1
|
Zhang L, Xu YM, Bian MM, Yan HZ, Gao JX, Bao QH, Chen YQ, Ding SQ, Wang R, Zhang N, Hu JG, Lü HZ. Ezrin, a novel marker of ependymal cells, can be used to demonstrate their proliferation regulation after spinal cord injury in mice. Neurobiol Dis 2024; 203:106746. [PMID: 39603280 DOI: 10.1016/j.nbd.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Ependymal cells (EpCs), as a potential stem cell niche, have gained interest for their potential in vivo stem cell therapy for spinal cord injury (SCI). Heterogeneity of spinal EpCs may contribute to differences in the ability of spinal EpCs to proliferate, differentiate and transition after injury, while there is limited understanding of the regulation of these events. Our research found that ezrin (Ezr) was expressed highly in EpCs of the spinal cord, and its upregulation rapidly occurred after injury (6 h). It remained consistently highly expressed in proliferating EpCs, this occurs before pathological accumulation of it occurs in other glial and immune-related cells. Differential expression of Ezr, Arg3, Pvalb, Ccnd1, and Gmpr characterized distinct responses of EpCs to injury activity. Also, we uncovered the dynamic regulatory behavior of immature EpCs after injury. In contrast to constitutive expression in parenchymal tissues, injury factors upregulated guanosine monophosphate reductase (Gmpr) in arrested EpCs, unveiling a distinctive mechanism to regulate proliferation in EpCs following spinal cord injury.
Collapse
Affiliation(s)
- Lin Zhang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; School of life Science, Bengbu Medical University, Anhui 233030, PR China
| | - Yao-Mei Xu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Ming-Ming Bian
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Qian-Hui Bao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases,Bengbu Medical University, Anhui 233030, PR China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases,Bengbu Medical University, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases,Bengbu Medical University, Anhui 233030, PR China.
| |
Collapse
|
2
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Rodrigues-Amorim D, Bozzelli PL, Kim T, Liu L, Gibson O, Yang CY, Murdock MH, Galiana-Melendez F, Schatz B, Davison A, Islam MR, Shin Park D, Raju RM, Abdurrob F, Nelson AJ, Min Ren J, Yang V, Stokes MP, Tsai LH. Multisensory gamma stimulation mitigates the effects of demyelination induced by cuprizone in male mice. Nat Commun 2024; 15:6744. [PMID: 39112447 PMCID: PMC11306744 DOI: 10.1038/s41467-024-51003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.
Collapse
Grants
- R01 AG069232 NIA NIH HHS
- R01 AT011460 NCCIH NIH HHS
- R01 NS122742 NINDS NIH HHS
- R56 AG069232 NIA NIH HHS
- We would like to acknowledge the following individuals and organizations for their support: Fundacion Bancaria la Caixa, The JPB Foundation, Carol and Gene Ludwig Family Foundation, Lester A. Gimpelson, Eduardo Eurnekian, The Dolby Family, Kathy and Miguel Octavio, the Marc Haas Foundation, Ben Lenail and Laurie Yoler, and NIH RO1 grants AG069232, AT011460 and R01NS122742 to L.-H.T.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P Lorenzo Bozzelli
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - TaeHyun Kim
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liwang Liu
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Cheng-Yi Yang
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Murdock
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabiola Galiana-Melendez
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brooke Schatz
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexis Davison
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Md Rezaul Islam
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dong Shin Park
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ravikiran M Raju
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Newborn Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Fatema Abdurrob
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Jian Min Ren
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, USA
| | - Vicky Yang
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA, USA
| | | | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
4
|
A method to estimate the cellular composition of the mouse brain from heterogeneous datasets. PLoS Comput Biol 2022; 18:e1010739. [PMID: 36542673 PMCID: PMC9838873 DOI: 10.1371/journal.pcbi.1010739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/13/2023] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
The mouse brain contains a rich diversity of inhibitory neuron types that have been characterized by their patterns of gene expression. However, it is still unclear how these cell types are distributed across the mouse brain. We developed a computational method to estimate the densities of different inhibitory neuron types across the mouse brain. Our method allows the unbiased integration of diverse and disparate datasets into one framework to predict inhibitory neuron densities for uncharted brain regions. We constrained our estimates based on previously computed brain-wide neuron densities, gene expression data from in situ hybridization image stacks together with a wide range of values reported in the literature. Using constrained optimization, we derived coherent estimates of cell densities for the different inhibitory neuron types. We estimate that 20.3% of all neurons in the mouse brain are inhibitory. Among all inhibitory neurons, 18% predominantly express parvalbumin (PV), 16% express somatostatin (SST), 3% express vasoactive intestinal peptide (VIP), and the remainder 63% belong to the residual GABAergic population. We find that our density estimations improve as more literature values are integrated. Our pipeline is extensible, allowing new cell types or data to be integrated as they become available. The data, algorithms, software, and results of our pipeline are publicly available and update the Blue Brain Cell Atlas. This work therefore leverages the research community to collectively converge on the numbers of each cell type in each brain region.
Collapse
|
5
|
Miyahara K, Nishimaru H, Matsumoto J, Setogawa T, Taguchi T, Ono T, Nishijo H. Involvement of Parvalbumin-Positive Neurons in the Development of Hyperalgesia in a Mouse Model of Fibromyalgia. FRONTIERS IN PAIN RESEARCH 2022; 2:627860. [PMID: 35295447 PMCID: PMC8915639 DOI: 10.3389/fpain.2021.627860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Fibromyalgia (FM) presents as chronic systemic pain, which might be ascribed to central sensitization, in which pain information processing is amplified in the central nervous system. Since patients with FM display elevated gamma oscillations in the pain matrix and parvalbumin (PV)-positive neurons play a critical role in induction of gamma oscillations, we hypothesized that changes in PV-positive neurons are involved in hyperalgesia in fibromyalgia. In the present study, to investigate a role of PV-positive neurons in neuropathic pain, mice received reserpine administration for 3 consecutive days as an animal model of FM (RES group), while control mice received vehicle injections in the same way (VEH group). The mice were subjected to hot-plate and forced swim tests, and immuno-stained PV-positive neurons were counted in the pain matrix. We investigated relationships between PV-positive neuron density in the pain matrix and pain avoidance behaviors. The results indicated that the mice in the RES group showed transient bodyweight loss and longer immobility time in the forced swim test than the mice in the VEH group. In the hot-plate test, the RES group showed shorter response latencies and a larger number of jumps in response to nociceptive thermal stimulus than the VEH group. Histological examination indicated an increase in the density of PV-positive neurons in the primary somatosensory cortex (S1) in the RES group. Furthermore, response latencies to the hot-plate were significantly and negatively correlated with the density of PV-positive neurons in the S1. These results suggest a critical role for PV-positive neurons in the S1 to develop hyperalgesia in FM.
Collapse
Affiliation(s)
- Kenichiro Miyahara
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Taketoshi Ono
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Deng S, Gan L, Liu C, Xu T, Zhou S, Guo Y, Zhang Z, Yang GY, Tian H, Tang Y. Roles of Ependymal Cells in the Physiology and Pathology of the Central Nervous System. Aging Dis 2022; 14:468-483. [PMID: 37008045 PMCID: PMC10017161 DOI: 10.14336/ad.2022.0826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Ependymal cells are indispensable components of the central nervous system (CNS). They originate from neuroepithelial cells of the neural plate and show heterogeneity, with at least three types that are localized in different locations of the CNS. As glial cells in the CNS, accumulating evidence demonstrates that ependymal cells play key roles in mammalian CNS development and normal physiological processes by controlling the production and flow of cerebrospinal fluid (CSF), brain metabolism, and waste clearance. Ependymal cells have been attached to great importance by neuroscientists because of their potential to participate in CNS disease progression. Recent studies have demonstrated that ependymal cells participate in the development and progression of various neurological diseases, such as spinal cord injury and hydrocephalus, raising the possibility that they may serve as a potential therapeutic target for the disease. This review focuses on the function of ependymal cells in the developmental CNS as well as in the CNS after injury and discusses the underlying mechanisms of controlling the functions of ependymal cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaohui Tang
- Correspondence should be addressed to: Dr. Yaohui Tang, Med-X Research Institute and School of Biomedical Engineering Shanghai Jiao Tong University, Shanghai, China. .
| |
Collapse
|
7
|
Li YF, Scerif F, Picker SR, Stone TJ, Pickles JC, Moulding DA, Avery A, Virasami A, Fairchild AR, Tisdall M, Harkness W, Cross JH, Hargrave D, Guillemot F, Paine SM, Yasin SA, Jacques TS. Identifying cellular signalling molecules in developmental disorders of the brain: Evidence from focal cortical dysplasia and tuberous sclerosis. Neuropathol Appl Neurobiol 2021; 47:781-795. [PMID: 33797808 DOI: 10.1111/nan.12715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
AIMS We understand little of the pathogenesis of developmental cortical lesions, because we understand little of the diversity of the cell types that contribute to the diseases or how those cells interact. We tested the hypothesis that cellular diversity and cell-cell interactions play an important role in these disorders by investigating the signalling molecules in the commonest cortical malformations that lead to childhood epilepsy, focal cortical dysplasia (FCD) and tuberous sclerosis (TS). METHODS Transcriptional profiling clustered cases into molecularly distinct groups. Using gene expression data, we identified the secretory signalling molecules in FCD/TS and characterised the cell types expressing these molecules. We developed a functional model using organotypic cultures. RESULTS We identified 113 up-regulated secretory molecules in FCDIIB/TS. The top 12 differentially expressed genes (DEGs) were validated by immunohistochemistry. This highlighted two molecules, Chitinase 3-like protein 1 (CHI3L1) and C-C motif chemokine ligand 2 (CCL2) (MCP1) that were expressed in a unique population of small cells in close proximity to balloon cells (BC). We then characterised these cells and developed a functional model in organotypic slice cultures. We found that the number of CHI3L1 and CCL2 expressing cells decreased following inhibition of mTOR, the main aberrant signalling pathway in TS and FCD. CONCLUSIONS Our findings highlight previously uncharacterised small cell populations in FCD and TS which express specific signalling molecules. These findings indicate a new level of diversity and cellular interactions in cortical malformations and provide a generalisable approach to understanding cell-cell interactions and cellular heterogeneity in developmental neuropathology.
Collapse
Affiliation(s)
- Yao-Feng Li
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Departments of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK.,Pathology Department, Tri-Service General Hospital & National Defence Medical Centre, Taipei, Taiwan
| | - Fatma Scerif
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon R Picker
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Thomas J Stone
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Departments of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Jessica C Pickles
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Departments of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Dale A Moulding
- ICH GOS Imaging Facility, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Aimee Avery
- Departments of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Alex Virasami
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Departments of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Amy R Fairchild
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Departments of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Martin Tisdall
- Neurosurgery, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - William Harkness
- Neurosurgery, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - J Helen Cross
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Darren Hargrave
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Neuro-Oncology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Simon M Paine
- Department of Neuropathology, Queens Medical Centre, Nottingham University NHS Trust, Nottingham, UK
| | - Shireena A Yasin
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Departments of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.,Departments of Histopathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Li QM, Liao HZ, Wang WB, Zeng SY, Qiu XS, Ke S, Xiao J, Li QH, Xia XW, Li Y. Prognostic Analysis and Risk Factors Associated with Fetal Ventriculomegaly. Pediatr Neurosurg 2021; 56:407-415. [PMID: 34175844 DOI: 10.1159/000516378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND This study aimed to investigate the clinical outcome and related risk factors of fetal lateral ventriculomegaly (VM). METHODS A retrospective analysis was performed on 255 cases diagnosed as fetal VM. Prenatal imaging examination was carried out. The pregnancy outcomes were investigated through follow-up. According to the prognosis of children, they were divided into case group and control group. Multivariate logistic regression was used to analyze the factors influencing the prognosis of hydrocephalus. RESULTS After excluding the cases with either loss of follow-up or incomplete information, 102 cases were followed up. Twelve cases with poor prognosis were set as the case group. According to the maternal age, gestational age, gender of children, and follow-up time, 3 cases were selected from the other 90 cases for each child in the case group, respectively, and selected as the control group. Paired comparative analysis was performed on 48 cases. Using prognosis as a dependent variable, multivariate logistic regression analysis of the statistically significant factors indicated that the change speed of width ratio (CSWR) and maximum lateral ventricular width (MW) were associated with fetal prognosis. CONCLUSIONS Our results suggested that CSWR and MW may have the value of predicting fetal prognosis.
Collapse
Affiliation(s)
- Qi-Ming Li
- Department of Neurosurgery, Taihe Hospital, Shiyan, China, .,Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China,
| | - Hong-Zhan Liao
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wen-Bo Wang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shi-Yi Zeng
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xian-Sheng Qiu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shuai Ke
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jing Xiao
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qing-Hua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xue-Wei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yong Li
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China.,Sport and Health College of Guangxi Normal University, Guilin, China
| |
Collapse
|
9
|
Parvalbumin expression in oligodendrocyte-like CG4 cells causes a reduction in mitochondrial volume, attenuation in reactive oxygen species production and a decrease in cell processes' length and branching. Sci Rep 2019; 9:10603. [PMID: 31332265 PMCID: PMC6646370 DOI: 10.1038/s41598-019-47112-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Forebrain glial cells - ependymal cells and astrocytes -acquire upon injury- a "reactive" phenotype associated with parvalbumin (PV) upregulation. Since free radicals, e.g. reactive oxygen species (ROS) play a role in the pathogenesis of multiple sclerosis, and that PV-upregulation in glial cells is inversely correlated with the level of oxidative stress, we hypothesized that PV-upregulation might also protect oligodendrocytes by decreasing ROS production. Lentiviral transduction techniques allowed for PV overexpression in CG4 oligodendrocyte progenitor cells (OPCs). Depending on the growth medium CG4 cells can be maintained in an OPC-like state, or induced to differentiate into an oligodendrocyte (OLG)-like phenotype. While increased levels of PV had no effect on cell proliferation and invasiveness in vitro, PV decreased the mitochondria volume in CG4 cell bodies, as well as the mitochondrial density in CG4 processes in both OPC-like and OLG-like states. In line with the PV-induced global decrease in mitochondrial volume, elevated PV levels reduced transcript levels of mitochondrial transcription factors involved in mitochondria biogenesis. In differentiated PV-overexpressing CG4 cells with a decreased mitochondrial volume, UV-induced ROS production was lower than in control CG4 cells hinting towards a possible role of PV in counteracting oxidative stress. Unexpectedly, PV also decreased the length of processes in undifferentiated CG4 cells and moreover diminished branching of differentiated CG4 cell processes, strongly correlated with the decreased density of mitochondria in CG4 cell processes. Thus besides conferring a protective role against oxidative stress, PV in a cell autonomous fashion additionally affects process' growth and branching in CG4 cells.
Collapse
|
10
|
Lichvarova L, Henzi T, Safiulina D, Kaasik A, Schwaller B. Parvalbumin alters mitochondrial dynamics and affects cell morphology. Cell Mol Life Sci 2018; 75:4643-4666. [PMID: 30255402 PMCID: PMC6208788 DOI: 10.1007/s00018-018-2921-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022]
Abstract
The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.
Collapse
Affiliation(s)
- Lucia Lichvarova
- Unit of Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Thomas Henzi
- Unit of Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Dzhamilja Safiulina
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Beat Schwaller
- Unit of Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland.
| |
Collapse
|
11
|
Arneson D, Zhang G, Ying Z, Zhuang Y, Byun HR, Ahn IS, Gomez-Pinilla F, Yang X. Single cell molecular alterations reveal target cells and pathways of concussive brain injury. Nat Commun 2018; 9:3894. [PMID: 30254269 PMCID: PMC6156584 DOI: 10.1038/s41467-018-06222-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
The complex neuropathology of traumatic brain injury (TBI) is difficult to dissect, given the convoluted cytoarchitecture of affected brain regions such as the hippocampus. Hippocampal dysfunction during TBI results in cognitive decline that may escalate to other neurological disorders, the molecular basis of which is hidden in the genomic programs of individual cells. Using the unbiased single cell sequencing method Drop-seq, we report that concussive TBI affects previously undefined cell populations, in addition to classical hippocampal cell types. TBI also impacts cell type-specific genes and pathways and alters gene co-expression across cell types, suggesting hidden pathogenic mechanisms and therapeutic target pathways. Modulating the thyroid hormone pathway as informed by the T4 transporter transthyretin Ttr mitigates TBI-associated genomic and behavioral abnormalities. Thus, single cell genomics provides unique information about how TBI impacts diverse hippocampal cell types, adding new insights into the pathogenic pathways amenable to therapeutics in TBI and related disorders.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yumei Zhuang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyae Ran Byun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Filice F, Celio MR, Babalian A, Blum W, Szabolcsi V. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice. J Comp Neurol 2017; 525:3266-3285. [DOI: 10.1002/cne.24276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Federica Filice
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
| | - Marco R. Celio
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
| | - Alexandre Babalian
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
| | - Walter Blum
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
- INSERM UMR-1162, Génomique Fonctionelle des Tumeurs Solides; Paris France
| | - Viktoria Szabolcsi
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
| |
Collapse
|
13
|
Szabolcsi V, Albisetti GW, Celio MR. Parvalbumin-Neurons of the Ventrolateral Hypothalamic Parvafox Nucleus Receive a Glycinergic Input: A Gene-Microarray Study. Front Mol Neurosci 2017; 10:8. [PMID: 28167900 PMCID: PMC5253383 DOI: 10.3389/fnmol.2017.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/06/2017] [Indexed: 12/30/2022] Open
Abstract
The ventrolateral hypothalamic parvafox (formerly called PV1-Foxb1) nucleus is an anatomical entity of recent discovery and unknown function. With a view to gaining an insight into its putative functional role(s), we conducted a gene-microarray analysis and, armed with the forthcoming data, controlled the results with the Allen databases and the murine BrainStars (B*) database. The parvafox nucleus was specifically sampled by laser-capture microdissection and the transcriptome was subjected to a microarray analysis on Affymetrix chips. Eighty-two relevant genes were found to be potentially more expressed in this brain region than in either the cerebral cortex or the hippocampus. When the expression patterns of these genes were counterchecked in the Allen-Database of in-situ hybridizations and in the B*-microarray database, their localization in the parvafox region was confirmed for thirteen. For nine novel genes, which are particularly interesting because of their possible involvement in neuromodulation, the expression was verified by quantitative real time-PCR. Of particular functional importance may be the occurrence of glycine receptors, the presence of which indicates that the activity of the parvafox nucleus is under ascending inhibitory control.
Collapse
Affiliation(s)
- Viktoria Szabolcsi
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Gioele W Albisetti
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Marco R Celio
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
14
|
Blum W, Pecze L, Felley-Bosco E, Schwaller B. Overexpression or absence of calretinin in mouse primary mesothelial cells inversely affects proliferation and cell migration. Respir Res 2015; 16:153. [PMID: 26695618 PMCID: PMC4699379 DOI: 10.1186/s12931-015-0311-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The Ca(2+)-binding protein calretinin is currently used as a positive marker for identifying epithelioid malignant mesothelioma (MM) and reactive mesothelium, but calretinin's likely role in mesotheliomagenesis remains unclear. Calretinin protects immortalized mesothelial cells in vitro from asbestos-induced cytotoxicity and thus might be implicated in mesothelioma formation. To further investigate calretinin's putative role in the early steps of MM generation, primary mesothelial cells from calretinin knockout (CR-/-) and wildtype (WT) mice were compared. METHODS Primary mouse mesothelial cells from WT and CR-/- mice were investigated with respect to morphology, marker proteins, proliferation, cell cycle parameters and mobility in vitro. Overexpression of calretinin or a nuclear-targeted variant was achieved by a lentiviral expression system. RESULTS CR-/- mice have a normal mesothelium and no striking morphological abnormalities compared to WT animals were noted. Primary mouse mesothelial cells from both genotypes show a typical "cobblestone-like" morphology and express mesothelial markers including mesothelin. In cells from CR-/- mice in vitro, we observed more giant cells and a significantly decreased proliferation rate. Up-regulation of calretinin in mesothelial cells of both genotypes increases the proliferation rate and induces a cobblestone-like epithelial morphology. The length of the S/G2/M phase is unchanged, however the G1 phase is clearly prolonged in CR-/- cells. They are also much slower to close a scratch in a confluent cell layer (2D-wound assay). In addition to a change in cell morphology, an increase in proliferation and mobility is observed, if calretinin overexpression is targeted to the nucleus. Thus, both calretinin and nuclear-targeted calretinin increase mesothelial cell proliferation and consequently, speed up the scratch-closure time. The increased rate of scratch closure in WT cells is the result of two processes: an increased proliferation rate and augmented cell mobility of the border cells migrating towards the empty space. CONCLUSIONS We hypothesize that the differences in proliferation and mobility between WT and CR-/- mesothelial cells are the likely result from differences in their developmental trajectories. The mechanistic understanding of the function of calretinin and its putative implication in signaling pathways in normal mesothelial cells may help understanding its role during the processes that lead to mesothelioma formation and could possibly open new avenues for mesothelioma therapy, either by directly targeting calretinin expression or indirectly by targeting calretinin-mediated downstream signaling.
Collapse
Affiliation(s)
- Walter Blum
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland
| | - László Pecze
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, University Hospital Zürich, Labor 40E, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Beat Schwaller
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland.
| |
Collapse
|