1
|
Mohammed SR, Elmasry K, El-Gamal R, El-Shahat MA, Sherif RN. Alteration of Aquaporins 1 and 4 immunohistochemical and gene expression in the cerebellum of diabetic albino rat. Tissue Cell 2023; 82:102076. [PMID: 36989704 DOI: 10.1016/j.tice.2023.102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins. AQP1 and AQP4 are expressed in cerebellum amongst others. This study was designed to assess the effect of diabetes on AQP1 and AQP4 expression in cerebellum of rats. Diabetes was induced by a single intraperitoneal injection of Streptozotocin 45 mg/kg in 24 adult male Sprague Dawley rats. Six rats from control and diabetic groups were sacrificed at one, four, and eight weeks post diabetic confirmation. After eight weeks, measurement of malondialdehyde (MDA), reduced glutathione (GSH) concentrations, and cerebellar mRNA expression for AQP1 and AQP4 genes were performed. Immunohistochemical evaluation of AQP1, AQP4, and glial fibrillary acidic protein (GFAP) for cerebellar sections was performed for all groups. Diabetes caused degenerative changes in Purkinje cells with a significant increase in the cerebellar level of MDA and AQP1 immunoreactivity and a significant decrease in GSH level and AQP4 expression levels. However, the alteration in the AQP1 mRNA level was not statistically significant. GFAP immunoreactivity was increased in 8 W diabetic rats following its decrease in 1 W diabetic rats. Diabetes caused some alteration in the AQPs 1 and 4 expression in the cerebellum of diabetic rats which may contribute to diabetes-induced cerebellar complications.
Collapse
|
2
|
Xie Z, Wu X, Cheng R, Huang J, Wang X, Shi Q, Xu B, Paulus YM, Yuan S, Liu Q. A novel model of subretinal edema induced by DL-alpha aminoadipic acid. Exp Eye Res 2023; 228:109388. [PMID: 36652968 DOI: 10.1016/j.exer.2023.109388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/16/2023]
Abstract
In this study we described a new model of subretinal edema induced by single intraocular injection of DL-alpha-aminoadipic acid (DLAAA) that can be employed to study the mechanism of retinal edema and test the efficacy or potential toxicity of treatments. The progression of subretinal edema was evaluated by fundus photography, fluorescein angiography and optical coherence tomography for up to 4 weeks following DLAAA injection. The VEGF, IL-6, TNF-α, Occludin, ZO-1, AQP4, Kir4.1, GFAP and GS levels were examined in DLAAA models by immunostaining, immumohistochemical staining and Western blot. Additionally, bulk RNA-seq was used to detect the mechanism involved in DLAAA-induced retinal Müller cellular injuries. In vivo and vitro assays were further conducted to confirm the sequencing results. Subretinal edema was successfully induced by DLAAA in New Zealand White rabbits (1.29 mg/eye) and C57BL/6 mice (50 or 100 μg/eye). Our results demonstrated that the disruption of blood-retinal-barrier, including vascular hyperpermeability, inflammation, and Müller cell dysfunction of fluid clearance, was involved in subretinal edema formation in the model. Bulk RNA-seq and in vitro studies indicated the activation of p38 MAPK signaling pathway in DLAAA models. This DLAAA-induced subretinal edema model can be used for mechanistic studies or drug screening.
Collapse
Affiliation(s)
- Zhan Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinjing Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ruiwen Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junlong Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiuying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qile Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Zhao Z, He J, Chen Y, Wang Y, Wang C, Tan C, Liao J, Xiao G. The pathogenesis of idiopathic normal pressure hydrocephalus based on the understanding of AQP1 and AQP4. Front Mol Neurosci 2022; 15:952036. [PMID: 36204139 PMCID: PMC9530743 DOI: 10.3389/fnmol.2022.952036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder without a recognized cause. Aquaporins (AQPs) are transmembrane channels that carry water through cell membranes and are critical for cerebrospinal fluid circulation and cerebral water balance. The function of AQPs in developing and maintaining hydrocephalus should be studied in greater detail as a possible diagnostic and therapeutic tool. Recent research indicates that patients with iNPH exhibited high levels of aquaporin 1 and low levels of aquaporin 4 expression, suggesting that these AQPs are essential in iNPH pathogenesis. To determine the source of iNPH and diagnose and treat it, it is necessary to examine and appreciate their function in the genesis and maintenance of hydrocephalus. The expression, function, and regulation of AQPs in iNPH are reviewed in this article, in order to provide fresh targets and suggestions for future research.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gelei Xiao
| |
Collapse
|
4
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
5
|
Sulforaphane Upregulates Cultured Mouse Astrocytic Aquaporin-4 Expression through p38 MAPK Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1144124. [PMID: 35991296 PMCID: PMC9385362 DOI: 10.1155/2022/1144124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/31/2021] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Protein misfolding and/or aggregation are common pathological features associated with a number of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson disease (PD). Abnormal protein aggregation may be caused by misfolding of the protein and/or dysfunction of the protein clearance system. Recent studies have demonstrated that the specific water channel protein, aquaporin-4 (AQP4), plays a role in the pathogenesis of neurodegenerative diseases involving protein clearance system. In this study, we aimed to investigate the role of sulforaphane (SFN) in the upregulation of AQP4 expression, along with its underlying mechanism using cultured mouse astrocytes as a model system. At low concentrations, SFN was found to increase cell proliferation and result in the activation of astrocytes. However, high SFN concentrations were found to suppress cell proliferation of astrocytes. In addition, our study found that a 1 μM concentration of SFN resulted in the upregulation of AQP4 expression and p38 MAPK phosphorylation in cultured mouse astrocytes. Moreover, we demonstrated that the upregulation of AQP4 expression was significantly attenuated when cells were pretreated with SB203580, a p38 MAPK inhibitor. In conclusion, our findings from this study revealed that SFN exerts hormesis effect on cultured mouse astrocytes and can upregulate astrocytic AQP4 expression by targeting the p38 MAPK pathway.
Collapse
|
6
|
Qi Sui Zhu Shui Plaster Inhibits AQP1 and MAPK Signaling Reduces Liver Damage Induced by Cirrhotic Ascites. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9928546. [PMID: 35399826 PMCID: PMC8986420 DOI: 10.1155/2022/9928546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022]
Abstract
Objective At present, there is no special treatment for cirrhotic ascites in modern medicine. Qi Sui Zhu Shui plaster (QSZSP) has been used in ascites. The purpose of this study was to investigate the mechanism of action of QSZSP in the treatment of cirrhotic ascites and its relationship with aquaporin 1 (AQP1). Methods Twenty-four rats were divided into four groups, six rats in each group. Carbon tetrachloride-olive oil is injected into modeling. The control and model groups are treated with blank gel plaster (2 cm × 2 cm), QSZSP low-dose group is treated with Qi Sui Zhu Shui plaster (1 cm × 1 cm), and QSZSP high-dose group is treated with Qi Sui Zhu Shui plaster (2 cm × 2 cm). The changes in body weight and abdominal circumference were measured, the histopathological changes in liver, kidney, and peritoneum were observed in HE staining, the biochemical indexes related to liver function were detected, and the changes in AQP1 expression and the activation of MAPK pathway in the liver, kidney, and peritoneal tissues were evaluated in IHC staining and Western blot. Results After one week of injection of carbon tetrachloride-olive oil, the rats in the model group increased their body weight slowly, the abdominal circumference of the model rats continued to increase with time. After 16 weeks of construction of the cirrhotic ascites model, the liver, kidney, and peritoneum were significantly damaged, and the serum levels of TBiL, AST, ALT, Cr, BUN, K, Na, and Ca in the rats were significantly higher (P < 0.001) and ALB levels were significantly lower (P < 0.001) than those in the control group. After 4 weeks of treatment, the liver, kidney, and peritoneal injury were improved. TBiL, AST, ALT, Cr, BUN, K, Na, and Ca levels were significantly lower (P < 0.001) and ALB levels were significantly higher (P < 0.001) than those in the model group. The protein expression of AQP1, p-ERK, p-JNK, and p-p38 was found to be inhibited in the liver, kidney, and peritoneum. Conclusion QSZSP inhibits the protein expression of AQP1 and MAPK signaling pathway in the liver, peritoneum, and kidney to alleviate liver, kidney, and peritoneal injury caused by cirrhotic ascites, thus reducing the abnormal growth of abdominal circumference.
Collapse
|
7
|
Das S, Li Z, Noori A, Hyman BT, Serrano-Pozo A. Meta-analysis of mouse transcriptomic studies supports a context-dependent astrocyte reaction in acute CNS injury versus neurodegeneration. J Neuroinflammation 2020; 17:227. [PMID: 32736565 PMCID: PMC7393869 DOI: 10.1186/s12974-020-01898-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuronal damage in acute CNS injuries and chronic neurodegenerative diseases is invariably accompanied by an astrocyte reaction in both mice and humans. However, whether and how the nature of the CNS insult—acute versus chronic—influences the astrocyte response, and whether astrocyte transcriptomic changes in these mouse models faithfully recapitulate the astrocyte reaction in human diseases remains to be elucidated. We hypothesized that astrocytes set off different transcriptomic programs in response to acute versus chronic insults, besides a shared “pan-injury” signature common to both types of conditions, and investigated the presence of these mouse astrocyte signatures in transcriptomic studies from human neurodegenerative diseases. Methods We performed a meta-analysis of 15 published astrocyte transcriptomic datasets from mouse models of acute injury (n = 6) and chronic neurodegeneration (n = 9) and identified pan-injury, acute, and chronic signatures, with both upregulated (UP) and downregulated (DOWN) genes. Next, we investigated these signatures in 7 transcriptomic datasets from various human neurodegenerative diseases. Results In mouse models, the number of UP/DOWN genes per signature was 64/21 for pan-injury and 109/79 for acute injury, whereas only 13/27 for chronic neurodegeneration. The pan-injury-UP signature was represented by the classic cytoskeletal hallmarks of astrocyte reaction (Gfap and Vim), plus extracellular matrix (i.e., Cd44, Lgals1, Lgals3, Timp1), and immune response (i.e., C3, Serping1, Fas, Stat1, Stat2, Stat3). The acute injury-UP signature was enriched in protein synthesis and degradation (both ubiquitin-proteasome and autophagy systems), intracellular trafficking, and anti-oxidant defense genes, whereas the acute injury-DOWN signature included genes that regulate chromatin structure and transcriptional activity, many of which are transcriptional repressors. The chronic neurodegeneration-UP signature was further enriched in astrocyte-secreted extracellular matrix proteins (Lama4, Cyr61, Thbs4), while the DOWN signature included relevant genes such as Agl (glycogenolysis), S1pr1 (immune modulation), and Sod2 (anti-oxidant). Only the pan-injury-UP mouse signature was clearly present in some human neurodegenerative transcriptomic datasets. Conclusions Acute and chronic CNS injuries lead to distinct astrocyte gene expression programs beyond their common astrocyte reaction signature. However, caution should be taken when extrapolating astrocyte transcriptomic findings from mouse models to human diseases.
Collapse
Affiliation(s)
- Sudeshna Das
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Zhaozhi Li
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ayush Noori
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA. .,Harvard Medical School, Boston, MA, 02116, USA.
| |
Collapse
|
8
|
The Bradykinin-BDKRB1 Axis Regulates Aquaporin 4 Gene Expression and Consequential Migration and Invasion of Malignant Glioblastoma Cells via a Ca 2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers (Basel) 2020; 12:cancers12030667. [PMID: 32182968 PMCID: PMC7139930 DOI: 10.3390/cancers12030667] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain tumor and is very aggressive. Rapid migration and invasion of glioblastoma cells are two typical features driving malignance of GBM. Bradykinin functionally prompts calcium influx via activation of bradykinin receptor B1/B2 (BDKRB1/2). In this study, we evaluated the roles of bradykinin in migration and invasion of glioblastoma cells and the possible mechanisms. Expressions of aquaporin 4 (AQP4) mRNA and protein were upregulated in human glioblastomas. Furthermore, exposure of human U87 MG glioblastoma cells to bradykinin specifically increased levels of BDKRB1. Successively, bradykinin stimulated influx of calcium, phosphorylation of MEK1 and extracellular signal-regulated kinase (ERK)1/2, translocation and transactivation of nuclear factor-kappaB (NF-κB), and expressions of AQP4 mRNA and protein. Concomitantly, migration and invasion of human glioblastoma cells were elevated by bradykinin. Knocking-down BDKRB1 concurrently decreased AQP4 mRNA expression and cell migration and invasion. The bradykinin-induced effects were further confirmed in murine GL261 glioblastoma cells. Therefore, bradykinin can induce AQP4 expression and subsequent migration and invasion through BDKRB1-mediated calcium influx and subsequent activation of a MEK1-ERK1/2-NF-κB pathway. The bradykinin-BDKRB1 axis and AQP4 could be precise targets for treating GBM patients.
Collapse
|
9
|
Chen CY, Liao PL, Tsai CH, Chan YJ, Cheng YW, Hwang LL, Lin KH, Yen TL, Li CH. Inhaled gold nanoparticles cause cerebral edema and upregulate endothelial aquaporin 1 expression, involving caveolin 1 dependent repression of extracellular regulated protein kinase activity. Part Fibre Toxicol 2019; 16:37. [PMID: 31619255 PMCID: PMC6796418 DOI: 10.1186/s12989-019-0324-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023] Open
Abstract
Background Gold nanoparticles (Au-NPs) have extensive applications in electronics and biomedicine, resulting in increased exposure and prompting safety concerns for human health. After absorption, nanoparticles enter circulation and effect endothelial cells. We previously showed that exposure to Au-NPs (40–50 nm) collapsed endothelial tight junctions and increased their paracellular permeability. Inhaled nanoparticles have gained significant attention due to their biodistribution in the brain; however, little is known regarding their role in cerebral edema. The present study investigated the expression of aquaporin 1 (AQP1) in the cerebral endothelial cell line, bEnd.3, stimulated by Au-NPs. Results We found that treatment with Au-NPs induced AQP1 expression and increased endothelial permeability to water. Au-NP exposure rapidly boosted the phosphorylation levels of focal adhesion kinase (FAK) and AKT, increased the accumulation of caveolin 1 (Cav1), and reduced the activity of extracellular regulated protein kinases (ERK). The inhibition of AKT (GDC-0068) or FAK (PF-573228) not only rescued ERK activity but also prevented AQP1 induction, whereas Au-NP-mediated Cav1 accumulation remained unaltered. Neither these signaling molecules nor AQP1 expression responded to Au-NPs while Cav1 was silenced. Inhibition of ERK activity (U0126) remarkably enhanced Cav1 and AQP1 expression in bEnd.3 cells. These data demonstrate that Au-NP-mediated AQP1 induction is Cav1 dependent, but requires the repression on ERK activity. Mice receiving intranasally administered Au-NPs displayed cerebral edema, significantly augmented AQP1 protein levels; furthermore, mild focal lesions were observed in the cerebral parenchyma. Conclusions These data suggest that the subacute exposure of nanoparticles might induce cerebral edema, involving the Cav1 dependent accumulation on endothelial AQP1.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Liao
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hao Tsai
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Hwang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei city, Taiwan
| | - Ting-Ling Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 22174, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Zhang G, Ma P, Wan S, Xu J, Yang M, Qiu G, Zhuo F, Xu S, Huo J, Ju Y, Liu H. Dystroglycan is involved in the activation of ERK pathway inducing the change of AQP4 expression in scratch-injured astrocytes. Brain Res 2019; 1721:146347. [DOI: 10.1016/j.brainres.2019.146347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/21/2019] [Indexed: 01/28/2023]
|
11
|
Li J, Jia M, Chen G, Nie S, Zheng C, Zeng W, Xu Y, Wang C, Cao X, Liu Q. Involvement of p38 mitogen‐activated protein kinase in altered expressions of AQP1 and AQP4 after carbon monoxide poisoning in rat astrocytes. Basic Clin Pharmacol Toxicol 2019; 125:394-404. [PMID: 31063681 DOI: 10.1111/bcpt.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jinlan Li
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Min Jia
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Guiqin Chen
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Shuke Nie
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Cong Zheng
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Congping Wang
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Qunhui Liu
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| |
Collapse
|
12
|
Guo H, Wang J, Yao J, Sun S, Sheng N, Zhang X, Guo X, Guo Y, Sun Y, Dai J. Comparative Hepatotoxicity of Novel PFOA Alternatives (Perfluoropolyether Carboxylic Acids) on Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3929-3937. [PMID: 30865431 DOI: 10.1021/acs.est.9b00148] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As novel alternatives to perfluorooctanoic acid (PFOA), perfluoropolyether carboxylic acids (multiether PFECAs, CF3(OCF2) nCOO-, n = 2-4) have been detected in various environmental matrices; however, public information regarding their toxicities remains unavailable. To compare the hepatotoxicity of multiether PFECAs (e.g., PFO2HxA, PFO3OA, and PFO4DA) with PFOA, male mice were exposed to 0.4, 2, or 10 mg/kg/d of each chemical for 28 d, respectively. Results demonstrated that PFO2HxA and PFO3OA exposure did not induce marked increases in relative liver weight; whereas 2 and 10 mg/kg/d of PFO4DA significantly increased relative liver weight. Furthermore, PFO2HxA and PFO3OA demonstrated almost no accumulation in the liver or serum; whereas PFO4DA was accumulated but with weaker potential than PFOA. Exposure to 10 mg/kg/d of PFO4DA led to 198 differentially expressed liver genes (56 down-regulated, 142 up-regulated), with bioinformatics analysis highlighting the urea cycle disorder. Like PFOA, 10 mg/kg/d of PFO4DA decreased the urea cycle-related enzyme protein levels (e.g., carbamoyl phosphate synthetase 1) and serum ammonia content in a dose-dependent manner. Both PFOA and PFO4DA treatment (highest concentration) caused a decrease in glutamate content and increase in both glutamine synthetase activity and aquaporin protein levels in the brain. Thus, we concluded that PFO4DA caused hepatotoxicity, as indicated by hepatomegaly and karyolysis, though to a lesser degree than PFOA, and induced urea cycle disorder, which may contribute to the observed toxic effects.
Collapse
Affiliation(s)
- Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Jingzhi Yao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Sujie Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Xiaowen Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing 210029 , China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
13
|
Zhong Z, Sun Y, Wang B, Sun Q, Yang G, Bian L. Involvement of mitogen-activated protein kinase pathways in ferrous iron-induced aquaporin-4 expression in cultured astrocytes. Neurotoxicology 2019; 73:142-149. [PMID: 30914277 DOI: 10.1016/j.neuro.2019.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022]
Abstract
Iron is an essential element for multiple metabolic reactions, but excessive iron accumulation in the brain can lead to astrocyte swelling and death and cause cerebral edema. Aquaporin-4 (AQP4) is the important water channel expressed in the astrocytes, and maintains the water homeostasis of the brain. Previous study has shown that iron deposition could increase AQP4 expression, however, the mechanism of AQP4 expression upregulation after iron overload is still unclear. In this study, we investigated the effect of ferrous iron overload on AQP4 expression in cultured mouse astrocytes. Primary cultures of astrocytes were exposed to ferrous iron, and the expression of AQP4 as well as the swelling of astrocyte were determined. AQP4 expression was inhibited by small interfering RNA (siRNA). The role of oxidative stress and mitogen-activated protein kinases (MAPKs) signaling pathway in ferrous iron-induced AQP4 expression upregulation were further studied. Ferrous iron exposure induced astrocyte death as well as cell swelling, and increased AQP4 expression. AQP4 gene silencing after siRNA transfection attenuated ferrous iron-induced astrocyte death. After treatment with antioxidants, the increased AQP4 expression was diminished. MAPKs were activated after ferrous iron treatment, and inhibitors of ERK and p38-MAPK relieved AQP4 expression upregulation as well as astrocyte death. These results suggest that ferrous iron has distinctive toxic effects on cultured astrocytes and induces AQP4 expression upregulation. MAPKs activation may play important roles in ferrous iron-induced astrocyte death through upregulation of AQP4 expression.
Collapse
Affiliation(s)
- Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Halsey AM, Conner AC, Bill RM, Logan A, Ahmed Z. Aquaporins and Their Regulation after Spinal Cord Injury. Cells 2018; 7:E174. [PMID: 30340399 PMCID: PMC6210264 DOI: 10.3390/cells7100174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022] Open
Abstract
After injury to the spinal cord, edema contributes to the underlying detrimental pathophysiological outcomes that lead to worsening of function. Several related membrane proteins called aquaporins (AQPs) regulate water movement in fluid transporting tissues including the spinal cord. Within the cord, AQP1, 4 and 9 contribute to spinal cord injury (SCI)-induced edema. AQP1, 4 and 9 are expressed in a variety of cells including astrocytes, neurons, ependymal cells, and endothelial cells. This review discusses some of the recent findings of the involvement of AQP in SCI and highlights the need for further study of these proteins to develop effective therapies to counteract the negative effects of SCI-induced edema.
Collapse
Affiliation(s)
- Andrea M Halsey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
15
|
Pituitary Gonadotropins, Prolactin and Growth Hormone Differentially Regulate AQP1 Expression in the Porcine Ovarian Follicular Cells. Int J Mol Sci 2017; 19:ijms19010005. [PMID: 29267208 PMCID: PMC5795957 DOI: 10.3390/ijms19010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/16/2017] [Accepted: 12/16/2017] [Indexed: 01/28/2023] Open
Abstract
The present in vitro study analyzed whether the hormones that affect the ovarian follicular steroidogenesis process also participate in the regulation of AQP1 mRNA and protein expression. Granulosa (Gc) and theca cells (Tc) of medium and large porcine ovarian follicles were exposed to follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) for 24 h in separated cells and co-cultures of these cells. Real-time PCR, Western blotting, immunofluorescence and volumetric analysis were then performed. Gonadotropins, PRL and GH had a stimulatory impact on AQP1 mRNA and protein expression in Gc and Tc of medium and large ovarian cells. Moreover, swelling assays, in response to a hypotonic environment, demonstrated the functional presence of AQPs in porcine Gc and Tc. Immunofluorescence analysis showed that AQP1 protein was mainly localized in the perinuclear region of the cytoplasm, endosomes and cell membranes of Gc and Tc from medium and large follicles. It seems possible that AQP1 present in Gc and Tc cells may be implicated not only in the regulation of water homeostasis required for follicle development but also in cell proliferation and migration.
Collapse
|
16
|
Gao J, Chen L, Zeng J, Cui J, Ning JL, Wang GS, Belguise K, Wang X, Qian GS, Lu KZ, Yi B. The involvement of aquaporin 1 in the hepatopulmonary syndrome rat serum-induced migration of pulmonary arterial smooth muscle cells via the p38-MAPK pathway. MOLECULAR BIOSYSTEMS 2016; 11:3040-7. [PMID: 26315345 DOI: 10.1039/c5mb00347d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatopulmonary syndrome (HPS) is characterized by arterial oxygenation defects induced by intrapulmonary vascular dilation (IPVD). Pulmonary vascular remodeling (PVR) is an important pathological feature of IPVD; however, the details regarding the underlying mechanisms of this process remain undefined. Recent studies have determined that the abnormal migration of pulmonary arterial smooth muscle cells (PASMCs) plays a role in the pathogenesis of the PVR associated with HPS. Additionally, aquaporin 1 (AQP1) not only functions as a water channel molecule but also promotes cell migration by facilitating water transport in the lamellipodia of migrating cells. Common bile duct ligation (CBDL) rat is a well-accepted HPS model; we determined that the immunoperoxidase labeling of AQP1 was enhanced in the media of the pulmonary vessels in CBDL rats. HPS rat serum mediated the overexpression of AQP1 in PASMCs, and also upregulated PASMC migration. Small interfering RNAs (siRNAs) that targeted rat AQP1 caused significant downregulation of AQP1, which resulted in decreased PASMC migration. Furthermore, the inhibition of the p38-MAPK pathway abolished AQP1-dependent PASMC migration. In conclusion, this study demonstrated that AQP1 enhanced PASMC migration via the p38-MAPK pathway in rat with HPS and may represent a potential therapeutic strategy in the setting of pulmonary vascular remodeling associated with HPS.
Collapse
Affiliation(s)
- Jing Gao
- Department of Anesthesia, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fang F, Liu CY, Zhang J, Zhu L, Qian YX, Yi J, Xiang ZH, Wang H, Jiang H. Involvement of MAPK ERK activation in upregulation of water channel protein aquaporin 1 in a mouse model of Bell's palsy. J Mol Neurosci 2014; 56:164-76. [PMID: 25527444 DOI: 10.1007/s12031-014-0477-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/10/2014] [Indexed: 01/26/2023]
Abstract
The aim of this study is to immunolocalize the aquaporin 1 water channel protein (AQP1) in Schwann cells of idiopathic facial nerve and explore its possible role during the development of facial palsy induced by herpes simplex virus type 1 (HSV-1). HSV-1 was inoculated into the surface of posterior auricle of mouse to establish a paralyzed animal model. In HSV-1-induced facial palsy mice, protein levels of AQP1 significantly increased on the 9th to 16th day after inoculation of HSV-1. The upregulation of AQP1 was closely related to the intratemporal facial nerve edema in facial nerve canal, which was also consistent with the symptom of facial palsy in mice. In a hypoxia model of Schwann cells in vitro, we found that U0126, an ERK antagonist, inhibited not only morphological changes of cultures Schwann cells but also upregulation of both AQP1 and phosphorylated ERK. Combined with increased phosphorylated ERK in HSV-1-induced facial palsy mice, we inferred that ERK MAPK pathway might also be involved in increased AQP1 in mouse model of Bell's palsy. Although the precise mechanism needs to be further explored, our findings suggest that AQP1 in Schwann cells of intratemporal facial nerve is involved in the evolution of facial palsy induced by HSV-1 and may play an important role in the pathogenesis of this disease. AQP1 might be a potential target, and the ERK antagonist U0126 could be a new drug for the treatment of HSV-1-induced Bell's palsy in an early stage.
Collapse
Affiliation(s)
- Fan Fang
- Department of Plastic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aquaporin 1 and 5 expression evoked by the β2 adrenoreceptor agonist terbutaline and lipopolysaccharide in mice and in the human monocytic cell line THP-1 is differentially regulated. Shock 2014; 40:430-6. [PMID: 24088990 DOI: 10.1097/shk.0000000000000035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aquaporin 1 (AQP1) and AQP5 expression may impact on key mechanisms in sepsis. However, it is unclear whether these AQPs are expressed to an equal extent or regulated differentially. Accordingly, we investigated the time-dependent expression of AQP1 and AQP5 following stimulation with lipopolysaccharide (LPS) in cultured human THP-1 cells and in the lungs of mice injected with LPS. Furthermore, we tested the hypothesis that the β2 adrenoreceptor agonist terbutaline or its downstream effector cyclic adenosine monophosphate (cAMP) mitigates LPS-evoked changes of AQP expression. THP-1 cells were stimulated with either LPS (1 μg/mL; serotype O127:B8), 8-Br-cAMP (1 mM), or both, and RNA and protein were extracted at baseline and after 2, 6, and 24 h. C57BL/6 mice that received LPS (20 mg/kg i.p.), terbutaline (2.5 mg/kg), or both were killed 8 h later, and lungs were excised for RNA extraction and lung wet weight determination. Real-time polymerase chain reaction and Western blot analysis show that LPS increased AQP1 (3 h, P < 0.0001) but not AQP5 mRNA and protein expression in THP-1 cells. cAMP increased AQP1 (6 h, P < 0.0001) but not AQP5 mRNA and protein expression. Incubation with both substances accelerated the increase in AQP1 (2 h, P = 0.001) expression, whereas AQP5 expression decreased after 2 h but increased after 24 h (P = 0.0148). In mice lungs, LPS decreased AQP1 (P = 0.0082) but not AQP5 mRNA expression and increased lung wet weight. Terbutaline increased AQP1 mRNA expression twice (P = 0.0005) but not AQP5 mRNA expression. Terbutaline did neither abolish the LPS-induced decrease in AQP1 and AQP5 expression nor increase lung weight. Thus, AQP1 and AQP5 expression is differentially regulated following exposure to LPS, the β2 adrenoreceptor agonist terbutaline, and cAMP. Furthermore, neither terbutaline nor cAMP mitigated the LPS-evoked change of AQP1 and AQP5 expression.
Collapse
|
19
|
Zhang QY, Fu JH, Xue XD. Expression and function of aquaporin-1 in hyperoxia-exposed alveolar epithelial type II cells. Exp Ther Med 2014; 8:493-498. [PMID: 25009607 PMCID: PMC4079425 DOI: 10.3892/etm.2014.1739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/13/2014] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate water transport dysfunction in alveolar epithelial type II cells (AECII), which were exposed to hyperoxia, and to investigate the mechanism of pulmonary edema resulting from hyperoxic lung injury. The lung cells of newborn rats were isolated for primary cell culture and divided into control and experimental groups. The control and experimental group cells were placed into a normoxic incubator (oxygen volume fraction, 0.21) or hyperoxic incubator (oxygen volume fraction, 0.9), respectively. Twenty-four, 48 and 72 h after cell attachment, the gene transcription and protein expression levels of aquaporin-1 (AQP1) were detected via quantitative polymerase chain reaction and western blot analysis. Flow cytometry was conducted to detect the volume of the cells in the experimental and control groups. In the present study, it was identified that AQP1 expression and cell volume were greater in the experimental group when compared with the control group. Thus, hyperoxia may disturb the gene expression regulation of AQP1 in AECII, resulting in water transport dysfunction. This may be one of the mechanisms underlying pulmonary edema caused by hyperoxic lung injury.
Collapse
Affiliation(s)
- Qiu-Yue Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China ; Pediatrics Intensive Care Units, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jian-Hua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin-Dong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
20
|
|
21
|
Jeong HK, Jou I, Joe EH. Absence of Delayed Neuronal Death in ATP-Injected Brain: Possible Roles of Astrogliosis. Exp Neurobiol 2013; 22:308-14. [PMID: 24465146 PMCID: PMC3897692 DOI: 10.5607/en.2013.22.4.308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Although secondary delayed neuronal death has been considered as a therapeutic target to minimize brain damage induced by several injuries, delayed neuronal death does not occur always. In this study, we investigated possible mechanisms that prevent delayed neuronal death in the ATP-injected substantia nigra (SN) and cortex, where delayed neuronal death does not occur. In both the SN and cortex, ATP rapidly induced death of the neurons and astrocytes in the injection core area within 3 h, and the astrocytes in the penumbra region became hypertropic and rapidly surrounded the damaged areas. It was observed that the neurons survived for up to 1-3 months in the area where the astrocytes became hypertropic. The damaged areas of astrocytes gradually reduced at 3 days, 7 days, and 1-3 months. Astrocyte proliferation was detectable at 3-7 days, and vimentin was expressed in astrocytes that surrounded and/or protruded into the damaged sites. The NeuN-positive cells also reappeared in the injury sites where astrocytes reappeared. Taken together, these results suggest that astroycte survival and/or gliosis in the injured brain may be critical for neuronal survival and may prevent delayed neuronal death in the injured brain.
Collapse
Affiliation(s)
- Hey-Kyeong Jeong
- Department of Pharmacology, Ajou University School of Medicine, Suwon 443-721, Korea. ; Neuroscience Graduate Program in Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon 443-721, Korea. ; Neuroscience Graduate Program in Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea. ; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon 443-721, Korea. ; Neuroscience Graduate Program in Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea. ; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea. ; Brain Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea
| |
Collapse
|
22
|
Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 2013; 33:1500-13. [PMID: 23921899 PMCID: PMC3790938 DOI: 10.1038/jcbfm.2013.135] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimer's disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology.
Collapse
Affiliation(s)
- Michelle A Erickson
- 1] GRECC, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA [2] Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle, Washington, USA [3] Department of Pathology, School of Dental Medicine, University of Pennsylvania, Seattle, Washington, USA
| | | |
Collapse
|
23
|
Chai RC, Jiang JH, Wong AYK, Jiang F, Gao K, Vatcher G, Hoi Yu AC. AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia 2013; 61:1748-65. [PMID: 23922257 DOI: 10.1002/glia.22555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/30/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
Water movement plays vital roles in both physiological and pathological conditions in the brain. Astrocytes are responsible for regulating this water movement and are the major contributors to brain edema in pathological conditions. Aquaporins (AQPs) in astrocytes play critical roles in the regulation of water movement in the brain. AQP1, 3, 4, 5, 8, and 9 have been reported in the brain. Compared with AQP1, 4, and 9, AQP3, 5, and 8 are less studied. Among the lesser known AQPs, AQP5, which has multiple functions identified outside the central nervous system, is also indicated to be involved in hypoxia injury in astrocytes. In our study, AQP5 expression could be detected both in primary cultures of astrocytes and neurons, and AQP5 expression in astrocytes was confirmed in 1- to 4-week old primary cultures of astrocytes. AQP5 was localized on the cytoplasmic membrane and in the cytoplasm of astrocytes. AQP5 expression was downregulated during ischemia treatment and upregulated after scratch-wound injury, which was also confirmed in a middle cerebral artery occlusion model and a stab-wound injury model in vivo. The AQP5 increased after scratch injury was polarized to the migrating processes and cytoplasmic membrane of astrocytes in the leading edge of the scratch-wound, and AQP5 over-expression facilitated astrocyte process elongation after scratch injury. Taken together, these results indicate that AQP5 might be an important water channel in astrocytes that is differentially expressed during various brain injuries.
Collapse
Affiliation(s)
- Rui Chao Chai
- Neuroscience Research Institute & Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Heterogeneity of astrocytes: from development to injury - single cell gene expression. PLoS One 2013; 8:e69734. [PMID: 23940528 PMCID: PMC3734191 DOI: 10.1371/journal.pone.0069734] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10–50 days of postnatal development (P10–P50). The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20) was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50). Within 14 days after ischemia (D3, D7, D14), additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3), transcriptionally active early reactive glia (mainly from D7) and permanent reactive glia (solely from D14). Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.
Collapse
|
25
|
Nabiuni M, Nazari Z, Safaeinejad Z, Delfan B, Miyan JA. Curcumin downregulates aquaporin-1 expression in cultured rat choroid plexus cells. J Med Food 2013; 16:504-10. [PMID: 23735000 DOI: 10.1089/jmf.2012.0208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aquaporin-1 (AQP1) is a water channel that is highly expressed on the apical side of the choroid plexus epithelium (CP) and thought to be one of the major pathways for the high water permeability of this structure. Blockade of AQP1 in the CP reduce the production of cerebrospinal fluid (CSF). Downregulation of AQP1 might be protective against some neurological disorders correlated with increased intracranial pressure and/or poor drainage of CSF. Curcumin, the major constituent of the rhizome of Curcuma longa, has been shown to inhibit potassium channels, Na⁺-K⁺ ATPase, as well as AQP3 in some cells. We therefore speculated that curcumin might be a useful tool to inhibit and/or decrease AQP1, and thus might be useful in the regulation of CSF production in pathophysiological conditions, including traumatic brain injury, hydrocephalus, stroke, systemic hyponatremia, acute cerebral edema, and hypertension. Choroidal epithelial cells of the lateral ventricle of Wistar rats were isolated and grown in in-vitro cultures for 24 h. Curcumin was then added to the medium at different concentrations, and the cell viability tested by the (3,4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Additional wells of cells were tested for AQP1 protein expression using immunocytochemistry, immunoblotting, and flow cytometry. Our results showed that curcumin treatment decreases AQP1 expression in rat choroid epithelium cells in a dose-dependent manner. We conclude that curcumin may be a useful tool to regulate CSF production in pathophysiological conditions such as hydrocephalus, systemic hyponatremia, hypertension, and other neurological conditions.
Collapse
Affiliation(s)
- Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University-TMU, Tehran, Iran
| | | | | | | | | |
Collapse
|
26
|
Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease. J Neuropathol Exp Neurol 2012; 71:750-9. [PMID: 22805778 DOI: 10.1097/nen.0b013e3182632566] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Senile plaques (SPs) containing amyloid β peptide (Aβ) 1-42 are the major species present in Alzheimer disease (AD), whereas Aβ1-40 is the major constituent of arteriolar walls affected by cerebral amyloid angiopathy. The water channel proteins astrocytic aquaporin 1 (AQP1) and aquaporin 4 (AQP4) are known to be abnormally expressed in AD brains, but the expression of AQPs surrounding SPs and cerebral amyloid angiopathy has not been described in detail. Here, we investigated whether AQP expression is associated with each species of Aβ deposited in human brains affected by either sporadic or familial AD. Immunohistochemical analysis demonstrated more numerous AQP1-positive reactive astrocytes in the AD cerebral cortex than in controls, located close to Aβ42- or Aβ40-positive SPs. In AD cases, however, AQP1-positive astrocytes were not often observed in Aβ-rich areas, and there was a significant negative correlation between the levels of AQP1 and Aβ42 assessed semiquantitatively. We also found that Aβ plaque-like AQP4 was distributed in association with Aβ42- or Aβ40-positive SPs and that the degree of AQP4 expression around Aβ40-positive vessels was variable. These findings suggest that a defined population of AQP1-positive reactive astrocytes may modify Aβ deposition in the AD brain, whereas the Aβ deposition process might alter astrocytic expression of AQP4.
Collapse
|
27
|
Tie L, Lu N, Pan XY, Pan Y, An Y, Gao JW, Lin YH, Yu HM, Li XJ. Hypoxia-induced up-regulation of aquaporin-1 protein in prostate cancer cells in a p38-dependent manner. Cell Physiol Biochem 2012; 29:269-80. [PMID: 22415096 DOI: 10.1159/000337608] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Aquaporin-1 (AQP1) is a glycoprotein that mediates osmotic water transport, its expression has been found to correlate with tumour stage in some tumours. However, the mechanism by which AQP1 protein expression is regulated in tumor cells remains to be fully elucidated. We hypothesized that hypoxia might play an important role in AQP1 induction during tumorigenesis and at the late stages of tumor development. METHODS Isotonic and serum-free hypoxic models were used to investigate AQP1 expression in PC-3M human prostate cancer cells. RESULTS AQP1 expression was up-regulated by density-induced pericellular hypoxia and cobalt(II) chloride (CoCl(2))-induced hypoxia at the transcriptional level. Moreover, phosphorylation of p38 mitogen-activated protein kinase (MAPK) was induced by density-induced pericellular hypoxia and CoCl(2)-induced hypoxia, specific inhibitors of p38 MAPK could concentration-dependently block those effects of hypoxia on AQP1 expression. Intracellular calcium ion (Ca(2+)) and protein kinase C (PKC) were shown to be responsible for the activation of p38 MAPK pathway. In addition, AQP1 induction in dense cultures was dependent on lowered oxygen (O(2)) tension. In high cell density culture, certain secretory proteins might induce AQP1 expression indirectly. CONCLUSION These findings suggest that AQP1 could be induced by hypoxia at transcription level, and the regulation of AQP1 in PC-3M cells is dependent on calcium, PKC and p38 MAPK, as well as low oxygen tension.
Collapse
Affiliation(s)
- Lu Tie
- State Key Laboratory of Natural & Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences and Institute of System Biomedicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Conner MT, Conner AC, Bland CE, Taylor LHJ, Brown JEP, Parri HR, Bill RM. Rapid aquaporin translocation regulates cellular water flow: mechanism of hypotonicity-induced subcellular localization of aquaporin 1 water channel. J Biol Chem 2012; 287:11516-25. [PMID: 22334691 PMCID: PMC3322852 DOI: 10.1074/jbc.m111.329219] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The structural features of the family and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this only has been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here, we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations through transient receptor potential channels, which trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30 s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly changing local cellular water availability. Moreover, because calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.
Collapse
Affiliation(s)
- Matthew T Conner
- School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Ameli PA, Madan M, Chigurupati S, Yu A, Chan SL, Pattisapu JV. Effect of acetazolamide on aquaporin-1 and fluid flow in cultured choroid plexus. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012; 113:59-64. [PMID: 22116425 DOI: 10.1007/978-3-7091-0923-6_13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acetazolamide (AZA), used in treatment of early or infantile hydrocephalus, is effective in some cases, while its effect on the choroid plexus (CP) remains ill-defined. The drug reversibly inhibits aquaporin-4 (AQP4), the most ubiquitous "water pore" in the brain, and perhaps modulation of AQP1 (located apically on CP cells) by AZA may reduce cerebrospinal fluid (CSF) production. We sought to elucidate the effect of AZA on AQP1 and fluid flow in CP cell cultures.CP tissue culture from 10-day Sprague-Dawley rats and a TRCSF-B cell line were grown on Transwell permeable supports and treated with 100 μM AZA. Fluid assays to assess direction and extent of fluid flow, and AQP1 expression patterns by immunoblot, Immuncytochemistry (ICC), and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) were performed.Immunoblots and ICC analyses showed a decrease in AQP1 protein shortly after AZA treatment (lowest at 12 h), with transient AQP1 reduction mediated by mRNA expression (lowest at 6 h). Transwell fluid assays indicated a fluid shift at 2 h, before significant changes in AQP1 mRNA or protein levels.Timing of AZA effect on AQP1 suggests the drug alters protein transcription, while affecting fluid flow by a concomitant method. It is plausible that other mechanisms account for these phenomena, as the processes may occur independently.
Collapse
Affiliation(s)
- Pouya A Ameli
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tanaka K, Koyama Y. Endothelins decrease the expression of aquaporins and plasma membrane water permeability in cultured rat astrocytes. J Neurosci Res 2010; 89:320-8. [DOI: 10.1002/jnr.22559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/20/2010] [Accepted: 10/25/2010] [Indexed: 11/09/2022]
|
31
|
Qi LL, Fang SH, Shi WZ, Huang XQ, Zhang XY, Lu YB, Zhang WP, Wei EQ. CysLT2 receptor-mediated AQP4 up-regulation is involved in ischemic-like injury through activation of ERK and p38 MAPK in rat astrocytes. Life Sci 2010; 88:50-6. [PMID: 21055410 DOI: 10.1016/j.lfs.2010.10.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/10/2010] [Accepted: 10/19/2010] [Indexed: 12/19/2022]
Abstract
AIMS We previously reported that cysteinyl leukotriene receptor 2 (CysLT(2)) mediates ischemic astrocyte injury, and leukotriene D(4)-activated CysLT(2) receptor up-regulates the water channel aquaporin 4 (AQP4). Here we investigated the mechanism underlying CysLT(2) receptor-mediated ischemic astrocyte injury induced by 4-h oxygen-glucose deprivation and 24-h recovery (OGD/R). MAIN METHODS Primary cultures of rat astrocytes were treated by OGD/R to construct the cell injury model. AQP4 expression was inhibited by small interfering RNA (siRNA). The expressions of AQP4 and CysLTs receptors, and the MAPK signaling pathway were determined. KEY FINDINGS OGD/R induced astrocyte injury, and increased expression of the CysLT(2) (but not CysLT(1)) receptor and AQP4. OGD/R-induced cell injury and AQP4 up-regulation were inhibited by a CysLT(2) receptor antagonist (Bay cysLT2) and a non-selective CysLT receptor antagonist (Bay u9773), but not by a CysLT(1) receptor antagonist (montelukast). Knockdown of AQP4 by siRNA attenuated OGD/R injury. Furthermore, OGD/R increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the cell injury and AQP4 up-regulation. SIGNIFICANCE The CysLT(2) receptor mediates AQP4 up-regulation in astrocytes, and up-regulated AQP4 leads to OGD/R-induced injury, which results from activation of the ERK1/2 and p38 MAPK pathways.
Collapse
Affiliation(s)
- Ling-Ling Qi
- Institute of Neuroscience and Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zelenina M. Regulation of brain aquaporins. Neurochem Int 2010; 57:468-88. [DOI: 10.1016/j.neuint.2010.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/21/2010] [Accepted: 03/31/2010] [Indexed: 01/27/2023]
|
33
|
Eefsen M, Jelnes P, Schmidt LE, Vainer B, Bisgaard HC, Larsen FS. Brain expression of the water channels aquaporin-1 and -4 in mice with acute liver injury, hyperammonemia and brain edema. Metab Brain Dis 2010; 25:315-23. [PMID: 20938728 DOI: 10.1007/s11011-010-9213-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/16/2010] [Indexed: 12/26/2022]
Abstract
Cerebral edema is a feared complication to acute liver failure (ALF), but the pathogenesis is still poorly understood. The water channels Aquaporin-1 (Aqp1) and -4 (Aqp4) has been associated with brain edema formation in several neuropathological conditions, indicating a possible role of Aqp1 and/or Aqp4 in ALF mediated brain edema. We induced acute liver injury and hyperammonemia in mice, to evaluate brain edema formation and the parallel expression of Aqp1 and Aqp4 in ALF. Liver injury and hyperammonemia were induced by +D-galactosamine (GLN) plus lipopolysaccharide (LPS) intraperitoneally and intravenous ammonia-acetate (NH(4)(+)), the GLN+LPS+NH(4)(+) group. The vehicle control group (CONTROL) was treated with NaCl and phosphate-buffered saline. The GLN+LPS+NH(4)(+) group showed significantly elevated p-alanine aminotransferase, p-INR and p-ammonium vs. CONTROL (p < 0.001). Cortical brain water content was significantly elevated in the GLN+LPS+NH(4)(+) group vs. CONTROL, mean (SEM) 80.8(0.3) vs 80.0(0.1) % (p < 0.05). Western blot of membrane enriched cortical brain tissue showed significantly upregulation of Aqp4 in the GLN+LPS+NH(4)(+) group vs. CONTROL, mean AU (SEM) 100775(14820) vs. 58857(6266) (p < 0.05), and stationary levels for Aqp1. Aqp1 and Aqp4 mRNA were stationary. This study indicates that Aqp4, but not Aqp1, may be of importance in the pathogenesis of cortical brain edema in mice with ALF.
Collapse
Affiliation(s)
- Martin Eefsen
- Department of Hepatology, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
34
|
Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2010; 2:e00030. [PMID: 20396375 PMCID: PMC2839462 DOI: 10.1042/an20090048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/03/2010] [Accepted: 01/05/2010] [Indexed: 01/21/2023] Open
Abstract
Sensory and cognitive impairments have been documented in diabetic humans and
animals, but the pathophysiology of diabetes in the central nervous system is
poorly understood. Because a high glucose level disrupts gap junctional
communication in various cell types and astrocytes are extensively coupled by
gap junctions to form large syncytia, the influence of experimental diabetes on
gap junction channel-mediated dye transfer was assessed in astrocytes in tissue
culture and in brain slices from diabetic rats. Astrocytes grown in
15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in
gap junctional communication compared with those grown in 5.5 mmol/l glucose.
Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at
20–24 weeks after the onset of diabetes also exhibited reduced dye
transfer. In cultured astrocytes grown in high glucose, increased oxidative
stress preceded the decrement in dye transfer by several days, and gap
junctional impairment was prevented, but not rescued, after its manifestation by
compounds that can block or reduce oxidative stress. In sharp contrast with
these findings, chaperone molecules known to facilitate protein folding could
prevent and rescue gap junctional impairment, even in the presence of elevated
glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30,
but not Cx26, was altered by growth in high glucose. Disruption of astrocytic
trafficking of metabolites and signalling molecules may alter interactions among
astrocytes, neurons and endothelial cells and contribute to changes in brain
function in diabetes. Involvement of the microvasculature may contribute to
diabetic complications in the brain, the cardiovascular system and other
organs.
Collapse
Key Words
- 4-PBA, 4-phenylbutyric acid
- 6-NBDG, 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose
- Cx, connexin
- DCF, 2′,7′-dichlorodihydrofluorescein
- DIC, differential interference contrast
- DMEM, Dulbecco's modified Eagle's medium
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- LYCH, Lucifer Yellow CH
- LYVS, Lucifer Yellow VS
- MnTBAP, manganese(III) tetrakis (4-benzoic acid) porphyrin chloride
- NA, numerical aperture
- NOS, nitric oxide synthase
- PKC, protein kinase C
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- STZ, streptozotocin
- TMAO, trimethylamine N-oxide dihydrate
- TUDCA, tauroursodeoxycholic acid
- aCSF, artificial cerebrospinal fluid
- astrocyte
- carboxy-DCF-DA, carboxy DCF diacetate
- connexin (Cx)
- dBcAMP, dibutyryl cAMP
- diabetes
- gap junction
- hyperglycaemia
- l-NAME, l-Nω-nitro-l-arginine methyl ester
- streptozotocin
Collapse
|