1
|
Chakraborty S, Banerjee S. Combatting cellular immortality in cancers by targeting the shelterin protein complex. Biol Direct 2024; 19:120. [PMID: 39578854 PMCID: PMC11585132 DOI: 10.1186/s13062-024-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Shelterin proteins (TERF1, TERF2, TPP1, TINF2, POT1) protect telomeres, prevent unwarranted repair activation, and regulate telomerase activity. Alterations in these proteins can lead to cancer progression. This study uses an in-silico approach to examine shelterin in tumour samples across various cancers, employing mutation plots, phylogenetic trees, and sequence alignments. Network pharmacology identified TERF1 as an essential shelterin protein and transcription factors RUNX1, CTCF, and KDM2B as potential biomarkers due to their interactions with miRNAs and shelterin proteins. We performed MCODE analysis to identify subnetworks of ncRNAs interacting with the shelterin proteins. Shelterin expression predicted patient survival in 24 cancer types, with TERF1, TERF2, TINF2, and POT1 significantly expressed in testicular, AML, prostate, breast and renal cancers, respectively, and TPP1 in AML and skin cancer. Spearman and Pearson's analyses showed significant correlations of TERF1 across cancers, with near-significant correlations for all five proteins in different cancer datasets like breast cancer, kidney renal papillary and lung squamous cell carcinoma, skin cutaneous melanoma, etc.,. Shelterin expression correlated with patient survival in breast, renal, lung, skin, uterine, and gastric cancers. Insights into TPP1-associated glycans highlighted glycosylated sites contributing to tumorigenesis. This study provides molecular signatures for further functional and therapeutic research on shelterin, highlighting its potential as a target for anti-cancer therapies and promising prospects for cancer prognosis and prediction.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Li F, Li Z, Wei C, Xu L, Liang Y, Yan J, Li Y, He B, Sun C. Application of hydrogels for targeting cancer stem cells in cancer treatment. Biomed Pharmacother 2024; 180:117486. [PMID: 39321506 DOI: 10.1016/j.biopha.2024.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cancer stem cells (CSCs) are a major hindrance to clinical cancer treatment. Owing to their high tumorigenic and metastatic potential, CSCs are vital in malignant tumor initiation, growth, metastasis, and therapeutic resistance, leading to tumorigenesis and recurrence. Compared with normal tumor cells, CSCs express high levels of surface markers (CD44, CD90, CD133, etc.) and activate specific signaling pathways (Wnt/β-catenin, Notch, and Hedgehog). Although Current drug delivery systems (DDS) precisely target CSCs, the heterogeneity and multidrug resistance of CSCs impede CSC isolation and screening. Conversely, hydrogel DDSs exhibit good biocompatibility and high drug delivery efficiency. Hydrogels are three-dimensional (3D) spatial structures for drug encapsulation that facilitate the controlled release of bioactive molecules. Hence, hydrogels can be loaded with drugs to precisely target CSCs. Their 3D structure can also culture non-CSCs and facilitate their transformation into CSCs. for identification and isolation. Given that their elastic modulus and stiffness characteristics reflect those of the cellular microenvironment, hydrogels can simulate extracellular matrix pathways and markers to regulate CSCs, disrupting the equilibrium between CSC and non-CSC transformation. This article reviews the CSC microenvironment, metabolism, signaling pathway, and surface markers. Additionally, we summarize the existing CSC targeting strategies and explore the application of hydrogels for CSC screening and treatment. Finally, we discuss potential advances in CSC research that may lead to curative measures for tumors through targeted and precise attacks on CSCs.
Collapse
Affiliation(s)
- Fashun Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chong Sun
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
3
|
Yao L, Wang X, Wang Z, Wang X, Guo X. Expression and functional analyses of TERF2 in esophageal carcinoma. Heliyon 2024; 10:e38040. [PMID: 39328506 PMCID: PMC11425175 DOI: 10.1016/j.heliyon.2024.e38040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Background Esophageal cancer (ESCA) is a prevalent malignancy with a high incidence of morbidity and mortality, particularly in Asia. Telomeric Repeat-binding Factor 2 (TERF2) is a crucial component of the telomere-binding protein complex that maintains telomere stability. Aberrant TERF2 expression has been implicated in tumorigenesis, however, its specific role in ESCA remains largely unexplored. Methods The expression levels of TERF2 were assessed in esophageal squamous cell carcinoma (ESCC) samples using RT-PCR, IHC, and Western blotting (WB). Serum tumor marker concentrations were determined via electrochemiluminescence immunoassay (ECLIA) and chemiluminescent microparticle immunoassay (CMIA). Bioinformatics analyses were employed to elucidate TERF2's function in EC. The impact of TERF2 on ESCC cell proliferation was evaluated through cell counting kit-8 (CCK8) assays and flow cytometry. Results TERF2 protein and mRNA expression were elevated in ESCC tissues and correlated with age, sex, cancer stage, tumor grade, lymph node metastasis (LNM), and tumor histology. Univariate Cox regression analysis indicated TERF2 was an independent prognostic factor for overall survival (OS). TERF2 mRNA levels were associated with serum levels of carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and tissue polypeptide antigen (TPA) in patients with ESCC. Immune infiltration and chemokine profiles were linked to TERF2 expression in ESCA. TERF2 is involved in regulating ESCC cell proliferation may through the DDR/P53 signaling way. Conclusions TERF2 is overexpressed in ESCA and contributes to ESCC cell proliferation may via DDR/TP53 signaling pathway. These results suggest that TERF2 may serve as a potential target for developing treatments and diagnostic biomarker for ESCA.
Collapse
Affiliation(s)
- Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xinlu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Zihao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
4
|
Papageorgakopoulou MA, Bania A, Lagogianni IA, Birmpas K, Assimakopoulou M. The Role of Glia Telomere Dysfunction in the Pathogenesis of Central Nervous System Diseases. Mol Neurobiol 2024; 61:5868-5881. [PMID: 38240992 PMCID: PMC11249767 DOI: 10.1007/s12035-024-03947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 07/16/2024]
Abstract
Maintaining the telomere length is decisive for the viability and homeostasis process of all the cells of an organism, including human glial cells. Telomere shortening of microglial cells has been widely associated with the onset and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Additionally, traumatic brain injury appears to have a positive correlation with the telomere-shortening process of microglia, and telomere length can be used as a non-invasive biomarker for the clinical management of these patients. Moreover, telomere involvement through telomerase reactivation and homologous recombination also known as the alternative lengthening of telomeres (ALT) has been described in gliomagenesis pathways, and particular focus has been given in the translational significance of these mechanisms in gliomas diagnosis and prognostic classification. Finally, glia telomere shortening is implicated in some psychiatric diseases. Given that telomere dysfunction of glial cells is involved in the central nervous system (CNS) disease pathogenesis, it represents a promising drug target that could lead to the incorporation of new tools in the medicinal arsenal for the management of so far incurable conditions.
Collapse
Affiliation(s)
| | - Angelina Bania
- School of Medicine, University of Patras, 26504, Patras, Greece
| | | | | | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Preclinical Medicine Department Building, 1 Asklipiou, 26504, Patras, Greece.
| |
Collapse
|
5
|
Loginova N, Aniskin D, Timashev P, Ulasov I, Kharwar RK. GBM Immunotherapy: Macrophage Impacts. Immunol Invest 2024; 53:730-751. [PMID: 38634572 DOI: 10.1080/08820139.2024.2337022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely aggressive form of brain tumor with low survival rates. Current treatments such as chemotherapy, radiation, and surgery are problematic due to tumor growth, invasion, and tumor microenvironment. GBM cells are resistant to these standard treatments, and the heterogeneity of the tumor makes it difficult to find a universal approach. Progression of GBM and acquisition of resistance to therapy are due to the complex interplay between tumor cells and the TME. A significant portion of the TME consists of an inflammatory infiltrate, with microglia and macrophages being the predominant cells. METHODS Analysis of the literature data over a course of 5 years suggest that the tumor-associated macrophages (TAMs) are capable of releasing cytokines and growth factors that promote tumor proliferation, survival, and metastasis while inhibiting immune cell function at the same time. RESULTS Thus, immunosuppressive state, provided with this intensively studied kind of TME cells, is supposed to promote GBM development through TAMs modulation of tumor treatment-resistance and aggressiveness. Therefore, TAMs are an attractive therapeutic target in the treatment of glioblastoma. CONCLUSION This review provides a comprehensive overview of the latest research on the nature of TAMs and the development of therapeutic strategies targeting TAMs, focusing on the variety of macrophage properties, being modulated, as well as molecular targets.
Collapse
Affiliation(s)
- Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis Aniskin
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rajesh Kumar Kharwar
- Endocrine Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
6
|
Vazifehmand R, Ali DS, Homaie FM, Jalalvand FM, Othman Z, Deming C, Stanslas J, Sekawi Z. Effects of HSV-G47Δ Oncolytic Virus on Telomerase and Telomere Length Alterations in Glioblastoma Multiforme Cancer Stem Cells Under Hypoxia and Normoxia Conditions. Curr Cancer Drug Targets 2024; 24:1262-1274. [PMID: 38357955 DOI: 10.2174/0115680096274769240115165344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Due to the existence of tumor stem cells with tumorigenicity properties and resistance patterns, treatment of glioblastoma is not easy. Hypoxia is a major concern in glioblastoma therapy. Telomerase activity and telomere length alterations have been known to play a critical role in glioblastoma progression and invasion. OBJECTIVE This study aimed to investigate the effects of HSV-G47Δ oncolytic virus on telomerase and telomere length alterations in U251GBMCSCs (U251-Glioblastoma cancer stem cells) under hypoxia and normoxia conditions. METHODS U251-CSCs were exposed to the HSV-G47Δ virus in optimized MOI (Multiplicity of infection= 1/14 hours). An absolute telomere length and gene expression of telomerase subunits were determined using an absolute human telomere length quantification PCR assay. Furthermore, a bioinformatics pathway analysis was carried out to evaluate physical and genetic interactions between dysregulated genes with other potential genes and pathways. RESULTS Data revealed that U251CSCs had longer telomeres when exposed to HSV-G47Δ in normoxic conditions but had significantly shorter telomeres in hypoxic conditions. Furthermore, hTERC, DKC1, and TEP1 genes were significantly dysregulated in hypoxic and normoxic microenvironments. The analysis revealed that the expression of TERF2 was significantly reduced in both microenvironments, and two critical genes from the MRN complex, MER11 and RAD50, were significantly upregulated in normoxic conditions. RAD50 showed a significant downregulation pattern in the hypoxic niche. Our results suggested that repair complex in the telomeric structure could be targeted by HSV-G47Δ in both microenvironments. CONCLUSION In the glioblastoma treatment strategy, telomerase and telomere complex could be potential targets for HSV-G47Δ in both microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | | | | | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Chau Deming
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
8
|
Yang Q, Nie Z, Zhu Y, Hao M, Liu S, Ding X, Wang F, Wang F, Geng X. Inhibition of TRF2 Leads to Ferroptosis, Autophagic Death, and Apoptosis by Causing Telomere Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6897268. [PMID: 37113742 PMCID: PMC10129434 DOI: 10.1155/2023/6897268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 02/04/2023] [Indexed: 04/29/2023]
Abstract
Background Gastric cancer (GC) is an aggressive malignancy with a high mortality rate and poor prognosis. Telomeric repeat-binding factor 2 (TRF2) is a critical telomere protection protein. Emerging evidence indicates that TRF2 may be an essential treatment option for GC; however, the exact mechanism remains largely unknown. Objective We aimed to explore the role of TRF2 in GC cells. The function and molecular mechanisms of TRF2 in the pathogenesis of GC were mainly discussed in this study. Methods Relevant data from GEPIA and TCGA databases regarding TRF2 gene expression and its prognostic significance in GC samples were analyzed. Analysis of 53BP1 foci at telomeres by immunofluorescence, metaphase spreads, and telomere-specific FISH analysis was carried out to explore telomere damage and dysfunction after TRF2 depletion. CCK8 cell proliferation, trypan blue staining, and colony formation assay were performed to evaluate cell survival. Apoptosis and cell migration were determined with flow cytometry and scratch-wound healing assay, respectively. qRT-PCR and Western blotting were carried out to analyze the mRNA and protein expression levels after TRF2 depletion on apoptosis, autophagic death, and ferroptosis. Results By searching with GEPIA and TCGA databases, the results showed that the expression levels of TRF2 were obviously elevated in the samples of GC patients, which was associated with adverse prognosis. Knockdown of TRF2 suppressed the cell growth, proliferation, and migration in GC cells, causing significant telomere dysfunction. Apoptosis, autophagic death, and ferroptosis were also triggered in this process. The pretreatment of chloroquine (autophagy inhibitor) and ferrostatin-1 (ferroptosis inhibitor) improved the survival phenotypes of GC cells. Conclusion Our data suggest that TRF2 depletion can inhibit cell growth, proliferation, and migration through the combined action of ferroptosis, autophagic death, and apoptosis in GC cells. The results indicate that TRF2 might be used as a potential target to develop therapeutic strategies for treating GC.
Collapse
Affiliation(s)
- Qiuhui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Ziyang Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- School of Life Sciences, Central China Normal University, Hubei Province, China
| | - Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Fuyang Hospital Affiliated to Anhui Medical University, Anhui Province 236000, China
| | - Mingying Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Siqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University, General Hospital, Tianjin 300052, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Iachettini S, Ciccarone F, Maresca C, D' Angelo C, Petti E, Di Vito S, Ciriolo MR, Zizza P, Biroccio A. The telomeric protein TERF2/TRF2 impairs HMGB1-driven autophagy. Autophagy 2022:1-12. [PMID: 36310382 DOI: 10.1080/15548627.2022.2138687] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
TERF2/TRF2 is a pleiotropic telomeric protein that plays a crucial role in tumor formation and progression through several telomere-dependent and -independent mechanisms. Here, we uncovered a novel function for this protein in regulating the macroautophagic/autophagic process upon different stimuli. By using both biochemical and cell biology approaches, we found that TERF2 binds to the non-histone chromatin-associated protein HMGB1, and this interaction is functional to the nuclear/cytoplasmic protein localization. Specifically, silencing of TERF2 alters the redox status of the cells, further exacerbated upon EBSS nutrient starvation, promoting the cytosolic translocation and the autophagic activity of HMGB1. Conversely, overexpression of wild-type TERF2, but not the mutant unable to bind HMGB1, negatively affects the cytosolic translocation of HMGB1, counteracting the stimulatory effect of EBSS starvation. Moreover, genetic depletion of HMGB1 or treatment with inflachromene, a specific inhibitor of its cytosolic translocation, completely abolished the pro-autophagic activity of TERF2 silencing. In conclusion, our data highlighted a novel mechanism through which TERF2 modulates the autophagic process, thus demonstrating the key role of the telomeric protein in regulating a process that is fundamental, under both physiological and pathological conditions, in defining the fate of the cells.Abbreviations: ALs: autolysosomes; ALT: alternative lengthening of telomeres; ATG: autophagy related; ATM: ATM serine/threonine kinase; CQ: Chloroquine; DCFDA: 2',7'-dichlorofluorescein diacetate; DDR: DNA damage response; DHE: dihydroethidium; EBSS: Earle's balanced salt solution; FACS: fluorescence-activated cell sorting; GFP: green fluorescent protein; EGFP: enhanced green fluorescent protein; GSH: reduced glutathione; GSSG: oxidized glutathione; HMGB1: high mobility group box 1; ICM: inflachromene; IF: immunofluorescence; IP: immunoprecipitation; NAC: N-acetyl-L-cysteine; NHEJ: non-homologous end joining; PLA: proximity ligation assay; RFP: red fluorescent protein; ROS: reactive oxygen species; TIF: telomere-induced foci; TERF2/TRF2: telomeric repeat binding factor 2.
Collapse
Affiliation(s)
- Sara Iachettini
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Biochemistry of aging section, IRCCS San Raffaele Roma, Rome, Italy
| | - Carmen Maresca
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D' Angelo
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Eleonora Petti
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Serena Di Vito
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Biochemistry of aging section, IRCCS San Raffaele Roma, Rome, Italy
| | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
10
|
Yan J, Long X, Liang Y, Li F, Yu H, Li Y, Li Z, Tian Y, He B, Sun Y. Nanodrug delivery systems and cancer stem cells: From delivery carriers to treatment. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX, Zhu C. Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System. Front Cell Dev Biol 2022; 10:834620. [PMID: 35300407 PMCID: PMC8921553 DOI: 10.3389/fcell.2022.834620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.
Collapse
Affiliation(s)
- Xin-Jin Su
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Duo Shen
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Xin Song
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Yang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - De-Sheng Wu
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Dinami R, Petti E, Porru M, Rizzo A, Ganci F, Sacconi A, Ostano P, Chiorino G, Trusolino L, Blandino G, Ciliberto G, Zizza P, Biroccio A. TRF2 cooperates with CTCF for controlling the oncomiR-193b-3p in colorectal cancer. Cancer Lett 2022; 533:215607. [PMID: 35240232 DOI: 10.1016/j.canlet.2022.215607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The Telomeric Repeat binding Factor 2 (TRF2), a key protein involved in telomere integrity, is over-expressed in several human cancers and promotes tumor formation and progression. Recently, TRF2 has been also found outside telomeres where it can affect gene expression. Here we provide evidence that TRF2 is able to modulate the expression of microRNAs (miRNAs), small non-coding RNAs altered in human tumors. Among the miRNAs regulated by TRF2, we focused on miR-193b-3p, an oncomiRNA that positively correlates with TRF2 expression in human colorectal cancer patients from The Cancer Genome Atlas dataset. At the mechanistic level, the control of miR-193b-3p expression requires the cooperative activity between TRF2 and the chromatin organization factor CTCF. We found that CTCF physically interacts with TRF2, thus driving the proper positioning of TRF2 on a binding site located upstream the miR-193b-3p host-gene. The binding of TRF2 on the identified region is necessary for promoting the expression of miR-193b3p which, in turn, inhibits the translation of the onco-suppressive methyltransferase SUV39H1 and promotes tumor cell proliferation. The translational relevance of the oncogenic properties of miR-193b-3p was confirmed in patients, in whom the association between TRF2 and miR-193b-3p has a prognostic value.
Collapse
Affiliation(s)
- Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Eleonora Petti
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Manuela Porru
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Strada Provinciale 142, Candiolo, TO, 10060, Italy; Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Candiolo, TO, 10060, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
13
|
Cell aging related genes can be used to characterize clinical prognoses and further stratify diffuse gliomas. Sci Rep 2021; 11:19493. [PMID: 34593910 PMCID: PMC8484278 DOI: 10.1038/s41598-021-98913-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence has indicated that senescent cells are associated with the glioma development. Thus, we aimed to explore the relationship between the cellular senescence gene profile and the clinical prognosis of diffuse glioma. In total, 699 gliomas from The Cancer Genome Atlas (TCGA) dataset were used as the training cohort and 693 gliomas from the Chinese Glioma Genome Atlas (CGGA) dataset were used as the validation cohort. Bioinformatics statistical methods are used to develop the risk signature and to study the prognostic value of the risk signature. We identified a 14-gene risk signature and its risk score was an independent prognostic factor (P < 0.001) in the validation dataset. The risk signature had better prognostic value than traditional factors for the 3- and 5-year survival rate. Importantly, the risk signature could further stratify gliomas in specific subgroups of World Health Organization (WHO) classification by the survival rate. Furthermore, the mRNA levels of genes involved in the cell cycle, cell division and other processes were significantly correlated with the risk score. Our study highlighted a 14-gene risk signature for further stratifying the outcomes of patients with gliomas with definite WHO subgroups. These results indicate the potential clinical implications of cell aging-related genes in gliomas.
Collapse
|
14
|
Chatterjee D, Chakrabarti O. Role of stress granules in modulating senescence and promoting cancer progression: Special emphasis on glioma. Int J Cancer 2021; 150:551-561. [PMID: 34460104 DOI: 10.1002/ijc.33787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Stress granules (SGs) contain mRNAs and proteins stalled in translation during stress; these are increasingly being implicated in diseases, including neurological disorders and cancer. The dysregulated assembly, persistence, disassembly and clearance of SGs contribute to the process of senescence. Senescence has long been a mysterious player in cellular physiology and associated diseases. The systemic process of aging has been pivotal in the development of various neurological disorders like age-related neuropathy, Alzheimer's disease and Parkinson's disease. Glioma is a cancer of neurological origin with a very poor prognosis and high rate of recurrence, SGs have only recently been implicated in its pathogenesis. Senescence has long been established to play an antitumorigenic role, however, relatively less studied is its protumorigenic importance. Here, we have evaluated the existing literature to assess the crosstalk of the two biological phenomena of senescence and SG formation in the context of tumorigenesis. In this review, we have attempted to analyze the contribution of senescence in regulating diverse cellular processes, like, senescence associated secretory phenotype (SASP), microtubular reorganization, telomeric alteration, autophagic clearance and how intricately these phenomena are tied with the formation of SGs. Finally, we propose that interplay between senescence, its contributing factors and the genesis of SGs can drive tumorigenicity of gliomas, which can potentially be utilized for therapeutic intervention.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep 2021; 46:184. [PMID: 34278498 PMCID: PMC8273685 DOI: 10.3892/or.2021.8135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have found that somatic gene mutations and environmental tumor-promoting factors are both indispensable for tumor formation. Telomeric repeat-binding factor (TRF)2 is the core component of the telomere shelterin complex, which plays an important role in chromosome stability and the maintenance of normal cell physiological states. In recent years, TRF2 and its role in tumor formation have gradually become a research hot topic, which has promoted in-depth discussions into tumorigenesis and treatment strategies, and has achieved promising results. Some cells bypass elimination, due to either aging, apoptosis via mutations or abnormal prolongation of the mitotic cycle, and enter the telomere crisis period, where large-scale DNA reorganization occurs repeatedly, which manifests as the precancerous cell cycle. Finally, at the end of the crisis cycle, the mutation activates either the expression level of telomerase or activates the alternative lengthening of telomere mechanism to extend the local telomeres. Under the protection of TRF2, chromosomes are gradually stabilized, immortal cells are formed and the stagewise mutation-driven transformation of normal cells to cancer cells is completed. In addition, TRF2 also shares the characteristics of environmental tumor-promoting factors. It acts on multiple signal transduction pathway-related proteins associated with cell proliferation, and affects peripheral angiogenesis, inhibits the immune recognition and killing ability of the microenvironment, and maintains the stemness characteristics of tumor cells. TRF2 levels are abnormally elevated by a variety of tumor control proteins, which are more conducive to the protection of telomeres and the survival of tumor cells. In brief, the various regulatory mechanisms which tumor cells rely on to survive are organically integrated around TRF2, forming a regulatory network, which is conducive to the optimization of the survival direction of heterogeneous tumor cells, and promotes their survival and adaptability. In terms of clinical application, TRF2 is expected to become a new type of cancer prognostic marker and a new tumor treatment target. Inhibition of TRF2 overexpression could effectively cut off the core network regulating tumor cell survival, reduce drug resistance, or bypass the mutation under the pressure of tumor treatment selection, which may represent a promising therapeutic strategy for the complete eradication of tumors in the clinical setting. Based on recent research, the aim of the present review was to systematically elaborate on the basic structure and functional characteristics of TRF2 and its role in tumor formation, and to analyze the findings indicating that TRF2 deficiency or overexpression could cause severe damage to telomere function and telomere shortening, and induce DNA damage response and chromosomal instability.
Collapse
Affiliation(s)
- Zhengyi Wang
- Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China
| | - Xiaoying Wu
- Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
16
|
Vinchure OS, Whittemore K, Kushwah D, Blasco MA, Kulshreshtha R. miR-490 suppresses telomere maintenance program and associated hallmarks in glioblastoma. Cell Mol Life Sci 2021; 78:2299-2314. [PMID: 32970185 PMCID: PMC11073096 DOI: 10.1007/s00018-020-03644-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Glioblastoma (GBM) is the most aggressive cancer of central nervous system with worst patient outcome. Telomere maintenance is a crucial mechanism governing GBM initiation and progression making it an attractive target. microRNAs (miRNAs) have shown therapeutic potential in GBM. Earlier, we showed miR-490 is downregulated in GBM patients and plays a tumor suppressive role. Here, we show that miR-490 regulates telomere maintenance program in GBM by directly targeting Telomeric Repeat-binding Factor 2 (TERF2) of the shelterin complex, Tankyrase 2 (TNKS2) and Serine/Threonine-protein kinase, SMG1. Overexpression of miR-490 resulted in effects characteristic to hampered telomere maintenance via TERF2 inhibition. These include induction of telomere dysfunction-induced foci and global DNA damage (53BP1 foci), along with an increase in p-γH2AX levels. Further, it led to inhibition of telomere maintenance hallmarks via reduced stemness (SOX2 and SOX4 downregulation) and induction of senescence (H3K9me3 marks gain and SIRT1 downregulation). It also initiated downstream DNA damage response (DDR) leading to p53 pathway activation. Moreover, microarray data analysis highlighted an overlap between miR-490 expression and REST-inhibition responses in GBM. Thus, miR-490-mediated targeting of telomere maintenance could be therapeutically important in GBM.
Collapse
Affiliation(s)
- Omkar Suhas Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Kurt Whittemore
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Deependra Kushwah
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Maria A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
17
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
18
|
Vinayagamurthy S, Ganguly A, Chowdhury S. Extra-telomeric impact of telomeres: Emerging molecular connections in pluripotency or stemness. J Biol Chem 2020; 295:10245-10254. [PMID: 32444498 PMCID: PMC7383370 DOI: 10.1074/jbc.rev119.009710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Telomeres comprise specialized nucleic acid-protein complexes that help protect chromosome ends from DNA damage. Moreover, telomeres associate with subtelomeric regions through looping. This results in altered expression of subtelomeric genes. Recent observations further reveal telomere length-dependent gene regulation and epigenetic modifications at sites spread across the genome and distant from telomeres. This regulation is mediated through the telomere-binding protein telomeric repeat-binding factor 2 (TRF2). These observations suggest a role of telomeres in extra-telomeric functions. Most notably, telomeres have a broad impact on pluripotency and differentiation. For example, cardiomyocytes differentiate with higher efficacy from induced pluripotent stem cells having long telomeres, and differentiated cells obtained from human embryonic stem cells with relatively long telomeres have a longer lifespan. Here, we first highlight reports on these two seemingly distinct research areas: the extra-telomeric role of telomere-binding factors and the role of telomeres in pluripotency/stemness. On the basis of the observations reported in these studies, we draw attention to potential molecular connections between extra-telomeric biology and pluripotency. Finally, in the context of the nonlocal influence of telomeres on pluripotency and stemness, we discuss major opportunities for progress in molecular understanding of aging-related disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- G.N.R. Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
19
|
Marisetty AL, Lu L, Veo BL, Liu B, Coarfa C, Kamal MM, Kassem DH, Irshad K, Lu Y, Gumin J, Henry V, Paulucci-Holthauzen A, Rao G, Baladandayuthapani V, Lang FF, Fuller GN, Majumder S. REST-DRD2 mechanism impacts glioblastoma stem cell-mediated tumorigenesis. Neuro Oncol 2020; 21:775-785. [PMID: 30953587 DOI: 10.1093/neuonc/noz030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a lethal, heterogeneous human brain tumor, with regulatory mechanisms that have yet to be fully characterized. Previous studies have indicated that the transcriptional repressor REST (repressor element-1 silencing transcription factor) regulates the oncogenic potential of GBM stem cells (GSCs) based on level of expression. However, how REST performs its regulatory role is not well understood. METHODS We examined 2 independent high REST (HR) GSC lines using genome-wide assays, biochemical validations, gene knockdown analysis, and mouse tumor models. We analyzed in-house patient tumors and patient data present in The Cancer Genome Atlas (TCGA). RESULTS Genome-wide transcriptome and DNA-binding analyses suggested the dopamine receptor D2 (DRD2) gene, a dominant regulator of neurotransmitter signaling, as a direct target of REST. Biochemical analyses and mouse intracranial tumor models using knockdown of REST and double knockdown of REST and DRD2 validated this target and suggested that DRD2 is a downstream target of REST regulating tumorigenesis, at least in part, through controlling invasion and apoptosis. Further, TCGA GBM data support the presence of the REST-DRD2 axis and reveal that high REST/low DRD2 (HRLD) and low REST/high DRD2 (LRHD) tumors are specific subtypes, are molecularly different from the known GBM subtypes, and represent functional groups with distinctive patterns of enrichment of gene sets and biological pathways. The inverse HRLD/LRHD expression pattern is also seen in in-house GBM tumors. CONCLUSIONS These findings suggest that REST regulates neurotransmitter signaling pathways through DRD2 in HR-GSCs to impact tumorigenesis. They further suggest that the REST-DRD2 mechanism forms distinct subtypes of GBM.
Collapse
Affiliation(s)
- Anantha L Marisetty
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bethany L Veo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mohamed Mostafa Kamal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dina Hamada Kassem
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khushboo Irshad
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yungang Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Verlene Henry
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sadhan Majumder
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Dinami R, Porru M, Amoreo CA, Sperduti I, Mottolese M, Buglioni S, Marinelli D, Maugeri-Saccà M, Sacconi A, Blandino G, Leonetti C, Di Rocco G, Verdina A, Spinella F, Fiorentino F, Ciliberto G, Biroccio A, Zizza P. TRF2 and VEGF-A: an unknown relationship with prognostic impact on survival of colorectal cancer patients. J Exp Clin Cancer Res 2020; 39:111. [PMID: 32539869 PMCID: PMC7294609 DOI: 10.1186/s13046-020-01612-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Colorectal cancer is one of most common tumors in developed countries and, despite improvements in treatment and diagnosis, mortality rate of patients remains high, evidencing the urgent need of novel biomarkers to properly identify colorectal cancer high-risk patients that would benefit of specific treatments. Recent works have demonstrated that the telomeric protein TRF2 is over-expressed in colorectal cancer and it promotes tumor formation and progression through extra-telomeric functions. Moreover, we and other groups evidenced, both in vitro on established cell lines and in vivo on tumor bearing mice, that TRF2 regulates the vascularization mediated by VEGF-A. In the present paper, our data evidence a tight correlation between TRF2 and VEGF-A with prognostic relevance in colorectal cancer patients. METHODS For this study we sampled 185 colorectal cancer patients surgically treated and diagnosed at the Regina Elena National Cancer Institute of Rome and investigated the association between the survival outcome and the levels of VEGF-A and TRF2. RESULTS Tissue microarray immunohistochemical analyses revealed that TRF2 positively correlates with VEGF-A expression in our cohort of patients. Moreover, analysis of patients' survival, confirmed in a larger dataset of patients from TCGA, demonstrated that co-expression of TRF2 and VEGF-A correlate with a poor clinical outcome in stage I-III colorectal cancer patients, regardless the mutational state of driver oncogenes. CONCLUSIONS Our results permitted to identify the positive correlation between high levels of TRF2 and VEGF-A as a novel prognostic biomarker for identifying the subset of high-risk colorectal cancer patients that could benefit of specific therapeutic regimens.
Collapse
Affiliation(s)
- Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Manuela Porru
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | | | - Isabella Sperduti
- Department of Biostatistics, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Marcella Mottolese
- Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Daniele Marinelli
- Division of Medical Oncology 2, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical and Molecular Medicine, Sapienza - Università di Roma, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carlo Leonetti
- SAFU, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
21
|
Zizza P, Dinami R, Porru M, Cingolani C, Salvati E, Rizzo A, D'Angelo C, Petti E, Amoreo CA, Mottolese M, Sperduti I, Chambery A, Russo R, Ostano P, Chiorino G, Blandino G, Sacconi A, Cherfils-Vicini J, Leonetti C, Gilson E, Biroccio A. TRF2 positively regulates SULF2 expression increasing VEGF-A release and activity in tumor microenvironment. Nucleic Acids Res 2019; 47:3365-3382. [PMID: 30698737 PMCID: PMC6468246 DOI: 10.1093/nar/gkz041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 12/04/2022] Open
Abstract
The telomeric protein TRF2 is overexpressed in several human malignancies and contributes to tumorigenesis even though the molecular mechanism is not completely understood. By using a high-throughput approach based on the multiplexed Luminex X-MAP technology, we demonstrated that TRF2 dramatically affects VEGF-A level in the secretome of cancer cells, promoting endothelial cell-differentiation and angiogenesis. The pro-angiogenic effect of TRF2 is independent from its role in telomere capping. Instead, TRF2 binding to a distal regulatory element promotes the expression of SULF2, an endoglucosamine-6-sulfatase that impairs the VEGF-A association to the plasma membrane by inducing post-synthetic modification of heparan sulfate proteoglycans (HSPGs). Finally, we addressed the clinical relevance of our findings showing that TRF2/SULF2 expression is a worse prognostic biomarker in colorectal cancer (CRC) patients.
Collapse
Affiliation(s)
- Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Manuela Porru
- SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Chiara Cingolani
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Erica Salvati
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Eleonora Petti
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carla Azzurra Amoreo
- Pathology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Marcella Mottolese
- Pathology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Isabella Sperduti
- Department of Biostatistics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, via Vivaldi 43, 80100 Caserta
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, via Vivaldi 43, 80100 Caserta
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Julien Cherfils-Vicini
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France
| | - Carlo Leonetti
- SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Eric Gilson
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France.,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| |
Collapse
|
22
|
Lu L, Marisetty A, Liu B, Kamal MM, Gumin J, Veo B, Cai Y, Kassem DH, Weng C, Maynard ME, Hood KN, Fuller GN, Pan ZZ, Cykowski MD, Dash PK, Majumder S. REST overexpression in mice causes deficits in spontaneous locomotion. Sci Rep 2018; 8:12083. [PMID: 30108242 PMCID: PMC6092433 DOI: 10.1038/s41598-018-29441-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Overexpression of REST has been implicated in brain tumors, ischemic insults, epilepsy, and movement disorders such as Huntington's disease. However, owing to the lack of a conditional REST overexpression animal model, the mechanism of action of REST overexpression in these disorders has not been established in vivo. We created a REST overexpression mouse model using the human REST (hREST) gene. Our results using these mice confirm that hREST expression parallels endogenous REST expression in embryonic mouse brains. Further analyses indicate that REST represses the dopamine receptor 2 (Drd2) gene, which encodes a critical nigrostriatal receptor involved in regulating movement, in vivo. Overexpression of REST using Drd2-Cre in adult mice results in increased REST and decreased DRD2 expression in the striatum, a major site of DRD2 expression, and phenocopies the spontaneous locomotion deficits seen upon global DRD2 deletion or specific DRD2 deletion from indirect-pathway medium spiny neurons. Thus, our studies using this mouse model not only reveal a new function of REST in regulating spontaneous locomotion but also suggest that REST overexpression in DRD2-expressing cells results in spontaneous locomotion deficits.
Collapse
Affiliation(s)
- Li Lu
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anantha Marisetty
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohamed Mostafa Kamal
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bethany Veo
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pediatrics/Hematology and Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - YouQing Cai
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dina Hamada Kassem
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Connie Weng
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhizhong Z Pan
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sadhan Majumder
- Departments of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Neuro-oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol 2018; 53:139-155. [PMID: 30081228 DOI: 10.1016/j.semcancer.2018.08.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
A small subpopulation of cells within the bulk of tumors share features with somatic stem cells, in that, they are capable of self-renewal, they differentiate, and are highly resistant to conventional therapy. These cells have been referred to as cancer stem cells (CSCs). Recent reports support the central importance of a cancer stem cell-like niche that appears to help foster the generation and maintenance of CSCs. In response to signals provided by this microenvironment, CSCs express the tumorigenic characteristics that can drive tumor metastasis by the induction of epithelial-mesenchymal-transition (EMT) that in turn fosters the migration and recolonization of the cells as secondary tumors within metastatic niches. We summarize here recent advances in cancer stem cell research including the characterization of their genetic and epigenetic features, metabolic specialities, and crosstalk with aging-associated processes. Potential strategies for targeting CSCs, and their niche, by regulating CSCs plasticity, or therapeutic sensitivity is discussed. Finally, it is hoped that new strategies and related therapeutic approaches as outlined here may help prevent the formation of the metastatic niche, as well as counter tumor progression and metastatic growth.
Collapse
|
24
|
Srivastava P, Hira SK, Sharma A, Kashif M, Srivastava P, Srivastava DN, Singh RA, Manna PP. Telomerase Responsive Delivery of Doxorubicin from Mesoporous Silica Nanoparticles in Multiple Malignancies: Therapeutic Efficacies against Experimental Aggressive Murine Lymphoma. Bioconjug Chem 2018; 29:2107-2119. [DOI: 10.1021/acs.bioconjchem.8b00342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Purba Bardhhaman-713104, India
| | - Amod Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462 066, India
| | | | | | | | | | | |
Collapse
|
25
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
26
|
Shaik S, Kennis B, Maegawa S, Schadler K, Yanwen Y, Callegari K, Lulla RR, Goldman S, Nazarian J, Rajaram V, Fangusaro J, Gopalakrishnan V. REST upregulates gremlin to modulate diffuse intrinsic pontine glioma vasculature. Oncotarget 2018; 9:5233-5250. [PMID: 29435175 PMCID: PMC5797046 DOI: 10.18632/oncotarget.23750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/16/2017] [Indexed: 12/30/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive glial tumor that occurs in children. The extremely poor median and 5-year survival in children afflicted with DIPG highlights the need for novel biology-driven therapeutics. Here, we have implicated the chromatin remodeler and regulator of brain development called RE1 Silencing Transcription Factor (REST), in DIPG pathology. We show that REST protein is aberrantly elevated in at least 21% of DIPG tumors compared to normal controls. Its knockdown in DIPG cell lines diminished cell growth and decreased their tumorigenicity in mouse intracranial models. DIPGs are vascularized tumors and interestingly, REST loss in DIPG cells also caused a substantial decline in tumor vasculature as measured by a decrease in CD31 and VEGFR2 staining. These observations were validated in vitro, where a significant decline in tube formation by human umbilical vein endothelial cells (HUVEC) was seen following REST-loss in DIPG cells. Mechanistically, REST controlled the secretion of a pro-angiogenic molecule and ligand for VEGFR2 called Gremlin-1 (GREM-1), and was associated with enhanced AKT activation. Importantly, the decline in tube formation caused by REST loss could be rescued by addition of recombinant GREM-1, which also caused AKT activation in HUVECs and human brain microvascular endothelial cells (HBMECs). In summary, our study is the first to demonstrate autocrine and paracrine functions for REST in DIPG development. It also provides the foundation for future investigations on anti-angiogenic therapies targeting GREM-1 in combination with drugs that target REST-associated chromatin remodeling activities.
Collapse
Affiliation(s)
- Shavali Shaik
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Bridget Kennis
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Shinji Maegawa
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Keri Schadler
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Yanwen
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Keri Callegari
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Rishi R. Lulla
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stewart Goldman
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Javad Nazarian
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Veena Rajaram
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jason Fangusaro
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
- Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
- Brain Tumor Center, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
27
|
Rizzo A, Iachettini S, Salvati E, Zizza P, Maresca C, D'Angelo C, Benarroch-Popivker D, Capolupo A, Del Gaudio F, Cosconati S, Di Maro S, Merlino F, Novellino E, Amoreo CA, Mottolese M, Sperduti I, Gilson E, Biroccio A. SIRT6 interacts with TRF2 and promotes its degradation in response to DNA damage. Nucleic Acids Res 2017; 45:1820-1834. [PMID: 27923994 PMCID: PMC5389694 DOI: 10.1093/nar/gkw1202] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022] Open
Abstract
Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in telomere maintenance and DNA damage response. Here, we show that TRF2 directly binds SIRT6 in a DNA independent manner and that this interaction is increased upon replication stress. Knockdown of SIRT6 up-regulates TRF2 protein levels and counteracts its down-regulation during DNA damage response, leading to cell survival. Moreover, we report that SIRT6 deactetylates in vivo the TRFH domain of TRF2, which in turn, is ubiquitylated in vivo activating the ubiquitin-dependent proteolysis. Notably, overexpression of the TRF2cT mutant failed to be stabilized by SIRT6 depletion, demonstrating that the TRFH domain is required for its post-transcriptional modification. Finally, we report an inverse correlation between SIRT6 and TRF2 protein expression levels in a cohort of colon rectal cancer patients. Taken together our findings describe TRF2 as a novel SIRT6 substrate and demonstrate that acetylation of TRF2 plays a crucial role in the regulation of TRF2 protein stability, thus providing a new route for modulating its expression level during oncogenesis and damage response.
Collapse
Affiliation(s)
- Angela Rizzo
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Erica Salvati
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carmen Maresca
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Delphine Benarroch-Popivker
- Université Côte d'Azur, INSERM U1081 CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Faculty of Medicine, France
| | - Angela Capolupo
- Department of Pharmacy, PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
| | - Federica Del Gaudio
- Department of Pharmacy, PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
| | - Sandro Cosconati
- DiSTABiF, Seconda Università di Napoli, Via Vivaldi 43, Caserta 81100, Italy
| | - Salvatore Di Maro
- DiSTABiF, Seconda Università di Napoli, Via Vivaldi 43, Caserta 81100, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, Naples 80131, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, Naples 80131, Italy
| | - Carla Azzurra Amoreo
- Department of Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Marcella Mottolese
- Department of Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Isabella Sperduti
- Biostatistics Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Eric Gilson
- Université Côte d'Azur, INSERM U1081 CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Faculty of Medicine, France.,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| |
Collapse
|
28
|
Li C, Wang Z, Tang X, Zeng L, Fan X, Li Z. Molecular mechanisms and potential prognostic effects of REST and REST4 in glioma (Review). Mol Med Rep 2017; 16:3707-3712. [PMID: 29067465 DOI: 10.3892/mmr.2017.7071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/24/2017] [Indexed: 11/06/2022] Open
Abstract
Glioma refers to a tumor of the brain and central nervous system, which is characterized by high incidence, high mortality and high recurrence rate. Although the association between glioma and the repressor element silencing transcription factor (REST) has been reported by numerous studies, the complicated regulatory mechanisms underlying REST remain unknown. REST is a transcriptional repressor that undergoes alternative splicing to produce splicing variants when transcribed. Previous studies have demonstrated that alternative splicing may serve a role in the outcome of glioma. The present review discussed the mutual relationship among REST, REST4 and glioma. It was concluded that increased REST expression in glioma may be associated with poor prognosis; and REST4, an AS variant of REST, also functions to regulate glioma by suppressing REST. In addition, the present review discussed the regulation of REST and its target genes in glioma, and identified factors that induce REST alternative splicing, particularly in glioma. These findings suggest that REST may be considered a prognostic factor, which can be predictive of patient outcome.
Collapse
Affiliation(s)
- Cuilin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhifei Wang
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xinyue Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liu Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xitang Fan
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
29
|
Lee WP, Lan KH, Li CP, Chao Y, Hou MC, Lin HC, Lee SD. The telomere-binding protein TRF2 is required for metronomic therapeutic effects of gemcitabine and capecitabine. Biochim Biophys Acta Mol Basis Dis 2017; 1863:917-928. [PMID: 28088627 DOI: 10.1016/j.bbadis.2017.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
Gemcitabine and capecitabine are two effective anticancer agents against solid tumors. The pharmacological mechanisms have been known as incorporation into DNA and thereby inhibition of DNA synthesis. When used as metronomic chemotherapy, they may inhibit angiogenesis and induce immunity. In our previous study, we showed that low-dose gemcitabine caused telomere shortening by stabilizing TRF2 that was required for XPF-dependent telomere loss. In this report, we established a SKOV3.ip1 ascites cell model. Tumor-bearing mice were treated with low-dose gemcitabine (GEM) or capecitabine (CAP). Both GEM and CAP caused telomere shortening and increased expression of TRF2 with improved ascites in nude mice and decreased in vitro clonogenic activity. TRF2 knockdown altered telomeres to a shortened but new status that may evade XPF-dependent telomere loss and conferred resistance of SKOV3.ip1 ascites cells to low-dose GEM and CAP. Our study provides a new mechanism of metronomic chemotherapy i.e. TRF2 is required for metronomic therapeutic effects of gemcitabine and capecitabine.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.
| | - Keng-Hsin Lan
- Department of Medicine Division of Gastroenterology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Pin Li
- Department of Medicine Division of Gastroenterology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Department of Medicine Division of Gastroenterology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medicine Division of Gastroenterology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Department of Medicine Division of Gastroenterology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Zhao YD, Zhang QB, Chen H, Fei XF, Shen YT, Ji XY, Ma JW, Wang AD, Dong J, Lan Q, Huang Q. Research on human glioma stem cells in China. Neural Regen Res 2017; 12:1918-1926. [PMID: 29239340 PMCID: PMC5745848 DOI: 10.4103/1673-5374.219055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research on human glioma stem cells began early in the 21st century and since then has become a rapidly growing research field with the number of publications increasing year by year. The research conducted by our diverse group of investigators focused primarily on cell culture techniques, molecular regulation, signaling pathways, cancer treatment, the stem cell microenvironment and the cellular origin and function of glioma stem cells. In particular, we put forward our view that there are inverse or forward transformations among neural stem cells, glial cells and glioma stem cells in glioma tissues under certain conditions. Based on the background of the progress of international research on human glioma stem cells, we aim to share our progress and current findings of human glioma stem cell research in China with colleagues around the world.
Collapse
Affiliation(s)
- Yao-Dong Zhao
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Shanghai General Hospital, Shanghai, China
| | - Quan-Bin Zhang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Shanghai 10th People's Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xi-Feng Fei
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province; Suzhou Kowloon Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Tian Shen
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Yan Ji
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Wei Ma
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ai-Dong Wang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Dong
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Lan
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiang Huang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
31
|
Pandey S, Agarwala P, Maiti S. Targeting RNA G-Quadruplexes for Potential Therapeutic Applications. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Sareddy GR, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi RK. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene 2016; 36:2423-2434. [PMID: 27893719 DOI: 10.1038/onc.2016.395] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Glioma stem cells (GSCs) have a central role in glioblastoma (GBM) development and chemo/radiation resistance, and their elimination is critical for the development of efficient therapeutic strategies. Recently, we showed that lysine demethylase KDM1A is overexpressed in GBM. In the present study, we determined whether KDM1A modulates GSCs stemness and differentiation and tested the utility of two novel KDM1A-specific inhibitors (NCL-1 and NCD-38) to promote differentiation and apoptosis of GSCs. The efficacy of KDM1A targeting drugs was tested on purified GSCs isolated from established and patient-derived GBMs using both in vitro assays and in vivo orthotopic preclinical models. Our results suggested that KDM1A is highly expressed in GSCs and knockdown of KDM1A using shRNA-reduced GSCs stemness and induced the differentiation. Pharmacological inhibition of KDM1A using NCL-1 and NCD-38 significantly reduced the cell viability, neurosphere formation and induced apoptosis of GSCs with little effect on differentiated cells. In preclinical studies using orthotopic models, NCL-1 and NCD-38 significantly reduced GSCs-driven tumor progression and improved mice survival. RNA-sequencing analysis showed that KDM1A inhibitors modulate several pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that KDM1A inhibitors induce activation of the unfolded protein response (UPR) pathway. These results strongly suggest that selective targeting of KDM1A using NCL-1 and NCD-38 is a promising therapeutic strategy for elimination of GSCs.
Collapse
Affiliation(s)
- G R Sareddy
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - S Viswanadhapalli
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P Surapaneni
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| | - A Brenner
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,The Department of Hematology and Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R K Vadlamudi
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
33
|
Grammatikakis I, Zhang P, Mattson MP, Gorospe M. The long and the short of TRF2 in neurogenesis. Cell Cycle 2016; 15:3026-3032. [PMID: 27565210 DOI: 10.1080/15384101.2016.1222339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gene expression patterns change dramatically during neuronal development. Proliferating cells, including neural stem cells (NSCs), express telomere repeat-binding factor 2 (TRF2), a nuclear protein that associates with telomeric proteins, DNA, and RNA telomeres. In NSCs TRF2 also binds to the transcription regulator REST to facilitate repression of numerous neuron-specific genes, thereby keeping the NSCs in a self-renewing state. Upon neuronal differentiation, TRF2 levels decline, REST-regulated neuronal genes are derepressed, and a short isoform of TRF2 arises (TRF2-S) which localizes in the cytoplasm, associates with different subsets of proteins and transcripts, and mobilizes axonal G-rich mRNAs. We recently identified two RNA-binding proteins, HNRNPH1 and H2 (referred to jointly as HNRNPH due to their high homology), which mediate the alternative splicing of an exon required for the expression of full-length TRF2. As HNRNPH levels decline during neurogenesis, TRF2 abundance decreases and TRF2-S accumulates. Here, we discuss the shared and unique functions of TRF2 and TRF2-S, the distinct subcellular compartment in which each isoform resides, the subsets of proteins and nucleic acids with which each interacts, and the functional consequences of these ribonucleoprotein interactions. This paradigm illustrates the dynamic mechanisms through which splicing regulation by factors like HNRNPH enable distinct protein functions as cells adapt to developmental programs such as neurogenesis.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- a Laboratory of Genetics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Peisu Zhang
- b Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Mark P Mattson
- b Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Myriam Gorospe
- a Laboratory of Genetics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| |
Collapse
|
34
|
Benhamou Y, Picco V, Pagès G. The telomere proteins in tumorigenesis and clinical outcomes of oral squamous cell carcinoma. Oral Oncol 2016; 57:46-53. [PMID: 27208844 DOI: 10.1016/j.oraloncology.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022]
Abstract
The "Hallmarks of Cancer" describe the ways by which cancer cells bypass homeostasis. Escape from replicative senescence is one of the earliest features of cancer cells. Maintenance of the telomeres through reactivation of telomerase was initially associated with replicative immortality in various cancers. The shelterin complex, a telomeric hexaprotein association, plays a key role in telomere maintenance and in the hallmarks of cancer. Some shelterin proteins are overexpressed in diverse cancers and can promote tumorigenesis in animal models. Shelterin can also have an impact on tumor size, tumor growth and resistance to treatment. Studies into the expression level of shelterin in oral squamous cell carcinoma (OSCC) report contradictory results. Moreover, the exact role of these proteins in OSCC tumorigenesis remains uncertain. In this review, we examined the data linking telomeres and hallmarks of OSCC. Furthermore, we examined the literature concerning telomeres and the clinical outcome of OSCC. Finally, we propose a model encompassing the role of shelterin proteins in oral tumorigenesis and treatment outcome.
Collapse
Affiliation(s)
- Y Benhamou
- University of Nice Sophia Antipolis, Institute for Research on Cancer and Aging of Nice CNRS UMR 7284/INSERM U 1081, France; University of Nice Sophia Antipolis, Nice University Hospital, Odontology Department, Nice, France
| | - V Picco
- Centre Scientifique de Monaco, Biomedical Department, 8 Quai Antoine Ier, MC-98000 Monaco, Monaco
| | - G Pagès
- University of Nice Sophia Antipolis, Institute for Research on Cancer and Aging of Nice CNRS UMR 7284/INSERM U 1081, France
| |
Collapse
|
35
|
Grammatikakis I, Zhang P, Panda AC, Kim J, Maudsley S, Abdelmohsen K, Yang X, Martindale JL, Motiño O, Hutchison ER, Mattson MP, Gorospe M. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2. Cell Rep 2016; 15:926-934. [PMID: 27117401 DOI: 10.1016/j.celrep.2016.03.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/18/2016] [Accepted: 03/22/2016] [Indexed: 10/21/2022] Open
Abstract
During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2) mRNA generates a short TRF2 protein isoform (TRF2-S) capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs) controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH) as RBPs specifically capable of interacting with the spliced RNA segment (exon 7) of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Peisu Zhang
- Laboratory of Neurosciences, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Stuart Maudsley
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, 2610 Antwerpen, Belgium
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Omar Motiño
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Emmette R Hutchison
- Laboratory of Neurosciences, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
36
|
Xu YY, Gao P, Sun Y, Duan YR. Development of targeted therapies in treatment of glioblastoma. Cancer Biol Med 2015; 12:223-37. [PMID: 26487967 PMCID: PMC4607828 DOI: 10.7497/j.issn.2095-3941.2015.0020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a type of tumor that is highly lethal despite maximal therapy. Standard therapeutic approaches provide modest improvement in progression-free and overall survival, necessitating the investigation of novel therapies. Oncologic therapy has recently experienced a rapid evolution toward "targeted therapy", with drugs directed against specific targets which play essential roles in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Inhibitors of these molecules have already entered or are undergoing clinical trials. However, significant challenges in their development remain because several preclinical and clinical studies present conflicting results. In this article, we will provide an up-to-date review of the current targeted therapies in GBM.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - You-Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|