1
|
Cui S, Li J, Zhang C, Li Q, Jiang C, Wang X, Yu X, Li K, Feng Y, Jian F. Glial scarring limits recovery following decompressive surgery in rats with syringomyelia. Exp Neurol 2024; 385:115113. [PMID: 39667655 DOI: 10.1016/j.expneurol.2024.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Syringomyelia is a neurological disease that is difficult to cure, and treatments often have limited effectiveness. In this study, a rat model of syringomyelia induced by epidural compression was used to investigate the factors that limit the prognosis of syringomyelia. After we treated syringomyelia rats with surgical decompression alone, MRI revealed that the syringomyelia rats did not show the expected therapeutic effect. Through cerebrospinal fluid (CSF) tracing experiments, we found that the CSF flow in the subarachnoid space (SAS) of rats was restored after decompression. This shows that the poor prognosis of syringomyelia rats in this study is not caused by CSF circulation disorders, suggesting the existence of other factors. Further, immunofluorescence revealed that there were extensive glial scars characterized by increased expression of glial fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs) around the syrinx in the non-improved group compared to the improved group. To verify the limiting role of glial scarring in the prognosis of syringomyelia, we intervened with the selective astrocyte inhibitor fluorocitrate (FC). Intrathecal injection of FC significantly inhibited the formation of glial scar after decompression in syringomyelia rats and promoted the reduction of syrinx. This scar-inhibiting effect significantly improved neuronal survival, promoted axonal and myelin recovery, and showed better recovery in sensory function and fine motor control functions. These findings suggest that glial scarring around syrinx is a key factor limiting recovery of syringomyelia. By inhibiting glial scar formation, the prognosis of syringomyelia can be significantly improved, which provides a new strategy for improving clinical treatment effects.
Collapse
Affiliation(s)
- Shengyu Cui
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China; Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jinze Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China; Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Can Zhang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China; Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuan Jiang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China; Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinyu Wang
- Baylor College of Medicine, Houston, TX, USA
| | - Xiaoxu Yu
- Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Kang Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China; Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxin Feng
- Capital Medical University, Beijing, China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China; Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Cheng HJ, Chen NF, Chen WF, Wu ZS, Sun YY, Teng WN, Su FW, Sung CS, Wen ZH. Intrathecal lactate dehydrogenase A inhibitors FX11 and oxamate alleviate chronic constriction injury-induced nociceptive sensitization through neuroinflammation and angiogenesis. J Headache Pain 2024; 25:207. [PMID: 39587478 PMCID: PMC11590346 DOI: 10.1186/s10194-024-01916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Neuropathic pain involves neuroinflammation and upregulation of glycolysis in the central nervous system. Unfortunately, few effective treatments are available for managing this type of pain. The overactivation of lactate dehydrogenase A (LDHA), an essential enzyme in glycolysis, can cause neuroinflammation and nociception. This study investigated the spinal role of LDHA in neuropathic pain. METHOD Using immunohistochemical analysis, nociceptive behavior, and western blotting, we evaluated the cellular mechanisms of intrathecal administration of LDHA inhibitors, including FX11 and oxamate, in chronic constriction injury (CCI)-induced neuropathic rats. RESULT FX11 and oxamate attenuated CCI-induced neuronal LDHA upregulation and nociceptive sensitization. Moreover, CCI-induced neuroinflammation, microglial polarization, and angiogenesis were attenuated by LDHA inhibitors. These inhibitors regulate the TANK binding kinase-1 (TBK1)/hypoxia-inducible factor 1 subunit alpha (HIF-1α) axis, crucial for controlling inflammation and new blood vessel growth. Additionally, CCI-induced nuclear LDHA translocation, as associated with oxidative stress resistance, was attenuated by LDHA inhibitors. CONCLUSION In conclusion, LDHA may be a potential therapeutic target for treating neuropathic pain by regulating neuroinflammation and angiogenesis.
Collapse
Affiliation(s)
- Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 802301, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833401, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Zong-Sheng Wu
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Yu-Yo Sun
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Wei-Nung Teng
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Fu-Wei Su
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan.
| | - Zhi-Hong Wen
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung, 944401, Taiwan.
| |
Collapse
|
3
|
Wen ZH, Wu ZS, Cheng HJ, Huang SY, Tang SH, Teng WN, Su FW, Chen NF, Sung CS. Intrathecal Fumagillin Alleviates Chronic Neuropathy-Induced Nociceptive Sensitization and Modulates Spinal Astrocyte-Neuronal Glycolytic and Angiogenic Proteins. Mol Neurobiol 2024:10.1007/s12035-024-04254-w. [PMID: 38837104 DOI: 10.1007/s12035-024-04254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Nociceptive sensitization is accompanied by the upregulation of glycolysis in the central nervous system in neuropathic pain. Growing evidence has demonstrated glycolysis and angiogenesis to be related to the inflammatory processes. This study investigated whether fumagillin inhibits neuropathic pain by regulating glycolysis and angiogenesis. Fumagillin was administered through an intrathecal catheter implanted in rats with chronic constriction injury (CCI) of the sciatic nerve. Nociceptive, behavioral, and immunohistochemical analyses were performed to evaluate the effects of the inhibition of spinal glycolysis-related enzymes and angiogenic factors on CCI-induced neuropathic pain. Fumagillin reduced CCI-induced thermal hyperalgesia and mechanical allodynia from postoperative days (POD) 7 to 14. The expression of angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin 2 (ANG2), increased in the ipsilateral lumbar spinal cord dorsal horn (SCDH) following CCI. The glycolysis-related enzymes, pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) significantly increased in the ipsilateral lumbar SCDH following CCI on POD 7 and 14 compared to those in the control rats. Double immunofluorescence staining indicated that VEGF and PKM2 were predominantly expressed in the astrocytes, whereas ANG2 and LDHA were predominantly expressed in the neurons. Intrathecal infusion of fumagillin significantly reduced the expression of angiogenic factors and glycolytic enzymes upregulated by CCI. The expression of hypoxia-inducible factor-1α (HIF-1α), a crucial transcription factor that regulates angiogenesis and glycolysis, was also upregulated after CCI and inhibited by fumagillin. We concluded that intrathecal fumagillin may reduce the expression of ANG2 and LDHA in neurons and VEGF and PKM2 in the astrocytes of the SCDH, further attenuating spinal angiogenesis in neuropathy-induced nociceptive sensitization. Hence, fumagillin may play a role in the inhibition of peripheral neuropathy-induced neuropathic pain by modulating glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zong-Sheng Wu
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shih-Hsuan Tang
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Wei-Nung Teng
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Fu-Wei Su
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
4
|
Jia J, Chen T, Chen C, Si T, Gao C, Fang Y, Sun J, Wang J, Zhang Z. Astrocytes in preoptic area regulate acute nociception-induced hypothermia through adenosine receptors. CNS Neurosci Ther 2024; 30:e14726. [PMID: 38715251 PMCID: PMC11076694 DOI: 10.1111/cns.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.
Collapse
Affiliation(s)
- Junke Jia
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Ting Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Chang Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Tengxiao Si
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
| | - Chenyi Gao
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jiahui Sun
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- Institute of Neuroscience and Brain Diseases, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of MedicineSongjiang Hospital and Songjiang Research InstituteShanghaiChina
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| |
Collapse
|
5
|
Sung CS, Cheng HJ, Chen NF, Tang SH, Kuo HM, Sung PJ, Chen WF, Wen ZH. Antinociceptive Effects of Aaptamine, a Sponge Component, on Peripheral Neuropathy in Rats. Mar Drugs 2023; 21:md21020113. [PMID: 36827154 PMCID: PMC9963100 DOI: 10.3390/md21020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Aaptamine, a natural marine compound isolated from the sea sponge, has various biological activities, including delta-opioid agonist properties. However, the effects of aaptamine in neuropathic pain remain unclear. In the present study, we used a chronic constriction injury (CCI)-induced peripheral neuropathic rat model to explore the analgesic effects of intrathecal aaptamine administration. We also investigated cellular angiogenesis and lactate dehydrogenase A (LDHA) expression in the ipsilateral lumbar spinal cord after aaptamine administration in CCI rats by immunohistofluorescence. The results showed that aaptamine alleviates CCI-induced nociceptive sensitization, allodynia, and hyperalgesia. Moreover, aaptamine significantly downregulated CCI-induced vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), and LDHA expression in the spinal cord. Double immunofluorescent staining showed that the spinal VEGF and LDHA majorly expressed on astrocytes and neurons, respectively, in CCI rats and inhibited by aaptamine. Collectively, our results indicate aaptamine's potential as an analgesic agent for neuropathic pain. Furthermore, inhibition of astrocyte-derived angiogenesis and neuronal LDHA expression might be beneficial in neuropathy.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Jung Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Shih-Hsuan Tang
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| |
Collapse
|
6
|
Wu C, Liu R, Luo Z, Sun M, Qile M, Xu S, Jin S, Zhang L, Gross ER, Zhang Y, He S. Spinal cord astrocytes regulate myocardial ischemia-reperfusion injury. Basic Res Cardiol 2022; 117:56. [PMID: 36367592 PMCID: PMC10139732 DOI: 10.1007/s00395-022-00968-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Astrocytes play a key role in the response to injury and noxious stimuli, but its role in myocardial ischemia-reperfusion (I/R) injury remains largely unknown. Here we determined whether manipulation of spinal astrocyte activity affected myocardial I/R injury and the underlying mechanisms. By ligating the left coronary artery to establish an in vivo I/R rat model, we observed a 1.7-fold rise in glial fibrillary acidic protein (GFAP) protein level in spinal cord following myocardial I/R injury. Inhibition of spinal astrocytes by intrathecal injection of fluoro-citrate, an astrocyte inhibitor, decreased GFAP immunostaining and reduced infarct size by 29% relative to the I/R group. Using a Designer Receptor Exclusively Activated by Designer Drugs (DREADD) chemogenetic approach, we bi-directionally manipulated astrocyte activity employing GFAP promoter-driven Gq- or Gi-coupled signaling. The Gq-DREADD-mediated activation of spinal astrocytes caused transient receptor potential vanilloid 1 (TRPV1) activation and neuropeptide release leading to a 1.3-fold increase in infarct size, 1.2-fold rise in serum norepinephrine level and higher arrhythmia score relative to I/R group. In contrast, Gi-DREADD-mediated inhibition of spinal astrocytes suppressed TRPV1-mediated nociceptive signaling, resulting in 35% reduction of infarct size and 51% reduction of arrhythmia score from I/R group, as well as lowering serum norepinephrine level from 3158 ± 108 to 2047 ± 95 pg/mL. Further, intrathecal administration of TRPV1 or neuropeptide antagonists reduced infarct size and serum norepinephrine level. These findings demonstrate a functional role of spinal astrocytes in myocardial I/R injury and provide a novel potential therapeutic approach targeting spinal cord astrocytes for the prevention of cardiac injury.
Collapse
Affiliation(s)
- Chao Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Rongrong Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zhaofei Luo
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Meiyan Sun
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Muge Qile
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shijin Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shiyun Jin
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China. .,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Shufang He
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230061, Anhui Province, China. .,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Wen ZH, Huang SY, Kuo HM, Chen CT, Chen NF, Chen WF, Tsui KH, Liu HT, Sung CS. Fumagillin Attenuates Spinal Angiogenesis, Neuroinflammation, and Pain in Neuropathic Rats after Chronic Constriction Injury. Biomedicines 2021; 9:biomedicines9091187. [PMID: 34572376 PMCID: PMC8470034 DOI: 10.3390/biomedicines9091187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction: Angiogenesis in the central nervous system is visible in animal models of neuroinflammation and bone cancer pain. However, whether spinal angiogenesis exists and contributes to central sensitization in neuropathic pain remains unclear. This study analyzes the impact of angiogenesis on spinal neuroinflammation in neuropathic pain. Methods: Rats with chronic constriction injury (CCI) to the sciatic nerve underwent the implantation of an intrathecal catheter. Fumagillin or vascular endothelial growth factor-A antibody (anti-VEGF-A) was administered intrathecally. Nociceptive behaviors, cytokine immunoassay, Western blot, and immunohistochemical analysis assessed the effect of angiogenesis inhibition on CCI-induced neuropathic pain. Results: VEGF, cluster of differentiation 31 (CD31), and von Willebrand factor (vWF) expressions increased after CCI in the ipsilateral lumbar spinal cord compared to that in the contralateral side of CCI and control rats from post-operative day (POD) 7 to 28, with a peak at POD 14. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 concentrations, but not IL-10 levels, also increased in the ipsilateral spinal cord after CCI. Fumagillin and anti-VEGF-A reduced CCI-induced thermal hyperalgesia from POD 5 to 14 and mechanical allodynia from POD 3 to 14. Fumagillin reduced CCI-upregulated expressions of angiogenic factors and astrocytes. Furthermore, fumagillin decreased TNF-α and IL-6 amounts and increased IL-10 levels at POD 7 and 14, but not IL-1β concentrations. Conclusions: Fumagillin significantly ameliorates CCI-induced nociceptive sensitization, spinal angiogenesis, and astrocyte activation. Our results suggest that angiogenesis inhibitor treatment suppresses peripheral neuropathy-induced central angiogenesis, neuroinflammation, astrocyte activation, and neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chao-Ting Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
| | - Chun-Sung Sung
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: or ; Tel.: +886-2-2875-7549; Fax: +886-2-2875-1597
| |
Collapse
|
8
|
Sałat K, Furgała-Wojas A, Sałat R. The Microglial Activation Inhibitor Minocycline, Used Alone and in Combination with Duloxetine, Attenuates Pain Caused by Oxaliplatin in Mice. Molecules 2021; 26:molecules26123577. [PMID: 34208184 PMCID: PMC8230860 DOI: 10.3390/molecules26123577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
The antitumor drug, oxaliplatin, induces neuropathic pain, which is resistant to available analgesics, and novel mechanism-based therapies are being evaluated for this debilitating condition. Since activated microglia, impaired serotonergic and noradrenergic neurotransmission and overexpressed sodium channels are implicated in oxaliplatin-induced pain, this in vivo study assessed the effect of minocycline, a microglial activation inhibitor used alone or in combination with ambroxol, a sodium channel blocker, or duloxetine, a serotonin and noradrenaline reuptake inhibitor, on oxaliplatin-induced tactile allodynia and cold hyperalgesia. To induce neuropathic pain, a single dose (10 mg/kg) of intraperitoneal oxaliplatin was used. The mechanical and cold pain thresholds were assessed using mouse von Frey and cold plate tests, respectively. On the day of oxaliplatin administration, only duloxetine (30 mg/kg) and minocycline (100 mg/kg) used alone attenuated both tactile allodynia and cold hyperalgesia 1 h and 6 h after administration. Minocycline (50 mg/kg), duloxetine (10 mg/kg) and combined minocycline + duloxetine influenced only tactile allodynia. Seven days after oxaliplatin, tactile allodynia (but not cold hyperalgesia) was attenuated by minocycline (100 mg/kg), duloxetine (30 mg/kg) and combined minocycline and duloxetine. These results indicate a potential usefulness of minocycline used alone or combination with duloxetine in the treatment of oxaliplatin-induced pain.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
- Correspondence: ; Tel./Fax: +48-12-62-05-554
| | - Anna Furgała-Wojas
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Robert Sałat
- Faculty of Electrical and Computer Engineering, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland;
| |
Collapse
|
9
|
Minocycline alleviates nociceptive response through modulating the expression of NR2B subunit of NMDA receptor in spinal cord of rat model of painful diabetic neuropathy. J Diabetes Metab Disord 2021; 20:793-803. [PMID: 34178864 DOI: 10.1007/s40200-021-00820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Background It has been reported that neuropathic pain can be overcome by targeting the NR2B subunit of N-methyl-D-aspartate receptors (NR2B). This study aimed to investigate the effects of minocycline on phosphorylated and total expression of NR2B in the spinal cord of rats with diabetic neuropathic pain. Methods A total of 32 Sprague-Dawley male rats were randomly assigned into four groups (n = 8); control healthy, control diabetic (PDN), and PDN rats that received 80 µg or 160 µg intrathecal minocycline respectively. The rats were induced to develop diabetes and allowed to develop into the early phase of PDN for two weeks. Hot-plate and formalin tests were conducted. Intrathecal treatment of minocycline or normal saline was conducted for 7 days. The rats were sacrificed to obtain the lumbar enlargement region of the spinal cord (L4-L5) for immunohistochemistry and western blot analyses to determine the expression of phosphorylated (pNR2B) and total NR2B (NR2B). Results PDN rats showed enhanced flinching (phase 1: p < 0.001, early phase 2: p < 0.001, and late phase 2: p < 0.05) and licking responses (phase 1: p < 0.001 and early phase 2: p < 0.05). PDN rats were also associated with higher spinal expressions of pNR2B and NR2B (p < 0.001) but no significant effect on thermal hyperalgesia. Minocycline inhibited formalin-induced flinching and licking responses (phase 1: p < 0.001, early phase 2: p < 0.001, and late phase 2: p < 0.05) in PDN rats with lowered spinal expressions of pNR2B (p < 0.01) and NR2B (p < 0.001) in a dose-dependent manner. Conclusion Minocycline alleviates nociceptive responses in PDN rats, possibly via suppression of NR2B activation. Therefore, minocycline could be one of the potential therapeutic antinociceptive drugs for the management of neuropathic pain.
Collapse
|
10
|
Pongratz G. [Pain in rheumatic diseases : What can biologics and JAK inhibitors offer?]. Z Rheumatol 2021; 80:214-225. [PMID: 33443608 DOI: 10.1007/s00393-020-00957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Persistent pain despite adequate inflammation control poses a big challenge in many rheumatic diseases for patients as well as physicians. The focus of drug development over the past years was on anti-inflammatory therapies. Enormous progress has been made and several treatment options have been added. It has been observed that pain triggered by inflammation can be effectively treated by inflammation control; however, the chronic pain component remains a problem, is little studied and specific treatment options are missing. Pain is influenced by inflammatory mediators, such as cytokines, which act on peripheral nociceptors and lead to peripheral sensitization. If inflammation continues, this can potentially lead to central sensitization and chronification of pain via immigration of immune cells and/or local activation of e.g. microglia. This leads to increasing autonomization and uncoupling of pain from the actual inflammatory process. The present review deals with the question if bDMARD or tsDMARD also show benefits concerning pain processes in addition to the profound inhibitory effects on inflammation. There are preclinical data that show an influence on sensitization following the use of cytokine inhibitors. On the other hand, so far clinical data show that bDMARDs as well as tsDMARDs consistently rapidly and reliably reduce nociceptive inflammatory pain across disease entities. An effect especially on the process of central sensitization and therefore on chronification of pain cannot be finally evaluated based on the currently available data.
Collapse
Affiliation(s)
- G Pongratz
- Poliklink, Funktionsbereich und Hiller Forschungszentrum für Rheumatologie, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| |
Collapse
|
11
|
Afshari K, Momeni Roudsari N, Lashgari NA, Haddadi NS, Haj-Mirzaian A, Hassan Nejad M, Shafaroodi H, Ghasemi M, Dehpour AR, Abdolghaffari AH. Antibiotics with therapeutic effects on spinal cord injury: a review. Fundam Clin Pharmacol 2020; 35:277-304. [PMID: 33464681 DOI: 10.1111/fcp.12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/06/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that a considerable number of antibiotics exert anti-inflammatory and neuroprotective effects in different central and peripheral nervous system diseases including spinal cord injury (SCI). Both clinical and preclinical studies on SCI have found therapeutic effects of antibiotics from different families on SCI. These include macrolides, minocycline, β-lactams, and dapsone, all of which have been found to improve SCI sequels and complications. These antibiotics may target similar signaling pathways such as reducing inflammatory microglial activity, promoting autophagy, inhibiting neuronal apoptosis, and modulating the SCI-related mitochondrial dysfunction. In this review paper, we will discuss the mechanisms underlying therapeutic effects of these antibiotics on SCI, which not only could supply vital information for investigators but also guide clinicians to consider administering these antibiotics as part of a multimodal therapeutic approach for management of SCI and its complications.
Collapse
Affiliation(s)
- Khashayar Afshari
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Nazgol-Sadat Haddadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Malihe Hassan Nejad
- Department of Infectious Diseases, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA, 01655, USA
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 31375-1369, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| |
Collapse
|
12
|
Lee JH, Kim W. The Role of Satellite Glial Cells, Astrocytes, and Microglia in Oxaliplatin-Induced Neuropathic Pain. Biomedicines 2020; 8:E324. [PMID: 32887259 PMCID: PMC7554902 DOI: 10.3390/biomedicines8090324] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Oxaliplatin is a third-generation platinum-based chemotherapeutic drug. Although its efficacy against colorectal cancer is well known, peripheral neuropathy that develops during and after infusion of the agents could decrease the quality of life of the patients. Various pathways have been reported to be the cause of the oxaliplatin-induced paresthesia and dysesthesia; however, its mechanism of action has not been fully understood yet. In recent years, researchers have investigated the function of glia in pain, and demonstrated that glia in the peripheral and central nervous system could play a critical role in the development and maintenance of neuropathic pain. These results suggest that targeting the glia may be an effective therapeutic option. In the past ten years, 20 more papers focused on the role of glia in oxaliplatin-induced thermal and mechanical hypersensitivity. However, to date no review has been written to summarize and discuss their results. Thus, in this study, by reviewing 23 studies that conducted in vivo experiments in rodents, the change of satellite glial cells, astrocytes, and microglia activation in the dorsal root ganglia, spinal cord, and the brain of oxaliplatin-induced neuropathic pain animals is discussed.
Collapse
Affiliation(s)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| |
Collapse
|
13
|
Teng Y, Zhang Y, Yue S, Chen H, Qu Y, Wei H, Jia X. Intrathecal injection of bone marrow stromal cells attenuates neuropathic pain via inhibition of P2X 4R in spinal cord microglia. J Neuroinflammation 2019; 16:271. [PMID: 31847848 PMCID: PMC6918679 DOI: 10.1186/s12974-019-1631-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023] Open
Abstract
Background Neuropathic pain is one of the most debilitating of all chronic pain syndromes. Intrathecal (i.t.) bone marrow stromal cell (BMSC) injections have a favorable safety profile; however, results have been inconsistent, and complete understanding of how BMSCs affect neuropathic pain remains elusive. Methods We evaluated the analgesic effect of BMSCs on neuropathic pain in a chronic compression of the dorsal root ganglion (CCD) model. We analyzed the effect of BMSCs on microglia reactivity and expression of purinergic receptor P2X4 (P2X4R). Furthermore, we assessed the effect of BMSCs on the expression of transient receptor potential vanilloid 4 (TRPV4), a key molecule in the pathogenesis of neuropathic pain, in dorsal root ganglion (DRG) neurons. Results I.t. BMSC transiently but significantly ameliorated neuropathic pain behavior (37.6% reduction for 2 days). We found no evidence of BMSC infiltration into the spinal cord parenchyma or DRGs, and we also demonstrated that intrathecal injection of BMSC-lysates provides similar relief. These findings suggest that the analgesic effects of i.t. BMSC were largely due to the release of BMSC-derived factors into the intrathecal space. Mechanistically, we found that while i.t. BMSCs did not change TRPV4 expression in DRG neurons, there was a significant reduction of P2X4R expression in the spinal cord microglia. BMSC-lysate also reduced P2X4R expression in activated microglia in vitro. Coadministration of additional pharmacological interventions targeting P2X4R confirmed that modulation of P2X4R might be a key mechanism for the analgesic effects of i.t. BMSC. Conclusion Altogether, our results suggest that i.t. BMSC is an effective and safe treatment of neuropathic pain and provides novel evidence that BMSC’s analgesic effects are largely mediated by the release of BMSC-derived factors resulting in microglial P2X4R downregulation.
Collapse
Affiliation(s)
- Yongbo Teng
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China
| | - Yang Zhang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China.,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shouwei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China.
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yujuan Qu
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China
| | - Hui Wei
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Peripheral Nerve Injury-Induced Astrocyte Activation in Spinal Ventral Horn Contributes to Nerve Regeneration. Neural Plast 2018; 2018:8561704. [PMID: 29849572 PMCID: PMC5903197 DOI: 10.1155/2018/8561704] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/03/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidences suggest that peripheral nerve injury (PNI) may initiate astrocytic responses in the central nervous system (CNS). However, the response of astrocytes in the spinal ventral horn and its potential role in nerve regeneration after PNI remain unclear. Herein, we firstly illustrated that astrocytes in the spinal ventral horn were dramatically activated in the early stage following sciatic nerve injury, and these profiles were eliminated in the chronic stage. Additionally, we found that the expression of neurotrophins, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), also accompanied with astrocyte activation. In comparison with the irreversible transected subjects, astrocyte activation and the neurotrophic upregulation in the early stage were more drastic in case the transected nerve was rebridged immediately after injury. Furthermore, administering fluorocitrate to inhibit astrocyte activation resulted in decreased neurotrophin expression in the spinal ventral horn and delayed axonal regeneration in the nerve as well as motor function recovery. Overall, the present study indicates that peripheral nerve injury can initiate astrocyte activation accompanied with neurotrophin upregulation in the spinal ventral horn. The above responses mainly occur in the early stage of PNI and may contribute to nerve regeneration and motor function recovery.
Collapse
|
15
|
Wang YR, Mao XF, Wu HY, Wang YX. Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem Biophys Res Commun 2018; 499:499-505. [PMID: 29596830 DOI: 10.1016/j.bbrc.2018.03.177] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Liposome-encapsulated clodronate (LEC) is a specific depletor of macrophages. Our study characterized the LEC depletory effects, given intrathecally, on spinal microglia and assessed its effects on initiation and maintenance of neuropathic pain. Measured by using the MTT assay, LEC treatment specifically inhibited cell viability of cultured primary microglia, but not astrocytes or neurons, from neonatal rats, with an IC50 of 43 μg/mL. In spinal nerve ligation-induced neuropathic rats, pretreatment (1 day but not 5 days earlier) with intrathecal LEC specifically depleted microglia (but not astrocytes or neurons) in both contralateral and ipsilateral dorsal horns by the same degree (63% vs. 71%). Intrathecal injection of LEC reversibly blocked the antinociceptive effects of the GLP-1 receptor agonist exenatide and dynorphin A stimulator bulleyaconitine, which have been claimed to be mediated by spinal microglia, whereas it failed to alter morphine- or the glycine receptor agonist gelsemine-induced mechanical antiallodynia which was mediated via the neuronal mechanisms. Furthermore, intrathecal LEC injection significantly attenuated initial (one day after nerve injury) but not existing (2 weeks after nerve injury) mechanical allodynia. Our study demonstrated that LEC, given intrathecally, is a specific spinal microglial inhibitor and significantly reduces initiation but not maintenance of neuropathic pain, highlighting an opposite role of spinal microglia in different stages of neuropathic pain.
Collapse
Affiliation(s)
- Yi-Rui Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240, China.
| |
Collapse
|
16
|
Zhou R, Xu T, Liu X, Chen Y, Kong D, Tian H, Yue M, Huang D, Zeng J. Activation of spinal dorsal horn P2Y 13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J Pain Res 2018; 11:615-628. [PMID: 29628771 PMCID: PMC5877493 DOI: 10.2147/jpr.s154437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective The dorsal horn P2Y13 receptor is involved in the development of pain behavior induced by peripheral nerve injury. It is unclear whether the expression of proinflammatory cytokines interleukin (IL)-1β and IL-6 at the spinal dorsal horn are influenced after the activation of P2Y13 receptor in rats with diabetic neuropathic pain (DNP). Methods A rat model of type 1 DNP was induced by intraperitoneal injection of streptozotocin (STZ). We examined the expression of P2Y13 receptor, Iba-1, IL-1β, IL-6, JAK2, STAT3, pTyr1336, and pTyr1472 NR2B in rat spinal dorsal horn. Results Compared with normal rats, STZ-diabetic rats displayed obvious mechanical allodynia and the increased expression of P2Y13 receptor, Iba-1, IL-1β, and IL-6 in the dorsal spinal cord that was continued for 6 weeks in DNP rats. The data obtained indicated that, in DNP rats, administration of MRS2211 significantly attenuated mechanical allodynia. Compared with DNP rats, after MRS2211 treatment, expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 were reduced 4 weeks after the STZ injection. However, MRS2211 treatment did not attenuate the expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 at 6 weeks after the STZ injection. MRS2211 suppressed JAK2 and STAT3 expression in the early stage, but not in the later stage. Moreover, pTyr1336 NR2B was significantly decreased, whereas pTyr1472 NR2B was unaffected in the dorsal spinal cord of MRS2211-treated DNP rats. Conclusion Intrathecal MRS2211 produces an anti-nociceptive effect in early-stage DNP. A possible mechanism involved in MRS2211-induced analgesia is that blocking the P2Y13 receptor downregulates levels of IL-1β and IL-6, which subsequently inhibit the activation of the JAK2/STAT3 signaling pathway. Furthermore, blocking the activation of the P2Y13 receptor can decrease NR2B-containing NMDAR phosphorylation in dorsal spinal cord neurons, thereby attenuating central sensitization in STZ-induced DNP rats.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - XiaoHong Liu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - YuanShou Chen
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - DeYing Kong
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Hong Tian
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Mingxia Yue
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Dujuan Huang
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| |
Collapse
|
17
|
Sun L, Li H, Tai LW, Gu P, Cheung CW. Adiponectin regulates thermal nociception in a mouse model of neuropathic pain. Br J Anaesth 2018; 120:1356-1367. [PMID: 29793601 DOI: 10.1016/j.bja.2018.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/11/2017] [Accepted: 01/20/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adiponectin, a cytokine secreted by adipocytes, plays an important role in regulating glucose and lipid metabolism. However, the role of adiponectin in pain conditions is largely unknown. This study aimed to identify the role and mechanism of adiponectin in nociceptive sensitivity under physiological and pathological states utilising adiponectin knockout (KO) mice. METHODS Wild type (WT) and adiponectin KO mice were subjected to partial sciatic nerve ligation (pSNL) or sham operation. Pain-like behavioural tests, including thermal allodynia, hyperalgesia, and mechanical allodynia, were performed before and after pSNL from Day 3-21. Dorsal root ganglions (DRGs), lumbar spinal segments at L3-5, and somatosensory cortex were collected for protein measurement via western blotting and immunofluorescence staining. RESULTS Compared with WT mice, KO mice had significantly lower (40-50%) paw withdrawal latency to innocuous and noxious stimuli before and after pSNL. In DRG neurones from KO mice, where adiponectin receptor (AdipoR) 2 is located, phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) and heat-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) were significantly higher (by two- to three-fold) than from WT mice. In spinal microglia and somatosensory cortical neurones, where AdipoR1 is mainly located, p-p38 MAPK and TRPV1 were also higher (by two- to three-fold) in KO compared with WT mice, and altered signalling of these molecules was exacerbated (1.2- to 1.3-fold) by pSNL. CONCLUSIONS Our results show that adiponectin regulates thermal nociceptive sensitivity by inhibiting activation of DRG neurones, spinal microglia, and somatosensory cortical neurones in physiological and neuropathic pain states. This study has relevance for patients with adiponectin disorders, such as obesity and diabetes.
Collapse
Affiliation(s)
- L Sun
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, China; Department of Anaesthesiology, The University of Hong Kong, China
| | - H Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - L W Tai
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, China; Department of Anaesthesiology, The University of Hong Kong, China
| | - P Gu
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, China; Department of Anaesthesiology, The University of Hong Kong, China
| | - C W Cheung
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, China; Department of Anaesthesiology, The University of Hong Kong, China.
| |
Collapse
|
18
|
Salaffi F, Giacobazzi G, Di Carlo M. Chronic Pain in Inflammatory Arthritis: Mechanisms, Metrology, and Emerging Targets-A Focus on the JAK-STAT Pathway. Pain Res Manag 2018; 2018:8564215. [PMID: 29623147 PMCID: PMC5829432 DOI: 10.1155/2018/8564215] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Abstract
Chronic pain is nowadays considered not only the mainstay symptom of rheumatic diseases but also "a disease itself." Pain is a multidimensional phenomenon, and in inflammatory arthritis, it derives from multiple mechanisms, involving both synovitis (release of a great number of cytokines) and peripheral and central pain-processing mechanisms (sensitization). In the last years, the JAK-STAT pathway has been recognized as a pivotal component both in the inflammatory process and in pain amplification in the central nervous system. This paper provides a summary on pain in inflammatory arthritis, from pathogenesis to clinimetric instruments and treatment, with a focus on the JAK-STAT pathway.
Collapse
Affiliation(s)
- Fausto Salaffi
- Rheumatology Department, Università Politecnica delle Marche, Jesi, Ancona, Italy
| | | | - Marco Di Carlo
- Rheumatology Department, Università Politecnica delle Marche, Jesi, Ancona, Italy
| |
Collapse
|
19
|
Nam Y, Kim JH, Kim JH, Jha MK, Jung JY, Lee MG, Choi IS, Jang IS, Lim DG, Hwang SH, Cho HJ, Suk K. Reversible Induction of Pain Hypersensitivity following Optogenetic Stimulation of Spinal Astrocytes. Cell Rep 2017; 17:3049-3061. [PMID: 27974216 DOI: 10.1016/j.celrep.2016.11.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 10/17/2016] [Accepted: 11/12/2016] [Indexed: 12/30/2022] Open
Abstract
While glial activation is an integral part of pain pathogenesis, the existence of a causal relationship between glia and pain processing has yet to be demonstrated in vivo. Here, we have investigated whether the activation of spinal astrocytes could directly evoke pain hypersensitivity in vivo via the use of optogenetic techniques. Optogenetic stimulation of channelrhopdopsin-2 (ChR)-expressing spinal astrocytes induced pain hypersensitivity in a reversible and time-dependent manner, which was accompanied by glial activation, NR1 phosphorylation, ATP release, and the production of proalgesic mediators. Photostimulation of ChR2-expressing astrocytes in culture and spinal slices recapitulated in vivo findings, demonstrating the release of proalgesic mediators and electrophysiological disinhibition of spinal projection neurons. These findings deepen our understanding of the role of astrocytes in pain pathogenesis and provide the scientific basis for an astrocyte-oriented pain treatment.
Collapse
Affiliation(s)
- Youngpyo Nam
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Ji Young Jung
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Sung-Hun Hwang
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Hee-Jung Cho
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| |
Collapse
|
20
|
Astroglial MicroRNA-219-5p in the Ventral Tegmental Area Regulates Nociception in Rats. Anesthesiology 2017; 127:548-564. [PMID: 28582325 DOI: 10.1097/aln.0000000000001720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The authors previously reported that noncoding microRNA miR-219-5p is down-regulated in the spinal cord in a nociceptive state. The ventral tegmental area also plays critical roles in modulating nociception, although the underlying mechanism remains unknown. The authors hypothesized that miR-219-5p in the ventral tegmental area also may modulate nociception. METHODS The authors studied the bidirectional regulatory role of ventral tegmental area miR-219-5p in a rat complete Freund's adjuvant model of inflammatory nociception by measuring paw withdrawal latencies. Using molecular biology technologies, the authors measured the effects of astroglial coiled-coil and C2 domain containing 1A/nuclear factor κB cascade and dopamine neuron activity on the down-regulation of ventral tegmental area miR-219-5p-induced nociceptive responses. RESULTS MiR-219-5p expression in the ventral tegmental area was reduced in rats with thermal hyperalgesia. Viral overexpression of ventral tegmental area miR-219-5p attenuated complete Freund's adjuvant-induced nociception from 7 days after complete Freund's adjuvant injection (paw withdrawal latencies: 6.09 ± 0.83 s vs. 3.96 ± 0.76 s; n = 6/group). Down-regulation of ventral tegmental area miR-219-5p in naïve rats was sufficient to induce thermal hyperalgesia from 7 days after lentivirus injection (paw withdrawal latencies: 7.09 ± 1.54 s vs. 11.75 ± 2.15 s; n = 8/group), which was accompanied by increased glial fibrillary acidic protein (fold change: 2.81 ± 0.38; n = 3/group) and reversed by intraventral tegmental area injection of the astroglial inhibitor fluorocitrate. The nociceptive responses induced by astroglial miR-219-5p down-regulation were inhibited by interfering with astroglial coiled-coil and C2 domain containing 1A/nuclear factor-κB signaling. Finally, pharmacologic inhibition of ventral tegmental area dopamine neurons alleviated this hyperalgesia. CONCLUSIONS Down-regulation of astroglial miR-219-5p in ventral tegmental area induced nociceptive responses are mediated by astroglial coiled-coil and C2 domain containing 1A/nuclear factor-κB signaling and elevated dopamine neuron activity.
Collapse
|
21
|
Zhang J, Mense S, Treede RD, Hoheisel U. Prevention and reversal of latent sensitization of dorsal horn neurons by glial blockers in a model of low back pain in male rats. J Neurophysiol 2017; 118:2059-2069. [PMID: 28615336 DOI: 10.1152/jn.00680.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022] Open
Abstract
In an animal model of nonspecific low back pain, recordings from dorsal horn neurons were made to investigate the influence of glial cells in the central sensitization process. To induce a latent sensitization of the neurons, nerve growth factor (NGF) was injected into the multifidus muscle; the manifest sensitization to a second NGF injection 5 days later was used as a read-out. The sensitization manifested in increased resting activity and in an increased proportion of neurons responding to stimulation of deep somatic tissues. To block microglial activation, minocycline was continuously administered intrathecally starting 1 day before or 2 days after the first NGF injection. The glia inhibitor fluorocitrate that also blocks astrocyte activation was administrated 2 days after the first injection. Minocycline applied before the first NGF injection reduced the manifest sensitization after the second NGF injection to control values. The proportion of neurons responsive to stimulation of deep tissues was reduced from 50% to 17.7% (P < 0.01). No significant changes occurred when minocycline was applied after the first injection. In contrast, fluorocitrate administrated after the first NGF injection reduced significantly the proportion of neurons with deep input (15.8%, P < 0.01). A block of glia activation had no significant effect on the increased resting activity. The data suggest that blocking microglial activation prevented the NGF-induced latent spinal sensitization, whereas blocking astrocyte activation reversed it. The induction of spinal neuronal sensitization in this pain model appears to depend on microglia activation, whereas its maintenance is regulated by activated astrocytes.NEW & NOTEWORTHY Activated microglia and astrocytes mediate the latent sensitization induced by nerve growth factor in dorsal horn neurons that receive input from deep tissues of the low back. These processes may contribute to nonspecific low back pain.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; and.,Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siegfried Mense
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; and
| | - Rolf-Detlef Treede
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; and
| | - Ulrich Hoheisel
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; and
| |
Collapse
|
22
|
Sung CS, Wen ZH, Feng CW, Chen CH, Huang SY, Chen NF, Chen WF, Wong CS. Potentiation of spinal glutamatergic response in the neuron-glia interactions underlies the intrathecal IL-1β-induced thermal hyperalgesia in rats. CNS Neurosci Ther 2017; 23:580-589. [PMID: 28544775 DOI: 10.1111/cns.12705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023] Open
Abstract
AIMS We previously demonstrated that intrathecal IL-1β upregulated phosphorylation of p38 mitogen-activated protein kinase (P-p38 MAPK) and inducible nitric oxide synthase (iNOS) in microglia and astrocytes in spinal cord, increased nitric oxide (NO) release into cerebrospinal fluid, and induced thermal hyperalgesia in rats. This study investigated the role of spinal glutamatergic response in intrathecal IL-1β-induced nociception in rats. METHODS The pretreatment effects of MK-801 (5 μg), minocycline (20 μg), and SB203580 (5 μg) on intrathecal IL-1β (100 ng) in rats were measured by behavior, Western blotting, CSF analysis, and immunofluorescence studies. RESULTS IL-1β increased phosphorylation of NR-1 (p-NR1) subunit of N-methyl-D-aspartate receptors in neurons and microglia, reduced glutamate transporters (GTs; glutamate/aspartate transporter by 60.9%, glutamate transporter-1 by 55.0%, excitatory amino acid carrier-1 by 39.8%; P<.05 for all), and increased glutamate (29%-133% increase from 1.5 to 12 hours; P<.05) and NO (44%-101% increase from 4 to 12 hours; P<.05) levels in cerebrospinal fluid. MK-801 significantly inhibited all the IL-1β-induced responses; however, minocycline and SB203580 blocked the IL-1β-downregulated GTs and elevated glutamate but not the upregulated p-NR1. CONCLUSION The enhanced glutamatergic response and neuron-glia interaction potentiate the intrathecal IL-1β-activated P-p38/iNOS/NO signaling and thermal hyperalgesia.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Chun-Hong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Shi-Ying Huang
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
Shultz RB, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 2017; 12:702-713. [PMID: 28616020 PMCID: PMC5461601 DOI: 10.4103/1673-5374.206633] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Minocycline hydrochloride (MH), a semi-synthetic tetracycline derivative, is a clinically available antibiotic and anti-inflammatory drug that also exhibits potent neuroprotective activities. It has been shown to target multiple secondary injury mechanisms in spinal cord injury, via its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The secondary injury mechanisms that MH can potentially target include inflammation, free radicals and oxidative stress, glutamate excitotoxicity, calcium influx, mitochondrial dysfunction, ischemia, hemorrhage, and edema. This review discusses the potential mechanisms of the multifaceted actions of MH. Its anti-inflammatory and neuroprotective effects are partially achieved through conserved mechanisms such as modulation of p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways as well as inhibition of matrix metalloproteinases (MMPs). Additionally, MH can directly inhibit calcium influx through the N-methyl-D-aspartate (NMDA) receptors, mitochondrial calcium uptake, poly(ADP-ribose) polymerase-1 (PARP-1) enzymatic activity, and iron toxicity. It can also directly scavenge free radicals. Because it can target many secondary injury mechanisms, MH treatment holds great promise for reducing tissue damage and promoting functional recovery following spinal cord injury.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Hyperexcitability in Spinal WDR Neurons following Experimental Disc Herniation Is Associated with Upregulation of Fractalkine and Its Receptor in Nucleus Pulposus and the Dorsal Root Ganglion. Int J Inflam 2016; 2016:6519408. [PMID: 28116212 PMCID: PMC5220471 DOI: 10.1155/2016/6519408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction. Lumbar radicular pain following intervertebral disc herniation may be associated with a local inflammatory response induced by nucleus pulposus (NP) cells. Methods. In anaesthetized Lewis rats, extracellular single unit recordings of wide dynamic range (WDR) neurons in the dorsal horn and qPCR were used to explore the effect of NP application onto the dorsal nerve roots (L3-L5). Results. A clear increase in C-fiber response was observed following NP conditioning. In the NP tissue, the expression of interleukin-1β (IL-1β), colony stimulating factor 1 (Csf1), fractalkine (CX3CL1), and the fractalkine receptor CX3CR1 was increased. Minocycline, an inhibitor of microglial activation, inhibited the increase in neuronal activity and attenuated the increase in IL-1β, Csf1, CX3L1, and CX3CR1 expression in NP tissue. In addition, the results demonstrated an increase in the expression of TNF, CX3CL1, and CX3CR1 in the dorsal root ganglions (DRGs). Conclusion. Hyperexcitability in the pain pathways and the local inflammation after disc herniation may involve upregulation of CX3CL1 signaling in both the NP and the DRG.
Collapse
|
25
|
Li Z, Wei H, Piirainen S, Chen Z, Kalso E, Pertovaara A, Tian L. Spinal versus brain microglial and macrophage activation traits determine the differential neuroinflammatory responses and analgesic effect of minocycline in chronic neuropathic pain. Brain Behav Immun 2016; 58:107-117. [PMID: 27262531 DOI: 10.1016/j.bbi.2016.05.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Substantial evidence indicates involvement of microglia/macrophages in chronic neuropathic pain. However, the temporal-spatial features of microglial/macrophage activation and their pain-bound roles remain elusive. Here, we evaluated microglia/macrophages and the subtypes in the lumbar spinal cord (SC) and prefrontal cortex (PFC), and analgesic-anxiolytic effect of minocycline at different stages following spared nerve injury (SNI) in rats. While SNI enhanced the number of spinal microglia/macrophages since post-operative day (POD)3, pro-inflammatory MHCII+ spinal microglia/macrophages were unexpectedly less abundant in SNI rats than shams on POD21. By contrast, less abundant anti-inflammatory CD172a (SIRPα)+ microglia/macrophages were found in the PFC of SNI rats. Interestingly in naïve rats, microglial/macrophage expression of CD11b/c, MHCII and MHCII+/CD172a+ ratio were higher in the SC than the cortex. Consistently, multiple immune genes involved in anti-inflammation, phagocytosis, complement activation and M2 microglial/macrophage polarization were upregulated in the spinal dorsal horn and dorsal root ganglia but downregulated in the PFC of SNI rats. Furthermore, daily intrathecal minocycline treatment starting from POD0 for two weeks alleviated mechanical allodynia most robustly before POD3 and attenuated anxiety on POD9. Although minocycline dampened spinal MHCII+ microglia/macrophages until POD13, it failed to do so on cortical microglia/macrophages, indicating that dampening only spinal inflammation may not be enough to alleviate centralized pain at the chronic stage. Taken together, our data provide the first evidence that basal microglial/macrophage traits underlie differential region-specific responses to SNI and minocycline treatment, and suggest that drug treatment efficiently targeting not only spinal but also brain inflammation may be more effective in treating chronic neuropathic pain.
Collapse
Affiliation(s)
- Zhilin Li
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Sami Piirainen
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Eija Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Li Tian
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| |
Collapse
|
26
|
Xu Y, Cheng G, Zhu Y, Zhang X, Pu S, Wu J, Lv Y, Du D. Anti-nociceptive roles of the glia-specific metabolic inhibitor fluorocitrate in paclitaxel-evoked neuropathic pain. Acta Biochim Biophys Sin (Shanghai) 2016; 48:902-908. [PMID: 27563006 DOI: 10.1093/abbs/gmw083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Paclitaxel (Taxol) is a powerful chemotherapy drug used in breast cancers, but it often causes neuropathic pain, leading to the early cessation of therapy and poor treatment outcomes. Approaches for the management of paclitaxel-induced neuropathic pain are urgently needed. The involvement of spinal astrocytes in the pathogenesis of paclitaxel-induced neuropathy has been reported, but little is known about the role of fluorocitrate (FC), a selective inhibitor of astrocyte activation, during neuropathic pain related to paclitaxel treatment. In this study, we investigated the effects of FC on paclitaxel-induced neuropathic pain. Glial fibrillary acidic protein (GFAP) expression was determined to assess astrocyte activation. To explore the mechanisms involved, the expression of glial glutamate transporter 1 (GLT-1) and the activation of mitogen-activated protein kinases in the spinal dorsal horn were analyzed. The results showed that paclitaxel decreased the mechanical nociceptive thresholds and increased GFAP expression, leading to spinal astrocyte activation. After paclitaxel treatment, GLT-1 was significantly down-regulated, and the phosphorylation of ERK1/2 and JNK were obviously up-regulated. However, paclitaxel treatment did not increase p38 phosphorylation. Additional studies showed that paclitaxel-evoked mechanical hypersensitivity was reduced by FC treatment. Moreover, FC treatment inhibited the activation of astrocytes and reversed the changes in GLT-1 expression and MAPK phosphorylation. Further study indicated that FC did not influence the antitumor effect of paclitaxel, suggesting that FC blocked paclitaxel-induced neuropathic pain without antagonizing its antitumor effect. Together, these results suggested that paclitaxel induced astrocyte-specific activation, which may contribute to mechanical allodynia and hyperalgesia, and that FC could be a potential therapeutic agent for paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Yongming Xu
- Pain Management Center and Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Guangxia Cheng
- Department of Clinical Laboratory, Jinan Infectious Disease Hospital, Shandong University, Jinan 250021, China
| | - Yanrong Zhu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xin Zhang
- Pain Management Center and Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Shaofeng Pu
- Pain Management Center and Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Junzhen Wu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Yingying Lv
- Pain Management Center and Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Dongping Du
- Pain Management Center and Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| |
Collapse
|
27
|
Liu S, Li Q, Zhang MT, Mao-Ying QL, Hu LY, Wu GC, Mi WL, Wang YQ. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep 2016; 6:28956. [PMID: 27381056 PMCID: PMC4933926 DOI: 10.1038/srep28956] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
Curcumin has been shown to possess strong anti-inflammatory activity in many diseases. It has been demonstrated that the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) cascade and the NAcht leucine-rich-repeat protein 1 (NALP1) inflammasome are important for the synthesis of Pro-Interleukin (IL)-1β and the processing of the inactive protein to its mature form, which plays an active role in the pathogenesis of neuropathic pain. The present study showed that repeated intraperitoneal injection of curcumin ameliorated SNI-induced mechanical and cold allodynia in a dose-dependent manner and inhibited the elevation of spinal mature IL-1β protein levels. Additionally, repeated curcumin treatment significantly inhibited the aggregation of the NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in spinal astrocytes. Furthermore, the genetic down-regulation of NALP1 inflammasome activation by NALP1 siRNA and the pharmacological inhibition of the JAK2-STAT3 cascade by AG490 markedly inhibited IL-1β maturation and Pro-IL-1β synthesis, respectively, and reduced SNI-induced pain hypersensitivity. Our results suggest that curcumin attenuated neuropathic pain and down-regulated the production of spinal mature IL-1β by inhibiting the aggregation of NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in astrocytes.
Collapse
Affiliation(s)
- Shenbin Liu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Qian Li
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Meng-Ting Zhang
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, The Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| |
Collapse
|
28
|
Xu J, Chen XM, Zheng BJ, Wang XR. Electroacupuncture Relieves Nerve Injury-Induced Pain Hypersensitivity via the Inhibition of Spinal P2X7 Receptor-Positive Microglia. Anesth Analg 2016; 122:882-892. [PMID: 26599792 DOI: 10.1213/ane.0000000000001097] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Electroacupuncture (EA) has therapeutic effects on neuropathic pain induced by nerve injury; however, the underlying mechanisms remain unclear. In this study, we examined whether EA treatment relieves pain hypersensitivity via the down-regulation of spinal P2X7 receptor-positive (P2X7R⁺) microglia-mediated overexpression of interleukin (IL)-1β and/or IL-18. METHODS Male Sprague-Dawley rats underwent chronic constriction injury (CCI) or 3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) intrathecal injection. Von Frey and Hargreaves tests were performed to evaluate the effect of EA on pain hypersensitivity. The spinal P2X7R, IL-1β, and IL-18 expression levels were determined by real-time polymerase chain reaction, Western blot analysis, immunofluorescence staining, and enzyme-linked immunosorbent assay. The selective P2X7R antagonist A-438079 was used to examine the P2X7R⁺ microglia-dependent release of IL-1β and IL-18. Primary cultures were subsequently used to assess the P2X7R⁺ microglia-induced IL-1β and IL-18 release. RESULTS EA treatment significantly improved the pain thresholds and inhibited spinal P2X7R⁺ microglia activation induced by CCI or BzATP administration, which was accompanied by the suppression of spinal IL-1β and IL-18 overexpression. Moreover, A-438079 also improved pain thresholds and suppressed overexpression of IL-1β in the CCI- and BzATP-injected rats. The analysis of cultured microglia further demonstrated that A-438079 markedly decreased BzATP-induced IL-1β release. CONCLUSIONS EA treatment relieves nerve injury-induced tactile allodynia and thermal hyperalgesia via the inhibition of P2X7R⁺ microglia-mediated IL-1β overexpression.
Collapse
Affiliation(s)
- Jin Xu
- From the Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | |
Collapse
|
29
|
Hayashida M, Hashioka S, Miki H, Nagahama M, Wake R, Miyaoka T, Horiguchi J. Aceruloplasminemia With Psychomotor Excitement and Neurological Sign Was Improved by Minocycline (Case Report). Medicine (Baltimore) 2016; 95:e3594. [PMID: 27175663 PMCID: PMC4902505 DOI: 10.1097/md.0000000000003594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aceruloplasminemia is an autosomal recessive disorder of iron metabolism caused by mutations in the ceruloplasmin gene. Its prevalence is 1 in 2,000,000 people in Japan. This is a disorder of neurodegeneration with iron accumulation in the brain revealed by MRI. The iron overload induces oxidative stress and generation of reactive oxygen species, which triggers a cascade of pathological events that lead to neuronal death. Intravenous administration of an iron chelator, deferoxamine has been proposed as a method of inhibiting the accumulation of iron.The patient was a 46-year-old Japanese woman. She was diagnosed at the age of 33 years. Deferoxamine was administrated for 6 months but was discontinued due to adverse effects. On admission at the age of 46, psychomotor excitement was acute in onset. The extrapyramidal symptoms reflected iron deposition in the basal ganglia and substantia nigra in the midbrain. Ataxia and a wide-based gate reflected iron deposition in the dentate nuclei of the cerebellum. An antibiotic, minocycline at 150 mg/day successfully ameliorated the clinical symptoms.Minocycline, a second generation tetracycline, has a direct radical scavenging property due to its chemical structure. It has been reported that minocycline is similar to deferoxamine in its ability to chelate iron. Minocycline is also involved in preventing the upregulation of proinflammatory cytokines. The iron-chelating, antioxidant, and anti-inflammatory effects of minocycline were involved in this case.
Collapse
Affiliation(s)
- Maiko Hayashida
- From the Department of Psychiatry, Faculty of Medicine, Shimane University, Enyacho, Izumo, Shimane, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Canlas J, Holt P, Carroll A, Rix S, Ryan P, Davies L, Matusica D, Pitson SM, Jessup CF, Gibbins IL, Haberberger RV. Sphingosine kinase 2-deficiency mediated changes in spinal pain processing. Front Mol Neurosci 2015; 8:29. [PMID: 26283908 PMCID: PMC4522551 DOI: 10.3389/fnmol.2015.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/26/2015] [Indexed: 11/15/2022] Open
Abstract
Chronic pain is one of the most burdensome health issues facing the planet (as costly as diabetes and cancer combined), and in desperate need for new diagnostic targets leading to better therapies. The bioactive lipid sphingosine 1-phosphate (S1P) and its receptors have recently been shown to modulate nociceptive signaling at the level of peripheral nociceptors and central neurons. However, the exact role of S1P generating enzymes, in particular sphingosine kinase 2 (Sphk2), in nociception remains unknown. We found that both sphingosine kinases, Sphk1 and Sphk2, were expressed in spinal cord (SC) with higher levels of Sphk2 mRNA compared to Sphk1. All three Sphk2 mRNA-isoforms were present with the Sphk2.1 mRNA showing the highest relative expression. Mice deficient in Sphk2 (Sphk2−/−) showed in contrast to mice deficient in Sphk1 (Sphk1−/−) substantially lower spinal S1P levels compared to wild-type C57BL/6 mice. In the formalin model of acute peripheral inflammatory pain, Sphk2−/− mice showed facilitation of nociceptive transmission during the late response, whereas responses to early acute pain, and the number of c-Fos immunoreactive dorsal horn neurons were not different between Sphk2−/− and wild-type mice. Chronic peripheral inflammation (CPI) caused a bilateral increase in mechanical sensitivity in Sphk2−/− mice. Additionally, CPI increased the relative mRNA expression of P2X4 receptor, brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral SC of wild-type but not Sphk2−/− mice. Similarly, Sphk2−/− mice showed in contrast to wild-type no CPI-dependent increase in areas of the dorsal horn immunoreactive for the microglia marker Iba-1 and the astrocyte marker Glial fibrillary acidic protein (GFAP). Our results suggest that the tightly regulated cell signaling enzyme Sphk2 may be a key component for facilitation of nociceptive circuits in the CNS leading to central sensitization and pain memory formation.
Collapse
Affiliation(s)
- Jastrow Canlas
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Phillip Holt
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Alexander Carroll
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Shane Rix
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Paul Ryan
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology Adelaide, SA, Australia
| | - Claire F Jessup
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Ian L Gibbins
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Rainer V Haberberger
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| |
Collapse
|
31
|
Di Cesare Mannelli L, Pacini A, Corti F, Boccella S, Luongo L, Esposito E, Cuzzocrea S, Maione S, Calignano A, Ghelardini C. Antineuropathic profile of N-palmitoylethanolamine in a rat model of oxaliplatin-induced neurotoxicity. PLoS One 2015; 10:e0128080. [PMID: 26039098 PMCID: PMC4454493 DOI: 10.1371/journal.pone.0128080] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022] Open
Abstract
Neurotoxicity is a main side effect of the anticancer drug oxaliplatin. The development of a neuropathic syndrome impairs quality of life and potentially results in chemotherapy dose reductions and/or early discontinuation. In the complex pattern of molecular and morphological alterations induced by oxaliplatin in the nervous system, an important activation of glia has been preclinically evidenced. N-Palmitoylethanolamine (PEA) modulates glial cells and exerts antinociceptive effects in several animal models. In order to improve the therapeutic chances for chemotherapy-dependent neuropathy management, the role of PEA was investigated in a rat model of oxaliplatin-induced neuropathy (2.4 mg kg-1 daily, intraperitoneally). On day 21, a single administration of PEA (30 mg kg-1 i.p.) was able to reduce oxaliplatin-dependent pain induced by mechanical and thermal stimuli. The repeated treatment with PEA (30 mg kg-1 daily i.p. for 21 days, from the first oxaliplatin injection) prevented lowering of pain threshold as well as increased pain on suprathreshold stimulation. Ex vivo histological and molecular analysis of dorsal root ganglia, peripheral nerves and spinal cord highlighted neuroprotective effects and glia-activation prevention induced by PEA repeated administration. The protective effect of PEA resulted in the normalization of the electrophysiological activity of the spinal nociceptive neurons. Finally, PEA did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. The efficacy of PEA in neuropathic pain control and in preventing nervous tissue alteration candidates this endogenous compound as disease modifying agent. These characteristics, joined to the safety profile, suggest the usefulness of PEA in chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Pharmacology and Toxicology Section, University of Florence, Florence, Italy
- * E-mail:
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine—DMSC—Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Francesca Corti
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, Naples, Italy
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- Young Against Pain (YAP) group, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
32
|
Huang SY, Sung CS, Chen WF, Chen CH, Feng CW, Yang SN, Hung HC, Chen NF, Lin PR, Chen SC, Wang HMD, Chu TH, Tai MH, Wen ZH. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain. J Neuroinflammation 2015; 12:59. [PMID: 25889774 PMCID: PMC4386079 DOI: 10.1186/s12974-015-0280-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/07/2015] [Indexed: 12/30/2022] Open
Abstract
Background Many cancer research studies have extensively examined the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) pathway. There are only few reports that suggest that PTEN might affect pain; however, there is still a lack of evidence to show the role of PTEN for modulating pain. Here, we report a role for PTEN in a rodent model of neuropathic pain. Results We found that chronic constriction injury (CCI) surgery in rats could elicit downregulation of spinal PTEN as well as upregulation of phosphorylated PTEN (phospho-PTEN) and phosphorylated mammalian target of rapamycin (phospho-mTOR). After examining such changes in endogenous PTEN in neuropathic rats, we explored the effects of modulating the spinal PTEN pathway on nociceptive behaviors. The normal rats exhibited mechanical allodynia after intrathecal (i.t.) injection of adenovirus-mediated PTEN antisense oligonucleotide (Ad-antisense PTEN). These data indicate the importance of downregulation of spinal PTEN for nociception. Moreover, upregulation of spinal PTEN by i.t. adenovirus-mediated PTEN (Ad-PTEN) significantly prevented CCI-induced development of nociceptive sensitization, thermal hyperalgesia, mechanical allodynia, cold allodynia, and weight-bearing deficits in neuropathic rats. Furthermore, upregulation of spinal PTEN by i.t. Ad-PTEN significantly attenuated CCI-induced microglia and astrocyte activation, upregulation of tumor necrosis factor-α (TNF-α) and phospho-mTOR, and downregulation of PTEN in neuropathic rats 14 days post injury. Conclusions These findings demonstrate that PTEN plays a key, beneficial role in a rodent model of neuropathic pain.
Collapse
Affiliation(s)
- Shi-Ying Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei, 11217, Taiwan. .,School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, 11221, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, DAPI Road, Kaohsiung, 83301, Taiwan. .,Department of Neurosurgery, Xiamen Chang Gung Memorial Hospital, No. 123, Xiafei Road, Fujian, 361026, China.
| | - Chun-Hong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - San-Nan Yang
- School of Medicine, College of Medicine and Department of Pediatrics, E-DA Hospital, I-Shou University, No. 1, Yida Road, Kaohsiung, 82445, Taiwan.
| | - Han-Chun Hung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Nan-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, No. 2, Zhongzheng 1st Road, Kaohsiung, 80284, Taiwan.
| | - Pey-Ru Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - San-Cher Chen
- Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Hui-Min David Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan. .,Graduate Institute of Natural Products, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan. .,Center for Stem Cell Research, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan.
| | - Tian-Huei Chu
- Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
33
|
Chen WF, Huang SY, Liao CY, Sung CS, Chen JY, Wen ZH. The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials 2015; 53:1-11. [PMID: 25890701 DOI: 10.1016/j.biomaterials.2015.02.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 02/09/2023]
Abstract
The antimicrobial peptide piscidin (PCD)-1 has been reported to have antibacterial and immunomodulatory functions. Here, we investigated the anti-neuropathic properties of PCD-1, in order to determine its potential as a compound to alleviate pain. Treatment with PCD-1 suppressed the inflammatory proteins COX-2 and iNOS in murine macrophage (RAW264.7) and microglial (BV2) cell lines stimulated by lipopolysaccharide (LPS). For studies of the effect of PCD-1 in vivo, mononeuropathy in rats was induced by chronic constriction injury (CCI), and the resulting anti-nociceptive behaviors were compared between CCI controls and CCI rats given intrathecal injections of PCD-1. Much like gabapentin, PCD-1 exerts anti-nociceptive effects against thermal hyperalgesia, with a median effective dose (ED50) of 9.5 μg in CCI rats. In CCI rats, PCD-1 exerted effects against mechanical and cold allodynia, thermal hyperalgesia, and weight-bearing deficits. Furthermore, CCI-mediated activation of microglia and astrocytes in the dorsal horn of the lumbar spinal cord were decreased by PCD-1. In addition, PCD-1 suppressed up-regulation of interleukin-1β (IL-1β) and phosphorylated mammalian target of rapamycin (phospho-mTOR) in CCI rats. Finally, CCI-induced down-regulation of transforming growth factor-β1 (TGF-β1) in rats was attenuated by injection of PCD-1. Taken together, the present findings demonstrate that the marine antimicrobial peptide PCD-1 has anti-nociceptive effects, and thus may have potential for development as an alternative pain-alleviating agent.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta Pei Rd, Kaohsiung 833, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta Pei Rd, Kaohsiung 833, Taiwan
| | - Shi-Ying Huang
- Center for Neuroscience, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan
| | - Chang-Yi Liao
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, 201 Sec 2, Shih-Pai Rd, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, 155 Sec 2, Li-Nong St, Taipei 112, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan 262, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan; Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan.
| |
Collapse
|
34
|
Zhou L, Wang H, Luo J, Xiong K, Zeng L, Chen D, Huang J. Regulatory effects of inhibiting the activation of glial cells on retinal synaptic plasticity. Neural Regen Res 2014; 9:385-93. [PMID: 25206825 PMCID: PMC4146193 DOI: 10.4103/1673-5374.128240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 01/09/2023] Open
Abstract
Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still unclear. A rat model of acute ocular hypertension was established by injecting saline intravitreally for an hour, and elevating the intraocular pressure to 14.63 kPa (110 mmHg). Western blot assay and immunofluorescence results showed that synaptophysin expression had a distinct spatiotemporal change that increased in the inner plexiform layer within 1 day and spread across the outer plexiform layer after 3 days. Glial fibrillary acidic protein expression in retinae was greatly increased after 3 days, and reached a peak at 7 days, which was also consistent with the peak time of synaptophysin expression in the outer plexiform layer following the increased intraocular pressure. Fluorocitrate, a glial metabolic inhibitor, was intravitreally injected to inhibit glial cell activation following high intraocular pressure. This significantly inhibited the enhanced glial fibrillary acidic protein expression induced by high intraocular pressure injury. Synaptophysin expression also decreased in the inner plexiform layer within a day and the widened distribution in the outer plexiform layer had disappeared by 3 days. The results suggested that retinal glial cell activation might play an important role in the process of retinal synaptic plasticity induced by acute high intraocular pressure through affecting the expression and distribution of synaptic functional proteins, such as synaptophysin.
Collapse
Affiliation(s)
- Lihong Zhou
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jia Luo
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Leping Zeng
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jufang Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
35
|
Robinson CR, Zhang H, Dougherty PM. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 2014; 274:308-17. [PMID: 24905437 DOI: 10.1016/j.neuroscience.2014.05.051] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 12/30/2022]
Abstract
Spinal microglia are widely recognized as activated by and contributing to the generation and maintenance of inflammatory and nerve injury related chronic pain; whereas the role of spinal astrocytes has received much less attention, despite being the first glial cells identified as activated following peripheral nerve injury. Recently it was suggested that microglia do not appear to play a significant role in chemotherapy-induced peripheral neuropathy (CIPN), but in contrast astrocytes appear to have a key role. In spite of the generalizability of astrocyte recruitment across chemotherapy drugs, its correlation to the onset of the behavioral CIPN phenotype has not been determined. The astroglial and microglial markers glial fibrillary acidic protein (GFAP) and OX-42 were imaged here to examine glial reactivity in multiple models of CIPN over time and to contrast this response to that produced in the spinal nerve ligation (SNL) model. Microglia were strongly activated following SNL, but not activated at any of the time points observed following chemotherapy treatments. Astrocytes were activated following both oxaliplatin and bortezomib treatment in a manner that paralleled chemotherapy-evoked behavioral changes. Both the behavioral phenotype and activation of astrocytes were prevented by co-administration of minocycline hydrochloride in both CIPN models, suggesting a common mechanism.
Collapse
Affiliation(s)
- C R Robinson
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, United States
| | - H Zhang
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, United States
| | - P M Dougherty
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, United States.
| |
Collapse
|
36
|
Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury. Pain 2014; 155:906-920. [DOI: 10.1016/j.pain.2014.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/17/2013] [Accepted: 01/14/2014] [Indexed: 02/07/2023]
|
37
|
Involvement of α7 nAChR subtype in rat oxaliplatin-induced neuropathy: Effects of selective activation. Neuropharmacology 2014; 79:37-48. [DOI: 10.1016/j.neuropharm.2013.10.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022]
|
38
|
Li Q, Tian Y, Wang ZF, Liu SB, Mi WL, Ma HJ, Wu GC, Wang J, Yu J, Wang YQ. Involvement of the spinal NALP1 inflammasome in neuropathic pain and aspirin-triggered-15-epi-lipoxin A4 induced analgesia. Neuroscience 2013; 254:230-40. [PMID: 24076348 DOI: 10.1016/j.neuroscience.2013.09.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 12/24/2022]
Abstract
Neuroinflammation plays an important role in nerve-injury-induced neuropathic pain, but the explicit molecular mechanisms of neuroinflammation in neuropathic pain remain unclear. As one of the most critical inflammatory cytokines, interleukin-1β (IL-1β) has been regarded as broadly involved in the pathology of neuropathic pain. The inflammasome caspase-1 platform is one primary mechanism responsible for the maturation of IL-1β. Lipoxins, a type of endogenous anti-inflammatory lipid, have proved to be effective in relieving neuropathic pain behaviors. The present study was designed to examine whether the inflammasome caspase-1 IL-1β platform is involved in chronic constriction injury (CCI)-induced neuropathic pain and in lipoxin-induced analgesia. After rats were subjected to the CCI surgery, mature IL-1β was significantly increased in the ipsilateral spinal cord, and the inflammasome platform consisting of NALP1 (NAcht leucine-rich-repeat protein 1), caspase-1 and ASC (apoptosis-associated speck-like protein containing a caspase-activating recruitment domain) was also activated in spinal astrocytes and neurons, especially at the superficial laminae of the spinal dorsal horn; The aspirin-triggered-15-epi-lipoxin A4 (ATL), which shares the potent actions of the endogenous lipoxins, was administered to the CCI rats. Repeated intrathecal injection with ATL markedly attenuated the CCI-induced thermal hyperalgesia and significantly inhibited NALP1 inflammasome activation, caspase-1 cleavage, and IL-1β maturation. These results suggested that spinal NALP1 inflammasome was involved in the CCI-induced neuropathic pain and that the analgesic effect of ATL was associated with suppressing NALP1 inflammasome activation.
Collapse
Affiliation(s)
- Q Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai, China; Institute of Acupuncture Research, Institutes of Brain Science, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|