1
|
Shackelford R. Pioglitazone as a Possible Treatment for Ataxia-Telangiectasia. Biomolecules 2024; 14:1264. [PMID: 39456197 PMCID: PMC11506080 DOI: 10.3390/biom14101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive disorder characterized by immunodeficiency, progressive cerebellar ataxia, and an increased malignancy risk. Cells derived from individuals with AT show multiple defects, including high oxidant and ionizing radiation sensitivities, poor DNA repair, low iron-sulfur cluster levels, and low reduced glutathione. The clinical course of AT is progressive and unrelenting, with most individuals having a survival time of approximately twenty-five years. Presently, AT has no effective treatments, and most patients receive supportive care only. Recently, pioglitazone, a thiazolidinedione class used to treat type 2 diabetes, has been demonstrated to exert beneficial effects on AT cells and on diabetic individuals with AT. Here, I will discuss the possible molecular mechanisms of pioglitazone's favorable effects on the AT phenotype and why it may have utility in treating some aspects of AT.
Collapse
Affiliation(s)
- Rodney Shackelford
- Department of Pathology, University of South Alabama, 2451 University Hospital Drive, Mobile, AL 36617, USA
| |
Collapse
|
2
|
Bishop A, Romero JC, Tonapi S, Parihar M, Loranc E, Miller H, Lawrence L, Bassani N, Robledo D, Cao L, Nie J, Kanda K, Stoja A, Garcia N, Gorthi A, Stoveken B, Lane A, Fan T, Cassel T, Zha S, Musi N. ATM phosphorylation of CD98HC increases antiporter membrane localization and prevents chronic toxic glutamate accumulation in Ataxia telangiectasia. RESEARCH SQUARE 2024:rs.3.rs-4947457. [PMID: 39281865 PMCID: PMC11398575 DOI: 10.21203/rs.3.rs-4947457/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Ataxia telangiectasia (A-T) is a rare genetic disorder characterized by neurological defects, immunodeficiency, cancer predisposition, radiosensitivity, decreased blood vessel integrity, and diabetes. ATM, the protein mutated in A-T, responds to DNA damage and oxidative stress, but its functional relationship to the progressive clinical manifestation of A-T is not understood. CD98HC chaperones cystine/glutamate (x c - ) and cationic/neutral amino acid (y + L) antiporters to the cell membrane, and CD98HC phosphorylation by ATM accelerates membrane localization to acutely increase amino acid transport. Loss of ATM impacts tissues reliant on SLC family antiporters relevant to A-T phenotypes, such as endothelial cells (telangiectasia) and pancreatic α-cells (fatty liver and diabetes) with toxic glutamate accumulation. Bypassing the antiporters restores intracellular metabolic balance both in ATM-deficient cells and mouse models. These findings provide new insight into the long-known benefits of N-acetyl cysteine to A-T cells beyond oxidative stress through removing excess glutamate by production of glutathione.
Collapse
|
3
|
Briguglio S, Cambria C, Albizzati E, Marcello E, Provenzano G, Frasca A, Antonucci F. New Views of the DNA Repair Protein Ataxia-Telangiectasia Mutated in Central Neurons: Contribution in Synaptic Dysfunctions of Neurodevelopmental and Neurodegenerative Diseases. Cells 2023; 12:2181. [PMID: 37681912 PMCID: PMC10486624 DOI: 10.3390/cells12172181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Ataxia-Telangiectasia Mutated (ATM) is a serine/threonine protein kinase principally known to orchestrate DNA repair processes upon DNA double-strand breaks (DSBs). Mutations in the Atm gene lead to Ataxia-Telangiectasia (AT), a recessive disorder characterized by ataxic movements consequent to cerebellar atrophy or dysfunction, along with immune alterations, genomic instability, and predisposition to cancer. AT patients show variable phenotypes ranging from neurologic abnormalities and cognitive impairments to more recently described neuropsychiatric features pointing to symptoms hardly ascribable to the canonical functions of ATM in DNA damage response (DDR). Indeed, evidence suggests that cognitive abilities rely on the proper functioning of DSB machinery and specific synaptic changes in central neurons of ATM-deficient mice unveiled unexpected roles of ATM at the synapse. Thus, in the present review, upon a brief recall of DNA damage responses, we focus our attention on the role of ATM in neuronal physiology and pathology and we discuss recent findings showing structural and functional changes in hippocampal and cortical synapses of AT mouse models. Collectively, a deeper knowledge of ATM-dependent mechanisms in neurons is necessary not only for a better comprehension of AT neurological phenotypes, but also for a higher understanding of the pathological mechanisms in neurodevelopmental and degenerative disorders involving ATM dysfunctions.
Collapse
Affiliation(s)
- Sabrina Briguglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Elena Albizzati
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, MI, Italy;
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Via Sommarive 9, 38068 Trento, TN, Italy;
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via F.lli Cervi 93, 20129 Segrate (MI) and via Vanvitelli 32, 20129 Milan, MI, Italy; (S.B.); (C.C.); (A.F.)
- Institute of Neuroscience, IN-CNR, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| |
Collapse
|
4
|
Islam MZ, Shackelford RE. Pioglitazone treatment increases the cellular acid-labile and protein-bound sulfane sulfur fractions. Biochem Biophys Res Commun 2023; 670:79-86. [PMID: 37285721 DOI: 10.1016/j.bbrc.2023.05.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Iron-sulfur clusters play a central role in cellular function and are regulated by the ATM protein. Iron-sulfur clusters are part of the cellular sulfide pool, which functions to maintain cardiovascular health, and consists of free hydrogen sulfide, iron-sulfur clusters, protein bound sulfides, which constitute the total cellular sulfide fraction. ATM protein signaling and the drug pioglitazone share some cellular effects, which led us to examine the effects of this drug on cellular iron-sulfur cluster formation. Additionally, as ATM functions in the cardiovasculature and its signaling may be diminished in cardiovascular disease, we examined pioglitazone in the same cell type, with and without ATM protein expression. METHODS We examined the effects of pioglitazone treatment on the total cellular sulfide profile, the glutathione redox state, cystathionine gamma-lyase enzymatic activity, and on double-stranded DNA break formation in cells with and without ATM protein expression. RESULTS Pioglitazone increased the acid-labile (iron-sulfur cluster) and bound sulfur cellular fractions and reduced cystathionine gamma-lyase enzymatic activity in cells with and without ATM protein expression. Interestingly, pioglitazone also increased reduced glutathione and lowered DNA damage in cells without ATM protein expression, but not in ATM wild-type cells. These results are interesting as the acid-labile (iron-sulfur cluster), bound sulfur cellular fractions, and reduced glutathione are low in cardiovascular disease. CONCLUSION Here we found that pioglitazone increased the acid-labile (iron-sulfur cluster) and bound sulfur cellular fractions, impinges on hydrogen sulfide synthesis, and exerts beneficial effect on cells with deficient ATM protein signaling. Thus, we show a novel pharmacologic action for pioglitazone.
Collapse
Affiliation(s)
- Mohammad Z Islam
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA, 71130, United States
| | - Rodney E Shackelford
- Department of Pathology, University of South Alabama, 2451 University Hospital Dr, Mobile, AL, 37717, United States.
| |
Collapse
|
5
|
Islam MZ, Shen X, Pardue S, Kevil CG, Shackelford RE. The ataxia-telangiectasia mutated gene product regulates the cellular acid-labile sulfide fraction. DNA Repair (Amst) 2022; 116:103344. [PMID: 35696854 PMCID: PMC11118069 DOI: 10.1016/j.dnarep.2022.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein regulates cell cycle checkpoints, the cellular redox state, and double-stranded DNA break repair. ATM loss causes the disorder ataxia-telangiectasia (A-T), distinguished by ataxia, telangiectasias, dysregulated cellular redox and iron responses, and an increased cancer risk. We examined the sulfur pool in A-T cells, with and without an ATM expression vector. While free and bound sulfide levels were not changed with ATM expression, the acid-labile sulfide faction was significantly increased. ATM expression also increased cysteine desulfurase (NFS1), NFU1 iron-sulfur cluster scaffold homolog protein, and several mitochondrial complex I proteins' expression. Additionally, ATM expression suppressed cystathionine β-synthase and cystathionine γ-synthase protein expression, cystathionine γ-synthase enzymatic activity, and increased the reduced to oxidized glutathione ratio. This last observation is interesting, as dysregulated glutathione is implicated in A-T pathology. As ATM expression increases the expression of proteins central in initiating 2Fe-2S and 4Fe-4S cluster formation (NFS1 and NFU1, respectively), and the acid-labile sulfide faction is composed of sulfur incorporated into Fe-S clusters, our data indicates that ATM regulates aspects of Fe-S cluster biosynthesis, the transsulfuration pathway, and glutathione redox cycling. Thus, our data may explain some of the redox- and iron-related pathologies seen in A-T.
Collapse
Affiliation(s)
- Mohammad Z Islam
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Xinggui Shen
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Sibile Pardue
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Christopher G Kevil
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Rodney E Shackelford
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States.
| |
Collapse
|
6
|
Perez H, Abdallah MF, Chavira JI, Norris AS, Egeland MT, Vo KL, Buechsenschuetz CL, Sanghez V, Kim JL, Pind M, Nakamura K, Hicks GG, Gatti RA, Madrenas J, Iacovino M, McKinnon PJ, Mathews PJ. A novel, ataxic mouse model of ataxia telangiectasia caused by a clinically relevant nonsense mutation. eLife 2021; 10:e64695. [PMID: 34723800 PMCID: PMC8601662 DOI: 10.7554/elife.64695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated (ATM) and Aprataxin (APTX), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders are severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons (PNs) are significantly perturbed (e.g., reduced membrane capacitance, lower action potential [AP] thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter PN neural activity, including a progressive reduction in spontaneous AP firing frequency that correlates with both cerebellar atrophy and ataxia over the animal's first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Finally, by inserting a clinically relevant nonsense-type null mutation in Atm, we demonstrate that Small Molecule Read-Through (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.
Collapse
Affiliation(s)
- Harvey Perez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - May F Abdallah
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jose I Chavira
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Angelina S Norris
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Martin T Egeland
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Karen L Vo
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Callan L Buechsenschuetz
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Valentina Sanghez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jeannie L Kim
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Molly Pind
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Kotoka Nakamura
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Geoffrey G Hicks
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Richard A Gatti
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Joaquin Madrenas
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, Harbor-UCLA Medical CenterTorranceUnited States
| | - Michelina Iacovino
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Pediatrics, Harbor-UCLA Medical CenterTorranceUnited States
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, St. Jude Children’s Research HospitalMemphisUnited States
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Neurology, Harbor-UCLA Medical CenterTorranceUnited States
| |
Collapse
|
7
|
Deletion of P2X7 Receptor Decreases Basal Glutathione Level by Changing Glutamate-Glutamine Cycle and Neutral Amino Acid Transporters. Cells 2020; 9:cells9040995. [PMID: 32316268 PMCID: PMC7226967 DOI: 10.3390/cells9040995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Glutathione (GSH) is an endogenous tripeptide antioxidant that consists of glutamate-cysteine-glycine. GSH content is limited by the availability of glutamate and cysteine. Furthermore, glutamine is involved in the regulation of GSH synthesis via the glutamate–glutamine cycle. P2X7 receptor (P2X7R) is one of the cation-permeable ATP ligand-gated ion channels, which is involved in neuronal excitability, neuroinflammation and astroglial functions. In addition, P2X7R activation decreases glutamate uptake and glutamine synthase (GS) expression/activity. In the present study, we found that P2X7R deletion decreased the basal GSH level without altering GSH synthetic enzyme expressions in the mouse hippocampus. P2X7R deletion also increased expressions of GS and ASCT2 (a glutamine:cysteine exchanger), but diminished the efficacy of N-acetylcysteine (NAC, a GSH precursor) in the GSH level. SIN-1 (500 μM, a generator nitric oxide, superoxide and peroxynitrite), which facilitates the cystine–cysteine shuttle mediated by xCT (a glutamate/cystein:cystine/NAC antiporter), did not affect basal GSH concentration in WT and P2X7R knockout (KO) mice. However, SIN-1 effectively reduced the efficacy of NAC in GSH synthesis in WT mice, but not in P2X7R KO mice. Therefore, our findings indicate that P2X7R may be involved in the maintenance of basal GSH levels by regulating the glutamate–glutamine cycle and neutral amino acid transports under physiological conditions, which may be the defense mechanism against oxidative stress during P2X7R activation.
Collapse
|
8
|
Abstract
Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.
Collapse
|
9
|
Cerebellar Astrocytes: Much More Than Passive Bystanders In Ataxia Pathophysiology. J Clin Med 2020; 9:jcm9030757. [PMID: 32168822 PMCID: PMC7141261 DOI: 10.3390/jcm9030757] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Ataxia is a neurodegenerative syndrome, which can emerge as a major element of a disease or represent a symptom of more complex multisystemic disorders. It comprises several forms with a highly variegated etiology, mainly united by motor, balance, and speech impairments and, at the tissue level, by cerebellar atrophy and Purkinje cells degeneration. For this reason, the contribution of astrocytes to this disease has been largely overlooked in the past. Nevertheless, in the last few decades, growing evidences are pointing to cerebellar astrocytes as crucial players not only in the progression but also in the onset of distinct forms of ataxia. Although the current knowledge on this topic is very fragmentary and ataxia type-specific, the present review will attempt to provide a comprehensive view of astrocytes’ involvement across the distinct forms of this pathology. Here, it will be highlighted how, through consecutive stage-specific mechanisms, astrocytes can lead to non-cell autonomous neurodegeneration and, consequently, to the behavioral impairments typical of this disease. In light of that, treating astrocytes to heal neurons will be discussed as a potential complementary therapeutic approach for ataxic patients, a crucial point provided the absence of conclusive treatments for this disease.
Collapse
|
10
|
Tal E, Alfo M, Zha S, Barzilai A, De Zeeuw CI, Ziv Y, Shiloh Y. Inactive Atm abrogates DSB repair in mouse cerebellum more than does Atm loss, without causing a neurological phenotype. DNA Repair (Amst) 2018; 72:10-17. [PMID: 30348496 PMCID: PMC7985968 DOI: 10.1016/j.dnarep.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The genome instability syndrome, ataxia-telangiectasia (A-T) is caused by null mutations in the ATM gene, that lead to complete loss or inactivation of the gene's product, the ATM protein kinase. ATM is the primary mobilizer of the cellular response to DNA double-strand breaks (DSBs) - a broad signaling network in which many components are ATM targets. The major clinical feature of A-T is cerebellar atrophy, characterized by relentless loss of Purkinje and granule cells. In Atm-knockout (Atm-KO) mice, complete loss of Atm leads to a very mild neurological phenotype, suggesting that Atm loss is not sufficient to markedly abrogate cerebellar structure and function in this organism. Expression of inactive ("kinase-dead") Atm (AtmKD) in mice leads to embryonic lethality, raising the question of whether conditional expression of AtmKD in the murine nervous system would lead to a more pronounced neurological phenotype than Atm loss. We generated two mouse strains in which AtmKD was conditionally expressed as the sole Atm species: one in the CNS and one specifically in Purkinje cells. Focusing our analysis on Purkinje cells, the dynamics of DSB readouts indicated that DSB repair was delayed longer in the presence of AtmKD compared to Atm loss. However, both strains exhibited normal life span and displayed no gross cerebellar histological abnormalities or significant neurological phenotype. We conclude that the presence of AtmKD is indeed more harmful to DSB repair than Atm loss, but the murine central nervous system can reasonably tolerate the extent of this DSB repair impairment. Greater pressure needs to be exerted on genome stability to obtain a mouse model that recapitulates the severe A-T neurological phenotype.
Collapse
Affiliation(s)
- Efrat Tal
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Marina Alfo
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, and the Royal Netherlands Academy of Art & Science, Amsterdam, Netherlands
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, New York, United States.
| |
Collapse
|
11
|
Berger ND, Stanley FKT, Moore S, Goodarzi AA. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0283. [PMID: 28847820 DOI: 10.1098/rstb.2016.0283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 12/14/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- N Daniel Berger
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Fintan K T Stanley
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Shaun Moore
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
12
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Biagiotti S, Menotta M, Orazi S, Spapperi C, Brundu S, Fraternale A, Bianchi M, Rossi L, Chessa L, Magnani M. Dexamethasone improves redox state in ataxia telangiectasia cells by promoting an NRF2-mediated antioxidant response. FEBS J 2016; 283:3962-3978. [PMID: 27636396 DOI: 10.1111/febs.13901] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022]
Abstract
Ataxia telangiectasia (A-T) is a rare incurable neurodegenerative disease caused by biallelic mutations in the gene for ataxia-telangiectasia mutated (ATM). The lack of a functional ATM kinase leads to a pleiotropic phenotype, and oxidative stress is considered to have a crucial role in the complex physiopathology. Recently, steroids have been shown to reduce the neurological symptoms of the disease, although the molecular mechanism of this effect is largely unknown. In the present study, we have demonstrated that dexamethasone treatment of A-T lymphoblastoid cells increases the content of two of the most abundant antioxidants [glutathione (GSH) and NADPH] by up to 30%. Dexamethasone promoted the nuclear accumulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 to drive expression of antioxidant pathways involved in GSH synthesis and NADPH production. The latter effect was via glucose 6-phosphate dehydrogenase activation, as confirmed by increased enzyme activity and enhancement of the pentose phosphate pathway rate. This evidence indicates that glucocorticoids are able to potentiate antioxidant defenses to counteract oxidative stress in ataxia telangiectasia, and also reveals an unexpected role for dexamethasone in redox homeostasis and cellular antioxidant activity.
Collapse
Affiliation(s)
- Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Italy
| | - Sara Orazi
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Italy
| | - Chiara Spapperi
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Italy
| | - Serena Brundu
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Italy
| | | | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, University 'La Sapienza', Roma, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Italy
| |
Collapse
|