-like cells (GSC) residing in specific niches within glioblastomas (GBM) are capable of self-renewal and tumor proliferation. Recent data are indicative of the influence of the complement system on the maintenance of these cells. It appears that the role of the complement system in glial tumorigenesis, particularly its influence on GSC niches and GSC maintenance, is significant and warrants further exploration for therapeutic interventions.
Collapse
|
32
|
Zhou Y, Chen X, Kang B, She S, Zhang X, Chen C, Li W, Chen W, Dan S, Pan X, Liu X, He J, Zhao Q, Zhu C, Peng L, Wang H, Yao H, Cao H, Li L, Herlyn M, Wang YJ. Endogenous authentic OCT4A proteins directly regulate FOS/AP-1 transcription in somatic cancer cells. Cell Death Dis 2018; 9:585. [PMID: 29789579 PMCID: PMC5964179 DOI: 10.1038/s41419-018-0606-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
OCT4A is well established as a master transcription factor for pluripotent stem cell (PSC) self-renewal and a pioneer factor for initiating somatic cell reprogramming, yet its presence and functionality in somatic cancer cells remain controversial and obscure. By combining the CRISPR-Cas9-based gene editing with highly specific PCR assays, highly sensitive immunoassays, and mass spectrometry, we provide unequivocal evidence here that full-length authentic OCT4A transcripts and proteins were both present in somatic cancer cells, and OCT4A proteins were heterogeneously expressed in the whole cell population and when expressed, they are predominantly localized in cell nucleus. Despite their extremely low abundance (approximately three orders of magnitude lower than in PSCs), OCT4A proteins bound to the promoter/enhancer regions of the AP-1 transcription factor subunit c-FOS gene and critically regulated its transcription. Knocking out OCT4A in somatic cancer cells led to dramatic reduction of the c-FOS protein level, aberrant AP-1 signaling, dampened self-renewal capacity, deficient cell migration that were associated with cell growth retardation in vitro and in vivo, and their enhanced sensitivity to anticancer drugs. Taken together, we resolve the long-standing controversy and uncertainty in the field, and reveal a fundamental role of OCT4A protein in regulating FOS/AP-1 signaling-centered genes that mediate the adhesion, migration, and propagation of somatic cancer cells.
Collapse
Affiliation(s)
- Yanwen Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Department of Infectious Diseases, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xiaobing Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Cheng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenxin Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenjie Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xiaoyun Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianqin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Qingwei Zhao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Chenggang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ling Peng
- Department of Radiotherapy, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China. .,Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Kim JY, Kim JC, Lee JY, Park MJ. Oct4 suppresses IR‑induced premature senescence in breast cancer cells through STAT3- and NF‑κB-mediated IL‑24 production. Int J Oncol 2018; 53:47-58. [PMID: 29749438 PMCID: PMC5958730 DOI: 10.3892/ijo.2018.4391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are a small subpopulation of breast cancer cells that have been proposed to be a primary cause of failure of therapies, including ionizing radiation (IR). Their embryonic stem-like signature is associated with poor clinical outcome. In the present study, the function of octamer-binding transcription factor 4 (Oct4), an embryonic stem cell factor, in the resistance of BCSCs to IR was investigated. Mammosphere cells exhibited increased expression of stemness-associated genes, including Oct4 and sex-determining region Y-box 2 (Sox2), and were more resistant to IR compared with serum-cultured monolayer cells. IR-resistant MCF7 cells also exhibited significantly increased expression of Oct4. To investigate the possible involvement of Oct4 in IR resistance of breast cancer cells, cells were transfected with Oct4. Ectopic expression of Oct4 increased the clonogenic survival of MCF7 cells following IR, which was reversed by treatment with small interfering RNA (siRNA) targeting Oct4. Oct4 expression decreased phosphorylated histone H2AX (γ-H2AX) focus formation and suppressed IR-induced premature senescence in these cells. Mammosphere, IR-resistant and Oct4-overexpressing MCF7 cells exhibited enhanced phosphorylation of signal transducer and activation of transcription 3 (STAT3) (Tyr705) and inhibitor of nuclear factor κB (NF-κB), and blockade of these pathways with siRNA against STAT3 and/or specific inhibitors of STAT3 and NF-κB significantly increased IR-induced senescence. Secretome analysis revealed that Oct4 upregulated interleukin 24 (IL-24) expression through STAT3 and NF-κB signaling, and siRNA against IL-24 increased IR-induced senescence, whereas recombinant human IL-24 suppressed it. The results of the present study indicated that Oct4 confers IR resistance on breast cancer cells by suppressing IR-induced premature senescence through STAT3- and NF-κB-mediated IL-24 production.
Collapse
Affiliation(s)
- Jeong-Yub Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jeong-Chul Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ji-Yun Lee
- Department of Pathology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
34
|
Papatsenko D, Waghray A, Lemischka IR. Feedback control of pluripotency in embryonic stem cells: Signaling, transcription and epigenetics. Stem Cell Res 2018; 29:180-188. [DOI: 10.1016/j.scr.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
|
35
|
Zhang Y, Zhu H, Deng K, Ma W, Wang Y, Sun J, Lian X, Pan H, Wang R, Yao Y. Results of Biopsy-Proven Sellar Germ Cell Tumors: Nine Years' Experience in a Single Center. World Neurosurg 2018; 112:e229-e239. [DOI: 10.1016/j.wneu.2018.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 01/28/2023]
|
36
|
Du Z, Song X, Yan F, Wang J, Zhao Y, Liu S. Genome-wide transcriptional analysis of BRD4-regulated genes and pathways in human glioma U251 cells. Int J Oncol 2018; 52:1415-1426. [PMID: 29568956 PMCID: PMC5873870 DOI: 10.3892/ijo.2018.4324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/14/2018] [Indexed: 12/30/2022] Open
Abstract
Bromodomain containing 4 (BRD4), a member of the bromodomain and extra-terminal family, has become a promising drug target for numerous types of cancer. BRD4 has been reported to be deregulated in gliomas; however, the precise molecular pathways regulated by BRD4 remained elusive. In the present study, BRD4 expression was silenced in the glioma cell line U251 and the results demonstrated that BRD4 knockdown attenuated cell proliferation and promoted cell apoptosis. A genome-wide analysis of BRD4-regulated transcripts in U251 cells was performed using microarray to reveal the possible molecular mechanism. A total of 3,529 differentially expressed genes were identified; 1,648 of these genes were upregulated and 1,881 were downregulated. The results of the gene ontology analysis revealed that these genes were mainly involved in membrane organization, mitotic cell cycle, cell division and DNA replication. Pathway analysis revealed that the pathways altered following BRD4 knockdown included multiple cellular processes, such as cell cycle and apoptosis. Candidate genes were identified through global signal transduction network analysis and were validated using reverse transcription-quantitative polymerase chain reaction and western blot analyses. The results demonstrated that BRD4 knockdown decreased the expression of KRAS proto-oncogene GTPase (KRAS). Downregulated KRAS expression in U251 cells restrained cell proliferation and promoted cell apoptosis, suggesting that the effect of BRD4 on glioma cells might occur through the Ras pathway. In conclusion, the present results confirmed the role of BRD4 in glioma and provided information for further exploration of the molecular mechanism of BRD4 in glioma development and progression.
Collapse
Affiliation(s)
- Zhanhui Du
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiuxiang Song
- Department of Anaesthesiology, The People's Hospital of Jimo City, Qingdao, Shandong 266200, P.R. China
| | - Fangfang Yan
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingjing Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yuxia Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shangming Liu
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
37
|
Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau MO, Battu S, Lalloué F. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget 2018; 7:50349-50364. [PMID: 27385098 PMCID: PMC5226587 DOI: 10.18632/oncotarget.10387] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
The neurotrophin receptors are known to promote growth and proliferation of glioblastoma cells. Their functions in spreading glioblastoma cell aggressiveness to the microenvironment through exosome release from glioblastoma cells are unknown. Considering previous reports demonstrating that YKL-40 expression is associated with undifferentiated glioblastoma cancer stem cells, we used YKL-40-silenced cells to modulate the U87-MG differentiated state and their biological aggressiveness. Herein, we demonstrated a relationship between neurotrophin-receptors and YKL-40 expression in undifferentiated cells. Differential functions of cells and derived-exosomes were evidenced according to neurotrophin receptor content and differentiated cell state by comparison with control pLKO cells. YKL-40 silencing of glioblastoma cells impairs proliferation, neurosphere formation, and their ability to induce endothelial cell (HBMEC) migration. The modulation of differentiated cell state in YKL-40-silenced cells induces a decrease of TrkB, sortilin and p75NTR cellular expressions, associated with a low-aggressiveness phenotype. Interestingly, TrkB expressed in exosomes derived from control cells was undetectable in exosomes from YKL-40 -silenced cells. The transfer of TrkB-containing exosomes in YKL-40-silenced cells contributed to restore cell proliferation and promote endothelial cell activation. Interestingly, in U87 MG xenografted mice, TrkB-depleted exosomes from YKL-40-silenced cells inhibited tumor growth in vivo. These data highlight that TrkB-containing exosomes play a key role in the control of glioblastoma progression and aggressiveness. Furthermore, TrkB expression was detected in exosomes isolated from plasma of glioblastoma patients, suggesting that this receptor may be considered as a new biomarker for glioblastoma diagnosis.
Collapse
Affiliation(s)
- Sandra Pinet
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Barbara Bessette
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Nicolas Vedrenne
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Aurélie Lacroix
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Laurence Richard
- Limoges University Hospital, Department of Neurology, 87042 Limoges Cedex, France
| | - Marie-Odile Jauberteau
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France.,Limoges University Hospital, Department of Immunology, 87042 Limoges Cedex, France
| | - Serge Battu
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France.,Limoges University, Laboratory of Analytical Chemistry and Bromatology, Faculty of Pharmacy, 87025 Limoges, France
| | - Fabrice Lalloué
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| |
Collapse
|
38
|
Qin W, Chen S, Yang S, Xu Q, Xu C, Cai J. The Effect of Traditional Chinese Medicine on Neural Stem Cell Proliferation and Differentiation. Aging Dis 2017; 8:792-811. [PMID: 29344417 PMCID: PMC5758352 DOI: 10.14336/ad.2017.0428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are special types of cells with the potential for self-renewal and multi-directional differentiation. NSCs are regulated by multiple pathways and pathway related transcription factors during the process of proliferation and differentiation. Numerous studies have shown that the compound medicinal preparations, single herbs, and herb extracts in traditional Chinese medicine (TCM) have specific roles in regulating the proliferation and differentiation of NSCs. In this study, we investigate the markers of NSCs in various stages of differentiation, the related pathways regulating the proliferation and differentiation, and the corresponding transcription factors in the pathways. We also review the influence of TCM on NSC proliferation and differentiation, to facilitate the development of TCM in neural regeneration and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Qin
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shiya Chen
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shasha Yang
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qian Xu
- 2College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chuanshan Xu
- 3School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Cai
- 2College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
39
|
Picot T, Kesr S, Wu Y, Aanei CM, Flandrin-Gresta P, Tondeur S, Tavernier E, Wattel E, Guyotat D, Campos L. Potential Role of OCT4 in Leukemogenesis. Stem Cells Dev 2017; 26:1637-1647. [DOI: 10.1089/scd.2017.0134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Tiphanie Picot
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Sanae Kesr
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Yuenv Wu
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Carmen Mariana Aanei
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Pascale Flandrin-Gresta
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Sylvie Tondeur
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Emmanuelle Tavernier
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
- Département d'Hématologie et Thérapie Cellulaire, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France
| | - Eric Wattel
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| | - Denis Guyotat
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
- Département d'Hématologie et Thérapie Cellulaire, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France
| | - Lydia Campos
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Laboratoire de Biologie et Modélisation de la Cellule, UMR 5239, Lyon, France
| |
Collapse
|
40
|
Al-Moujahed A, Brodowska K, Stryjewski TP, Efstathiou NE, Vasilikos I, Cichy J, Miller JW, Gragoudas E, Vavvas DG. Verteporfin inhibits growth of human glioma in vitro without light activation. Sci Rep 2017; 7:7602. [PMID: 28790340 PMCID: PMC5548915 DOI: 10.1038/s41598-017-07632-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022] Open
Abstract
Verteporfin (VP), a light-activated drug used in photodynamic therapy for the treatment of choroidal neovascular membranes, has also been shown to be an effective inhibitor of malignant cells. Recently, studies have demonstrated that, even without photo-activation, VP may still inhibit certain tumor cell lines, including ovarian cancer, hepatocarcinoma and retinoblastoma, through the inhibition of the YAP-TEAD complex. In this study, we examined the effects of VP without light activation on human glioma cell lines (LN229 and SNB19). Through western blot analysis, we identified that human glioma cells that were exposed to VP without light activation demonstrated a downregulation of YAP-TEAD-associated downstream signaling molecules, including c-myc, axl, CTGF, cyr61 and survivin and upregulation of the tumor growth inhibitor molecule p38 MAPK. In addition, we observed that expression of VEGFA and the pluripotent marker Oct-4 were also decreased. Verteporfin did not alter the Akt survival pathway or the mTor pathway but there was a modest increase in LC3-IIB, a marker of autophagosome biogenesis. This study suggests that verteporfin should be further explored as an adjuvant therapy for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Katarzyna Brodowska
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Tomasz P. Stryjewski
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Nikolaos E. Efstathiou
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Ioannis Vasilikos
- 0000 0000 9428 7911grid.7708.8University Medical Center Freiburg, Freiburg, Germany
| | - Joanna Cichy
- 0000 0001 2162 9631grid.5522.0Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joan W. Miller
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Evangelos Gragoudas
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Demetrios G. Vavvas
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| |
Collapse
|
41
|
Low Dose of Doxorubicin Potentiates the Effect of Temozolomide in Glioblastoma Cells. Mol Neurobiol 2017; 55:4185-4194. [PMID: 28612256 DOI: 10.1007/s12035-017-0611-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with temozolomide (TMZ)-based chemotherapy as the main therapeutic strategy. Doxorubicin (DOX) is not used in gliomas due to its low bioavailability in the brain; however, new delivery strategies and low doses may be effective in the long term, especially as part of a drug cocktail. Our aim was to evaluate the chronic effects of low doses of DOX and TMZ in GBM. Human U87-ATCC cells and a primary GBM culture were chronically treated with TMZ (5 μM) and DOX (1 and 10 nM) alone or combined. DOX resulted in a reduction in the number of cells over a period of 35 days and delayed the cell regrowth. In addition, DOX induced cell senescence and reduced tumor sphere formation and the proportion of NANOG- and OCT4-positive cells after 7 days. Low doses of TMZ potentiated the effects of DOX on senescence and sphere formation. This combined response using low doses of DOX may pave the way for its use in glioma therapy, with new technologies to overcome its low blood-brain barrier permeability.
Collapse
|
42
|
Prasad P, Mittal SA, Chongtham J, Mohanty S, Srivastava T. Hypoxia-Mediated Epigenetic Regulation of Stemness in Brain Tumor Cells. Stem Cells 2017; 35:1468-1478. [DOI: 10.1002/stem.2621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Pankaj Prasad
- Department of Genetics; University of Delhi South Campus; New Delhi India
| | | | - Jonita Chongtham
- Department of Genetics; University of Delhi South Campus; New Delhi India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences; New Delhi India
| | - Tapasya Srivastava
- Department of Genetics; University of Delhi South Campus; New Delhi India
| |
Collapse
|
43
|
Novel spliced variants of OCT4, OCT4C and OCT4C1, with distinct expression patterns and functions in pluripotent and tumor cell lines. Eur J Cell Biol 2017; 96:347-355. [PMID: 28476334 DOI: 10.1016/j.ejcb.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/25/2017] [Accepted: 03/28/2017] [Indexed: 02/02/2023] Open
Abstract
OCT4 is a major regulator of pluripotency which has several spliced variants and expressed pseudogenes. Here, we are reporting the existence of two additional novel spliced variants of OCT4, OCT4C and OCT4C1, which lack Exon1 (E1) but start at a novel exon (E0) located ∼14kb upstream of E2. OCT4C/C1 is highly expressed in ES and iPS cells, and their expression was sharply turned off, upon the induction of neural differentiation. The long non-coding RNA (lncRNA) PSORS1C3, is located ∼9kb downstream of the E0 of OCT4C/C1. PSORS1C3 is vigorously spliced to generate nine novel variants, however, none of its exons incorporated in alternatively spliced variants of OCT4. Interestingly, the exons of OCT4 and PSORS1C3 are intertwined, with a novel exon (E0) of PSORS1C3 located ∼4kb upstream of OCT4 E0. This exon participates in generating some more variants of PSORS1C3 (variants 10-24). OCT4C/C1 knock-down in ES and iPS cell lines caused a slight downregulation of PSORS1C3 and OCT4A, a slight upregulation of OCT4B1, and a dramatic upregulation of OCT4B. Altogether, our data revisited the current view of OCT4 gene structure and regulation, and revealed its complex genomic features and expression regulation in stem and tumor cells.
Collapse
|
44
|
Sun L, Liu T, Zhang S, Guo K, Liu Y. Oct4 induces EMT through LEF1/β-catenin dependent WNT signaling pathway in hepatocellular carcinoma. Oncol Lett 2017; 13:2599-2606. [PMID: 28454439 PMCID: PMC5403449 DOI: 10.3892/ol.2017.5788] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Octamer 4 (Oct4), a member of the Pit-Oct-Unc transcription factor family required to maintain self-renewal and pluripotency of embryonic stem cells, has been previously identified to be associated with tumorigenesis and malignant transformation of numerous types of cancer including hepatocellular carcinoma (HCC). The present data shows that Oct4 enhances cancer stem cell properties and increases invasion ability in the Huh7 cell line. To increase understanding of the role of Oct4 in HCC, the present study used a functional genomics approach and analyzed the resulting transcriptional profiles to identify Oct4-dependent genes in Huh7. Affymetrix GeneChip Human genome U133 Plus 2.0 Arrays were used to determine differential gene expression profiles and then validated by quantitative polymerase chain reaction. The present study found that altered expression of 673 genes (fold-change ≥2) affected multiple signaling pathways linked with self-renew and metastasis. Among these differentially expressed genes, the present study noticed that the key component of the WNT signaling pathway lymphoid enhancer binding factor 1 (LEF1) and Twist Family BHLH transcription factor 1 were upregulated by Oct4, whilst cadherin 2 was downregulated. Additional studies found that the nuclear β-catenin aggregation was increased in Oct4 overexpressed HCC cell lines. These results suggest that Oct4 regulates LEF1 to active LEF1/β-catenin dependent WNT signaling pathway and promote epithelial-mesenchymal transition. The present findings provide novel mechanistic insight into an important role of Oct4 in HCC.
Collapse
Affiliation(s)
- Lu Sun
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Tianhua Liu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
45
|
Archer LK, Frame FM, Maitland NJ. Stem cells and the role of ETS transcription factors in the differentiation hierarchy of normal and malignant prostate epithelium. J Steroid Biochem Mol Biol 2017; 166:68-83. [PMID: 27185499 DOI: 10.1016/j.jsbmb.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/07/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most common cancer of men in the UK and accounts for a quarter of all new cases. Although treatment of localised cancer can be successful, there is no cure for patients presenting with invasive prostate cancer and there are less treatment options. They are generally treated with androgen-ablation therapies but eventually the tumours become hormone resistant and patients develop castration-resistant prostate cancer (CRPC) for which there are no further successful or curative treatments. This highlights the need for new treatment strategies. In order to prevent prostate cancer recurrence and treatment resistance, all the cell populations in a heterogeneous prostate tumour must be targeted, including the rare cancer stem cell (CSC) population. The ETS transcription factor family members are now recognised as a common feature in multiple cancers including prostate cancer; with aberrant expression, loss of tumour suppressor function, inactivating mutations and the formation of fusion genes observed. Most notably, the TMPRSS2-ERG gene fusion is present in approximately 50% of prostate cancers and in prostate CSCs. However, the role of other ETS transcription factors in prostate cancer is less well understood. This review will describe the prostate epithelial cell hierarchy and discuss the evidence behind prostate CSCs and their inherent resistance to conventional cancer therapies. The known and proposed roles of the ETS family of transcription factors in prostate epithelial cell differentiation and regulation of the CSC phenotype will be discussed, as well as how they might be targeted for therapy.
Collapse
Affiliation(s)
- Leanne K Archer
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom.
| |
Collapse
|
46
|
Han MH, Park SW, Do HJ, Chung HJ, Song H, Kim JH, Kim NH, Park KH, Kim JH. Growth and Differentiation Factor 3 Is Transcriptionally Regulated by OCT4 in Human Embryonic Carcinoma Cells. Biol Pharm Bull 2017; 39:1802-1808. [PMID: 27803451 DOI: 10.1248/bpb.b16-00299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth and differentiation factor 3 (GDF3), a mammalian-specific transforming growth factor β ligand, and OCT4, one of key stem cell transcription factors, are expressed in testicular germ cell tumors (TGCTs) as well as pluripotent stem cells. To understand the molecular mechanism by which OCT4 and GDF3 function in tumorigenesis as well as stemness, we investigated the transcriptional regulation of GDF3 mediated by OCT4 in human embryonic carcinoma (EC) NCCIT cells, which are pluripotent stem cells of TGCTs. GDF3 and OCT4 was highly expressed in undifferentiated NCCIT cells and then significantly decreased upon retinoic acid-induced differentiation in a time-dependent manner. Moreover, GDF3 expression was reduced by short hairpin RNA-mediated knockdown of OCT4 and increased by OCT4 overexpression, suggesting that GDF3 and OCT4 have a functional relationship in pluripotent stem cells. A promoter-reporter assay revealed that the GDF3 promoter (-1721-Luc) activity was significantly activated by OCT4 in a dose-dependent manner. Moreover, the minimal promoter (-183-Luc) was sufficient for OCT4-mediated transcriptional activation and provided a potential binding site for the direct interaction with OCT4. Collectively, this study provides the evidence about the regulatory mechanism of GDF3 mediated by OCT4 in pluripotent EC cells.
Collapse
Affiliation(s)
- Mi-Hee Han
- Department of Biomedical Science, College of Life Science, CHA University
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Krogh Petersen J, Jensen P, Dahl Sørensen M, Winther Kristensen B. Expression and Prognostic Value of Oct-4 in Astrocytic Brain Tumors. PLoS One 2016; 11:e0169129. [PMID: 28030635 PMCID: PMC5193446 DOI: 10.1371/journal.pone.0169129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastomas are the most frequent type of malignant primary brain tumor with a median overall survival less than 15 months. Therapy resistance of glioblastomas has been attributed to the presence of tumor initiating stem-like cells (TSCs). TSC-related markers have therefore been suggested to have promising potentials as prognostic markers in gliomas. Methodology/Principal Findings The aim of the present study was to investigate the expression and prognostic impact of the TSC-related marker Oct-4 in astrocytic brain tumors of increasing grade. In total 114 grade II, III and IV astrocytic brain tumors were immunohistochemically stained for Oct-4, and the fraction and intensity of Oct-4 positive cells were determined by morphometric analysis of full tumor sections. Oct-4 was expressed in all tumors, and the Oct-4 positive cell fraction increased with tumor grade (p = 0.045). There was no association between survival and Oct-4 positive cell fraction, neither when combining all tumor grades nor in analysis of individual grades. Oct-4 intensity was not associated with grade, but taking IDH1 status into account we found a tendency for high Oct-4 intensity to be associated with poor prognosis in anaplastic astrocytomas. Double immunofluorescence stainings showed co-localization in the perivascular niches of Oct-4 and two other TSC markers CD133 and nestin in glioblastomas. In some areas Oct-4 was expressed independently of CD133 and nestin. Conclusions In conclusion, high Oct-4 fraction was associated with tumor malignancy, but seemed to be without independent prognostic influence in glioblastomas. Identification of a potential prognostic value in anaplastic astrocytomas requires additional studies using larger patient cohorts.
Collapse
Affiliation(s)
| | - Per Jensen
- Department of Pathology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
48
|
Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev 2016; 51:1-9. [DOI: 10.1016/j.ctrv.2016.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
|
49
|
Fan H, Liu G, Zhao C, Li X, Yang X. Transcription factor Oct4 promotes osteosarcoma by regulating lncRNA AK055347. Oncol Lett 2016; 13:396-402. [PMID: 28123573 DOI: 10.3892/ol.2016.5400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/24/2016] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor in children and adolescents, typically presenting with a poor prognosis. Octamer-binding transcription factor 4 (Oct4) protein, encoded by the POU class 5 homeobox 1 gene, is important in maintaining self-renewal of pluripotent stem cells, and is closely associated with cancer. However, its role in osteosarcoma remains to be elucidated. The present study observed Oct4 was markedly increased in osteosarcoma cell lines and in human osteosarcoma tissue samples. Following Oct4 downregulation by small interfering RNA (siRNA) in osteosarcoma F5M2 cells, the cells exhibited significant decreases in proliferation and invasion ability, and an increase in cell apoptosis. Notably, downregulation of Oct4 decreased the expression of AK055347, a newly identified long noncoding RNA (lncRNA) in human tissues. The downregulation of AK055347 by siRNA resulted in a significant suppressive effect on proliferative and invasive ability, and promotion of cell apoptosis in osteosarcoma cells. Thus, the current study suggests Oct4 exerts a promoting effect in osteosarcoma, and identifies a novel lncRNA in osteosarcoma progression.
Collapse
Affiliation(s)
- Hongwu Fan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130001, P.R. China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130001, P.R. China
| | - Changfu Zhao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130001, P.R. China
| | - Xuefeng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130001, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, Orthopedics Hospital, The Second Hospital of Jilin University, Changchun, Jilin 130001, P.R. China
| |
Collapse
|
50
|
Ferreyra Solari NE, Belforte FS, Canedo L, Videla-Richardson GA, Espinosa JM, Rossi M, Serna E, Riudavets MA, Martinetto H, Sevlever G, Perez-Castro C. The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis. Cancer Res 2016; 76:5383-94. [PMID: 27406830 DOI: 10.1158/0008-5472.can-15-3159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/24/2016] [Indexed: 12/17/2022]
Abstract
KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. Cancer Res; 76(18); 5383-94. ©2016 AACR.
Collapse
Affiliation(s)
- Nazarena E Ferreyra Solari
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Fiorella S Belforte
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lucía Canedo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Guillermo A Videla-Richardson
- Laboratorio de Investigación aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eva Serna
- Servicio Análisis Multigénico, Unidad Central de Investigación, Facultad de Medicina, Universidad de Valencia, Valencia, España
| | - Miguel A Riudavets
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina. Laboratorio de Histopatología, Cuerpo Médico Forense, Tribunal Supremo de Justicia, Buenos Aires, Argentina
| | - Horacio Martinetto
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Gustavo Sevlever
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|