1
|
Chen J, He Y, Zhong J, Fu Y, Yuan S, Hou L, Zhang X, Meng F, Lin WJ, Ji F, Wang Z. Transcranial near-infrared light promotes remyelination through AKT1/mTOR pathway to ameliorate postoperative neurocognitive disorder in aged mice. Neuroscience 2025; 565:358-368. [PMID: 39653248 DOI: 10.1016/j.neuroscience.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/10/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Postoperative neurocognitive disorder (PND) is a prevalent complication following surgery and anesthesia, characterized by progressive cognitive decline. The precise etiology of PND remains unknown, and effective targeted therapeutic strategies are lacking. Transcranial near-infrared light (tNIRL) has shown potential benefits for cognitive dysfunction diseases, but its effect on PND remains unclear. Our previous research indicated a close association between demyelination and PND. In other central nervous system (CNS) disorders, tNIRL has been demonstrated to facilitate remyelination in response to demyelination. In this study, we established the PND model in 18-month-old male C57BL/6 mice using isoflurane anesthesia combined with left common carotid artery exposure. Following surgery, PND-aged mice were subjected to daily 2.5-minute tNIRL treatment at 810 nm for three consecutive days. Subsequently, we observed that tNIRL significantly improved cognitive performance and reduced inflammatory cytokine levels in the hippocampus of PND mice. Furthermore, tNIRL increased the expression of oligodendrocyte transcription factor 2 (OLIG2) and myelin basic protein (MBP), promoting remyelination while enhancing synaptic function-associated proteins such as synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Further investigation revealed that tNIRL may activate the AKT1/mTOR pathway to facilitate remyelination in PND mice. These findings indicate that tNIRL is a novel non-invasive therapeutic approach for treating PND.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Anesthesiology, Meishan City People's Hospital, Meishan, Sichuan, China
| | - Yuqing He
- Department of Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junying Zhong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanni Fu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shangyan Yuan
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longjie Hou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Wei-Jye Lin
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fengtao Ji
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Smith EE, Biessels GJ, Gao V, Gottesman RF, Liesz A, Parikh NS, Iadecola C. Systemic determinants of brain health in ageing. Nat Rev Neurol 2024; 20:647-659. [PMID: 39375564 DOI: 10.1038/s41582-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Virginia Gao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Medical Center Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Neal S Parikh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Mado H, Stasiniewicz A, Adamczyk-Sowa M, Sowa P. Selected Interleukins Relevant to Multiple Sclerosis: New Directions, Potential Targets and Therapeutic Perspectives. Int J Mol Sci 2024; 25:10931. [PMID: 39456713 PMCID: PMC11506881 DOI: 10.3390/ijms252010931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that progresses with demyelination and neurodegeneration. To date, many studies have revealed the key role of interleukins in the pathogenesis of MS, but their impact has not been fully explained. The aim of the present study was to collect and review the results obtained so far regarding the influence of interleukins on the development and course of MS and to assess the potential for their further use. Through the platform "PubMed", terms related to interleukins and MS were searched. The following interval was set as the time criterion: 2014-2024. A total of 12,731 articles were found, and 100 papers were subsequently used. Cells that produce IL-10 have a neuroprotective effect, whereas those that synthesize IL-6 most likely exacerbate neuroinflammation. IL-12, IL-23 and IL-18 represent pro-inflammatory cytokines. It was found that treatment with an anti-IL-12p40 monoclonal antibody in a study group of MS patients showed a beneficial effect. IL-4 is a pleiotropic cytokine that plays a significant role in type 2 immune responses and inhibits MS progression. IL-13 is an anti-inflammatory cytokine through which the processes of oligodendrogenesis and remyelination occur more efficiently. The group of interleukins discussed in our paper may represent a promising starting point for further research aimed at finding new therapies and prognostic markers for MS.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Artur Stasiniewicz
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
4
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Wu D, Zhou W, Du J, Zhao T, Li N, Peng F, Li A, Zhang X, Zhang M, Hao A. Isoliquiritigenin ameliorates abnormal oligodendrocyte development and behavior disorders induced by white matter injury. Front Pharmacol 2024; 15:1473019. [PMID: 39323643 PMCID: PMC11423201 DOI: 10.3389/fphar.2024.1473019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background White matter injury is a predominant form of brain injury in preterm infants. However, effective drugs for its treatment are currently lacking. Previous studies have shown the neuroprotective effects of Isoliquiritigenin (ISL), but its impact on white matter injury in preterm infants remains poorly understood. Aims This study aimed to investigate the protective effects of ISL against white matter injury caused by infection in preterm infants using a mouse model of lipopolysaccharide-induced white matter injury, integrating network pharmacology as well as in vivo and in vitro experiments. Methods This study explores the potential mechanisms of ISL on white matter injury by integrating network pharmacology. Core pathways and biological processes affected by ISL were verified through experiments, and motor coordination, anxiety-like, and depression-like behaviors of mice were evaluated using behavioral experiments. White matter injury was observed using hematoxylin-eosin staining, Luxol Fast Blue staining, and electron microscopy. The development of oligodendrocytes and the activation of microglia in mice were assessed by immunofluorescence. The expression of related proteins was detected by Western blot. Results We constructed a drug-target network, including 336 targets associated with ISL treatment of white matter injury. The biological process of ISL treatment of white matter injury mainly involves microglial inflammation regulation and myelination. Our findings revealed that ISL reduced early nerve reflex barriers and white matter manifestations in mice, leading to decreased activation of microglia and release of proinflammatory cytokines. Additionally, ISL demonstrated the ability to mitigate impairment in oligodendrocyte development and myelination, ultimately improving behavior disorders in adult mice. Mechanistically, we observed that ISL downregulated HDAC3 expression, promoted histone acetylation, enhanced the expression of H3K27ac, and regulated oligodendrocyte pro-differentiation factors. Conclusion These findings suggest that ISL can have beneficial effects on white matter injury in preterm infants by alleviating inflammation and promoting oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Dong Wu
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Naigang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anna Li
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xinyue Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Aijun Hao
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Bernis ME, Hakvoort C, Nacarkucuk E, Burkard H, Bremer AS, Zweyer M, Maes E, Grzelak KA, Sabir H. Neuroprotective Effect of Clemastine Improved Oligodendrocyte Proliferation through the MAPK/ERK Pathway in a Neonatal Hypoxia Ischemia Rat Model. Int J Mol Sci 2024; 25:8204. [PMID: 39125778 PMCID: PMC11311837 DOI: 10.3390/ijms25158204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is the most common cause of long-term disability in term neonates, and white matter injury is the primary cause of cerebral palsy. Therapies that focus on the neuroprotection of myelination and oligodendrocyte proliferation could potentially ameliorate long-lasting neurological impairments after hypoxic-ischemic encephalopathy. Clemastine, a histamine H1 antagonist, has been shown to exert neuroprotective effects in multiple sclerosis and spinal cord injury by promoting oligodendrogenesis and re-myelination. In this study, we demonstrated the neuroprotective effects of clemastine in our rat model of neonatal hypoxic-ischemic brain injury. Animals received a single intraperitoneal injection of either vehicle or clemastine (10 mg/kg) for 6 consecutive days. Our results showed a significant reduction in white matter loss after treatment, with a clear effect of clemastine on oligodendrocytes, showing a significant increase in the number of Olig2+ cells. We characterized the MAPK/ERK pathway as a potential mechanistic pathway underlying the neuroprotective effects of clemastine. Altogether, our results demonstrate that clemastine is a potential compound for the treatment of hypoxic-ischemic encephalopathy, with a clear neuroprotective effect on white matter injury by promoting oligodendrogenesis.
Collapse
Affiliation(s)
- Maria E. Bernis
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Charlotte Hakvoort
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Efe Nacarkucuk
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Hannah Burkard
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Anna-Sophie Bremer
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Margit Zweyer
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Elke Maes
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Kora A. Grzelak
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Hemmen Sabir
- Neonatologie und Pädiatrische Intensivmedizin, Eltern-Kind-Zentrum, Universitätsklinikum Bonn, 53127 Bonn, Germany; (M.E.B.); (C.H.); (E.N.); (H.B.); (A.-S.B.); (M.Z.); (E.M.); (K.A.G.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| |
Collapse
|
7
|
Chen G, Zhang C, Li H, Liu X. Sepsis-induced inflammatory demyelination in medullary visceral zone and cholinergic anti-inflammatory pathway: Insights from a Rat's model study. Heliyon 2024; 10:e33840. [PMID: 39027552 PMCID: PMC11255576 DOI: 10.1016/j.heliyon.2024.e33840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Our previous studies have demonstrated that the activated Cholinergic Anti-inflammatory Pathway (CAP) effectively suppresses systemic inflammation and immunity in early sepsis. Some parameters of Heart Rate Variability (HRV) could be used to reflect the regulatory activity of CAP. However, in the early stages of severe sepsis of some patients, the inflammatory storm can still result in multiple organs dysfunction and even death, suggesting they lose CAP's modulation ability. Since CAP is part of the vagus nerve and is directly innervated by the Medullary Visceral Zone (MVZ), we can reasonably concluded that pathological changes induced by MVZ's neuroinflammation should be responsible for CAP's dysfunction in modulating systemic inflammation in early sepsis. Methods We conducted two independent septic experiments, the sepsis model rats were prepared by cecum ligation and puncture (CLP) method. In the first experiment, A total of 64 adult male Sprague-Dawley rats were included. Under the condition of sepsis and CAP's pharmacological activation or blockade, we investigated the MVZ's pathological changes, the functional state of key neurons including catecholaminergic and cholinergic neurons, key genes' expression such as Oligodendrocyte Transcription Factor 2 (Olig-2) mRNA, glial fibrillary acidic protein (GFAP) mRNA, and matrix metalloprotein (MMP) -9 mRNA, and CAP's activities reflected by HRV. The second experiment involved in 56 rats, through central anti-inflammation by feeding with 10 mg/ml minocycline sucrose solution as the only water source, or right vagus transection excepting for central anti-inflammation as a mean of the CAP's functional cancel, we confirmed that the neuroinflammation in MVZ affected systemic inflammation through CAP in sepsis. Results In the first experiment, cholinergic and catecholaminergic neurons showed significant apoptosis with reduced expressions of TH, but the expression of CHAT remained relatively unaffected in MVZ in sepsis. HRV parameters representing the tone of the vagus nerve, such as SDNN, RMSSD, HF, SD1, and SD2, did not show significant differences among the three Septic Groups, although they all decreased significantly compared to the Control Group. The expressions of GFAP mRNA and MMP-9 mRNA were up-regulated, while the expression of Olig-2 mRNA was down-regulated in the Septic Groups. Intervention of CAP had a significant effect on cholinergic and catecholaminergic neurons' apoptosis, as well as the expressions of TH/CHAT and these key genes, but had little effect on HRV in sepsis. In the second experiment, the levels of TNF-α, IL-6, in serum and MVZ were significantly increased in sepsis. Central anti-inflammatory treatment reversed these changes. However, right vagotomy abolished the central anti-inflammatory effect. Conclusions Our study uncovered that MVZ's neuroinflammation may play a crucial role in the uncontrolled systemic inflammation through inflammatory demyelination in MVZ, which disrupts CAP's modulation on the systemic inflammation in early sepsis.
Collapse
Affiliation(s)
- Gao Chen
- The Intensive Care Unite of Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430079, China
| | - Cheng Zhang
- Emergency Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| | - Hongbing Li
- Emergency Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| | - Xian Liu
- Geriatrics Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| |
Collapse
|
8
|
Tang L, Xie D, Wang S, Gao C, Pan S. Piezo1 Knockout Improves Post-Stroke Cognitive Dysfunction by Inhibiting the Interleukin-6 (IL-6)/Glutathione Peroxidase 4 (GPX4) Pathway. J Inflamm Res 2024; 17:2257-2270. [PMID: 38633449 PMCID: PMC11022880 DOI: 10.2147/jir.s448903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Background Cerebral infarction often results in post-stroke cognitive impairment, which impairs the quality of life and causes long-term disability. Astrocytes, the most abundant glial cells in the central nervous system, have a crucial role in cerebral ischemia and neuroinflammation. We explored the possible advantages of interleukin-6 (IL-6), a powerful pro-inflammatory cytokine produced by astrocytes, for post-stroke cognitive function. Methods Mendelian randomization was applied to analyze the GWAS database of stroke patients, obtaining a causal relationship between IL-6 and stroke. Further validation of this relationship and its mechanisms was conducted. Using a mouse model of cerebral infarction, we demonstrated a significant increase in IL-6 expression in astrocytes surrounding the ischemic lesion. This protective effect of Piezo1 knockout was attributed to the downregulation of matrix metalloproteinases and upregulation of tight junction proteins, such as occludin and zonula occludens-1 (ZO-1). Results Two-step Mendelian randomization revealed that IL-6 exposure is a risk factor for stroke. Moreover, we conducted behavioral assessments and observed that Piezo1 knockout mice that received intranasal administration of astrocyte-derived IL-6 showed notable improvement in cognitive function compared to control mice. This enhancement was associated with reduced neuronal cell death and suppressed astrocyte activation, preserving ZO-1. Conclusion Our study shows that astrocyte-derived IL-6 causes cognitive decline after stroke by protecting the blood-brain barrier. This suggests that piezo1 knockout may reduce cognitive impairment after brain ischemia. Further research on the mechanisms and IL-6 delivery methods may lead to new therapies for post-stroke cognition.
Collapse
Affiliation(s)
- Lujia Tang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Di Xie
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Shangyuan Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| |
Collapse
|
9
|
Zhu Q, Wan L, Huang H, Liao Z. IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment? Front Neurosci 2024; 18:1370406. [PMID: 38665289 PMCID: PMC11043581 DOI: 10.3389/fnins.2024.1370406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1β release. It also explores the physiological and pathophysiological role of IL-1β in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Wan
- Department of Medical Genetics/Prenatal Diagnostic Center Nursing and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
11
|
Wu Y, Tan M, Gao Y, Geng N, Zhong W, Sun H, Li Z, Wu C, Li X, Zhang J. Complement Proteins in Serum Astrocyte-Derived Exosomes Are Associated with Poststroke Cognitive Impairment in Type 2 Diabetes Mellitus Patients. J Alzheimers Dis 2024; 99:291-305. [PMID: 38669534 DOI: 10.3233/jad-231235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background The complement system plays crucial roles in cognitive impairment and acute ischemic stroke (AIS). High levels of complement proteins in plasma astrocyte-derived exosomes (ADEs) were proven to be associated with Alzheimer's disease. We aimed to investigate the relationship of complement proteins in serum ADEs with poststroke cognitive impairment in type 2 diabetes mellitus (T2DM) patients. Methods This study analyzed 197 T2DM patients who suffered AIS. The Beijing version of the Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. Complement proteins in serum ADEs were quantified using ELISA kits. Results Mediation analyses showed that C5b-9 and C3b in serum ADEs partially mediate the impact of obstructive sleep apnea (OSA), depression, small vessel disease (SVD), and infarct volume on cognitive function at the acute phase of AIS in T2DM patients. After adjusting for age, sex, time, and interaction between time and complement proteins in serum ADEs, the mixed linear regression showed that C3b and complement protein Factor B in serum ADEs were associated with MoCA scores at three-, six-, and twelve-months after AIS in T2DM patients. Conclusions Our study suggested that the impact of OSA, depression, SVD, and infarct volume on cognitive impairment in the acute stage of AIS may partially mediate through the complement proteins in serum ADEs. Additionally, the complement proteins in serum ADEs at the acute phase of AIS associated with MoCA scores at three-, six-, twelve months after AIS in T2DM patients.REGISTRATION: URL: http://www.chictr.org.cn/,ChiCTR1900021544.
Collapse
Affiliation(s)
- Yaxuan Wu
- Weifang Medical University, Weifang, Shandong, China
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ming Tan
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Na Geng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Weibin Zhong
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Chenxi Wu
- Department of Central Sterile Supply Department, Xichang People's Hospital, Xichang, Liangshan Yi Autonomous Prefecture, Sichuan, China
| | - Xuemei Li
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
12
|
Okano H, Ojiro R, Zou X, Tang Q, Ozawa S, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Exploring the effects of embryonic and neonatal exposure to lipopolysaccharides on oligodendrocyte differentiation in the rat hippocampus and the protective effect of alpha-glycosyl isoquercitrin. J Chem Neuroanat 2023; 133:102336. [PMID: 37678702 DOI: 10.1016/j.jchemneu.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
This study compared the effects of embryonic and neonatal lipopolysaccharides (LPS) exposure (E-LPS and N-LPS) on oligodendrocyte (OL) differentiation in the hippocampus of male rats and explored the protective effect of the antioxidant alpha-glycosyl isoquercitrin (AGIQ). Using SD rats, LPS exposure occurred either intraperitoneally in dams between gestational days 15 and 16 (50 µg/kg body weight/time) or in male pups on postnatal day (PND) 3 (1 mg/kg body weight). Under both regimens, AGIQ at 0.5% (w/w) was supplemented, to dams from the gestation period (before LPS exposure) until weaning on PND 21 and to male offspring from weaning until PND 77 (adulthood). Compared with a control treatment, E-LPS treatment resulted in fewer NG2+ OL progenitor cells (OPCs) and an upregulation of Tcf4 at PND 6; by PND 21, low NG2+ OPC number persisted, but OLIG2+ OL lineage cells increased, while CNPase+ mature OLs counts were unchanged. By contrast, N-LPS treatment resulted in fewer OLIG2+ cells and an upregulation of Bmp4 at PND 6; by PND 21, NG2+ OPCs decreased, while GFAP+ astrocytes increased at both PND 6 and 21. After N-LPS treatment, Kl and Yy1 were downregulated and there were fewer Klotho+ and CNPase+ cells at PND 21. Results suggest that E-LPS treatment facilitates OPC differentiation into pre- and immature OLs until weaning, while N-LPS treatment suppresses OPC differentiation into mature OLs but facilitates astrocyte generation; however, these changes spontaneously recovered by adulthood under both regimens. AGIQ treatment ameliorated the effects of LPS treatment of both regimens, suggesting that LPS-induced disruption of OPC/OL differentiation occurs via neuroinflammation.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I. Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
13
|
Fabres RB, Cardoso DS, Aragón BA, Arruda BP, Martins PP, Ikebara JM, Drobyshevsky A, Kihara AH, de Fraga LS, Netto CA, Takada SH. Consequences of oxygen deprivation on myelination and sex-dependent alterations. Mol Cell Neurosci 2023; 126:103864. [PMID: 37268283 DOI: 10.1016/j.mcn.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.
Collapse
Affiliation(s)
- Rafael Bandeira Fabres
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Bruna Petrucelli Arruda
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Pamela Pinheiro Martins
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil
| | - Carlos Alexandre Netto
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil.
| |
Collapse
|
14
|
Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P. Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 2023; 442:114301. [PMID: 36707260 DOI: 10.1016/j.bbr.2023.114301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
One main factor contributing to the cognitive loss in vascular dementia (VD) is white matter lesions (WMLs) carried on by chronic cerebral hypoperfusion (CCH). A secondary neuroinflammatory response to CCH accelerates the loss and limits the regeneration of oligodendrocytes, leading to progressive demyelination and insufficient remyelination in the white matter. Thus, promoting remyelination and inhibiting neuroinflammation may be an ideal therapeutic strategy. Baicalin (BAI) is known to exhibit protective effects against various inflammatory and demyelinating diseases. However, whether BAI has neuroprotective effects against CCH has not been investigated. To determine whether BAI inhibits CCH-induced demyelination and neuroinflammation, we established a model of CCH in rats by occluding the two common carotid arteries bilaterally. Our results revealed that BAI could remarkably ameliorate cognitive impairment and mitigate CA1 pyramidal neuron damage and myelin loss. BAI exhibited enhancement of remyelination by increasing the expression of myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (Olig2), inhibiting the loss of oligodendrocytes and promoting oligodendrocyte regeneration in the corpus callosum of CCH rats. Furthermore, BAI modified microglia polarization to the anti-inflammatory phenotype and inhibited the release of pro-inflammatory cytokines. Mechanistically, BAI treatment significantly induced phosphorylation of glycogen synthase kinase 3β (GSK3β), enhanced the expression of β-catenin and its nuclear translocation. Simultaneously, BAI reduced the expression of nuclear NF-κB. Collectively, our results suggest that BAI ameliorates cognitive impairment in CCH-induced VD rats through its pro-remyelination and anti-inflammatory capacities, possibly by activating the Wnt/β-catenin and suppressing the NF-κB signaling.
Collapse
Affiliation(s)
- Yining Xiao
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Tianyuan Guan
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiaofeng Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Jiawei Zhang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Zhenjie Teng
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Nan Meng
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
15
|
Motawi TK, El-Maraghy SA, Kamel AS, Said SE, Kortam MA. Modulation of p38 MAPK and Nrf2/HO-1/NLRP3 inflammasome signaling and pyroptosis outline the anti-neuroinflammatory and remyelinating characters of Clemastine in EAE rat model. Biochem Pharmacol 2023; 209:115435. [PMID: 36720356 DOI: 10.1016/j.bcp.2023.115435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
There is vast evidence for the effect of NOD-like receptor protein-3 (NLRP3) inflammasome on multiple sclerosis (MS) pathogenesis. Clemastine (CLM) targets NLRP3 in hypoxic brain injury and promotes oligodendrocyte differentiation. However, no previous study pointed to the link of CLM with inflammasome components in MS. Herein, the study aimed to verify the action of CLM on NLRP3 signaling in experimental autoimmune encephalomyelitis (EAE) as an MS rat model. Homogenate of spinal cord with complete Freund's adjuvant was administered on days 0 and 7 to induce EAE. Rats received either CLM (5 mg/kg/day; p.o.) or MCC950 (2.5 mg/kg/day; i.p) for 15 days starting from the first immunization day. In EAEs' brains, NLRP3 pathway components; total and phosphorylated p38 mitogen-activated protein kinase (MAPK), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, interleukins 1β and -18 along with pyroptotic marker; gasdermin D (GSDMD) were upregulated. These were accompanied with diminished nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and total antioxidant capacity levels. CLM improved these perturbations as well as signs of MS; weight loss, clinical scores, and motor disorders observed in the open field, hanging wire and rotarod tests. Histopathological examinations revealed improvement in H&E abnormalities and axonal demyelination as shown by luxol fast blue stain in lumbar sections of spinal cord. These CLM's actions were studied in comparison to MCC950 as a well-established selective blocker of the NLRP3 inflammasome. Conclusively, CLM has a protective role against neuroinflammation and demyelination in EAE via its anti-inflammatory and anti-pyroptotic actions.
Collapse
Affiliation(s)
- Tarek K Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| | - Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| | - Salma E Said
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| | - Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., 11562 Cairo, Egypt.
| |
Collapse
|
16
|
Tang C, Jin Y, Wang H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy. Front Synaptic Neurosci 2022; 14:1054605. [PMID: 36530954 PMCID: PMC9755596 DOI: 10.3389/fnsyn.2022.1054605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 06/12/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication caused by sepsis, and is responsible for increased mortality and poor outcomes in septic patients. Neurological dysfunction is one of the main manifestations of SAE patients. Patients may still have long-term cognitive impairment after hospital discharge, and the underlying mechanism is still unclear. Here, we first outline the pathophysiological changes of SAE, including neuroinflammation, glial activation, and blood-brain barrier (BBB) breakdown. Synapse dysfunction is one of the main contributors leading to neurological impairment. Therefore, we summarized SAE-induced synaptic dysfunction, such as synaptic plasticity inhibition, neurotransmitter imbalance, and synapses loss. Finally, we discuss the alterations in the synapse, synapse formation, and mediators associated with synapse formation during SAE. In this review, we focus on the changes in synapse/synapse formation caused by SAE, which can further understand the synaptic dysfunction associated with neurological impairment in SAE and provide important insights for exploring appropriate therapeutic targets of SAE.
Collapse
Affiliation(s)
| | | | - Huan Wang
- College of Life and Health, Dalian University, Dalian, China
| |
Collapse
|
17
|
Gao Y, Xie D, Wang Y, Niu L, Jiang H. Short-Chain Fatty Acids Reduce Oligodendrocyte Precursor Cells Loss by Inhibiting the Activation of Astrocytes via the SGK1/IL-6 Signalling Pathway. Neurochem Res 2022; 47:3476-3489. [PMID: 36098889 PMCID: PMC9546972 DOI: 10.1007/s11064-022-03710-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/09/2022]
Abstract
Short-chain fatty acids (SCFAs) are known to be actively involved in neurological diseases, but their roles in hypoxic-ischaemic brain injury (HIBI) are unclear. In this study, a rat model of HIBI was established, and this study measured the changes in IL-6 and NOD-like receptor thermal protein domain associated protein 3 (NLRP3), in addition to proliferation and apoptosis indicators of oligodendrocyte precursor cells (OPCs). The mechanism of action of SCFA on astrocytes was also investigated. Astrocytes were subjected to hypoxia in vitro, and OPCs were treated with IL-6. The results showed that SCFAs significantly alleviated HIBI-induced activation of astrocytes and loss of OPCs. SCFA pretreatment (1) downregulated the expression of NLRP3, IL-6, CCL2, and IP-10; (2) had no effect on the proliferation of OPCs; (3) ameliorated the abnormal expression of Bax and Bcl-2; and (4) regulated IL-6 expression via the SGK1-related pathway in astrocytes. Our findings revealed that SCFAs alleviated the loss of OPCs by regulating astrocyte activation through the SGK1/IL-6 signalling pathway.
Collapse
Affiliation(s)
- Yanmin Gao
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, No.150, Jimo Road, Pudong New District, Shanghai, 200120, China.,Department of General Practice, Kongjiang Community Health Service Center, No. 100, Yanji West Road, Yangpu District, Shanghai, 200093, China
| | - Di Xie
- Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yang Wang
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, No.150, Jimo Road, Pudong New District, Shanghai, 200120, China.,Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Lei Niu
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, No.150, Jimo Road, Pudong New District, Shanghai, 200120, China.,Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Hua Jiang
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, No.150, Jimo Road, Pudong New District, Shanghai, 200120, China. .,Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
18
|
Favrais G, Bokobza C, Saliba E, Chalon S, Gressens P. Alteration of the Oligodendrocyte Lineage Varies According to the Systemic Inflammatory Stimulus in Animal Models That Mimic the Encephalopathy of Prematurity. Front Physiol 2022; 13:881674. [PMID: 35928559 PMCID: PMC9343871 DOI: 10.3389/fphys.2022.881674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth before the gestational age of 32 weeks is associated with the occurrence of specific white matter damage (WMD) that can compromise the neurological outcome. These white matter abnormalities are embedded in more global brain damage defining the encephalopathy of prematurity (EoP). A global reduction in white matter volume that corresponds to chronic diffuse WMD is the most frequent form in contemporary cohorts of very preterm infants. This WMD partly results from alterations of the oligodendrocyte (OL) lineage during the vulnerability window preceding the beginning of brain myelination. The occurrence of prenatal, perinatal and postnatal events in addition to preterm birth is related to the intensity of WMD. Systemic inflammation is widely recognised as a risk factor of WMD in humans and in animal models. This review reports the OL lineage alterations associated with the WMD observed in infants suffering from EoP and emphasizes the role of systemic inflammation in inducing these alterations. This issue is addressed through data on human tissue and imaging, and through neonatal animal models that use systemic inflammation to induce WMD. Interestingly, the OL lineage damage varies according to the inflammatory stimulus, i.e., the liposaccharide portion of the E.Coli membrane (LPS) or the proinflammatory cytokine Interleukin-1β (IL-1β). This discrepancy reveals multiple cellular pathways inducible by inflammation that result in EoP. Variable long-term consequences on the white matter morphology and functioning may be speculated upon according to the intensity of the inflammatory challenge. This hypothesis emerges from this review and requires further exploration.
Collapse
Affiliation(s)
- Geraldine Favrais
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- Neonatology Unit, CHRU de Tours, Tours, France
- *Correspondence: Geraldine Favrais,
| | - Cindy Bokobza
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
| | - Elie Saliba
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | | |
Collapse
|
19
|
Li Y, Wang D, Li Z, Ouyang Z. PSB0788 ameliorates maternal inflammation-induced periventricular leukomalacia-like injury. Bioengineered 2022; 13:10224-10234. [PMID: 35436416 PMCID: PMC9161964 DOI: 10.1080/21655979.2022.2061296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies have shown that periventricular leukomalacia (PVL) is a distinctive form of cerebral white matter injury that pertains to myelination disturbances. Maternal inflammation is a main cause of white matter injury. Intrauterine inflammation cellular will be propagated to the developing brain by the entire maternal-placental-fetal axis, and triggers neural immune injury. As a low-affinity receptor, adenosine A2B receptor (A2BAR) requires high concentrations of adenosine to be significantly activated in pathological conditions. We hypothesized that in the maternal inflammation-induced PVL model, a selective A2BAR antagonist PSB0788 had the potential to prevent the injury. In this work, a total of 18 SD pregnant rats were divided into three groups, and treated with intraperitoneal injection of phosphate buffered saline (PBS), lipopolysaccharide (LPS), or LPS+PSB0788. Placental infection was determined by H&E staining and the inflammatory condition was determined by ELISA. Change of MBP, NG2 and CC-1 in the brain of the rats' offspring were detected by western blot and immunohistochemistry. Furthermore, LPS-induced maternal inflammation reduced the expression of MBP, which related to the decrease in the numbers of OPCs and mature oligodendrocytes in neonate rats. After treatment with PSB0788, the levels of MBP proteins increased in the rats' offspring, improved the remyelination. In conclusion, our study shows that the selective A2BAR antagonist PSB0788 plays an important role in promoting the normal development of OPCs in vivo by the maternal inflammation-induced PVL model. Future studies will focus on the mechanism of PSB0788 in this model.
Collapse
Affiliation(s)
- Yilu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, scDFG Guangzhou, Guangdong, China
| | - Dan Wang
- Department of clinical medicine, Bengbu Medical College, Bengbu, Anhui, China,Department of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhuoyang Li
- School of Chemistry and Chemical Engineering, South China University of Technology, scDFG Guangzhou, Guangdong, China,South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, Guangdong, China
| | - Zhi Ouyang
- South China University of Technology Hospital, South China University of Technology, Guangzhou, Guangdong, China,CONTACT Zhi Ouyang South China University of Technology Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Sun ZY, Ma DL, Gu LH, Chen X, Zhang L, Li L. DHF-7 Ameliorates Behavioral Disorders and White Matter Lesions by Regulating BDNF and Fyn in a Mouse Model of Schizophrenia Induced by Cuprizone and MK-801. Int J Neuropsychopharmacol 2022; 25:600-612. [PMID: 35353146 PMCID: PMC9352181 DOI: 10.1093/ijnp/pyac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Schizophrenia is a psychiatric disorder including multiple clinical symptoms such as severe psychosis and cognitive dysfunction. DHF-7 is a novel dihydroflavanone derivative that was designed and synthesized to treat schizophrenia. This study aimed to investigate the effects and mechanisms of DHF-7 in a mouse model of schizophrenia induced by a combination of cuprizone and MK-801. METHODS After intragastric administration of DHF-7 for 7 weeks, open field, Y-maze, and novel object recognition tests were performed to detect behavioral changes in the mouse model. White matter lesions and myelin loss were determined using transmission electron microscopy and oil red O staining. Western blotting and immunohistochemistry were used to detect the expression of the related proteins. RESULTS The results showed that DHF-7 treatment significantly improved cognitive impairment and positive symptoms in the model mice. Moreover, DHF-7 alleviated white matter lesions and demyelination and promoted the differentiation and maturation of oligodendrocytes for remyelination in the corpus callosum of model mice. The mechanistic study showed that DHF-7 increased the expression of brain-derived neurotrophic factor and phosphorylated Fyn, thus activating the tyrosine kinase receptor B (Trk B)/Fyn/N-methyl-D-aspartate receptor subunit 2 B (NMDAR2B) and Raf/mitogen-activated protein kinase (MEK)/ extracellular signal-related kinase (ERK) signaling pathways. CONCLUSIONS Our results provide an experimental basis for the development of DHF-7 as a novel therapeutic agent for schizophrenia.
Collapse
Affiliation(s)
| | | | - Li-Hong Gu
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xi Chen
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China,National Center for Neurological Disorders, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Beijing Institute for Brain Disorders, Beijing, China,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Correspondence: Lin Li, MD, PhD, Department of Pharmacy, Xuanwu Hospital, Capital Medical University, 45 Chang-chun Street, Beijing 100053, China ()
| |
Collapse
|
21
|
Pierre WC, Londono I, Quiniou C, Chemtob S, Lodygensky GA. Modulatory effect of IL‐1 inhibition following lipopolysaccharide‐induced neuroinflammation in neonatal microglia and astrocytes. Int J Dev Neurosci 2022; 82:243-260. [DOI: 10.1002/jdn.10179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wyston C. Pierre
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| | - Irène Londono
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Christiane Quiniou
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Sylvain Chemtob
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
- Department of Pharmacology and Therapeutics McGill University Montréal Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| |
Collapse
|
22
|
IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome. Mediators Inflamm 2021; 2021:6370911. [PMID: 34955683 PMCID: PMC8709774 DOI: 10.1155/2021/6370911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Interleukin- (IL-) 38 is an emerging cytokine with multiple functions involved in infection and immunity. However, the potential role of IL-38 in the host immune response during sepsis remains elusive. Herein, we investigated if macrophages in septic mice express IL-38, the molecular mechanisms behind its expression, and the downstream effects of its expression. In mouse peritoneal macrophages, lipopolysaccharide (LPS) upregulated IL-38 and its receptor IL-36R, and the resulting IL-38 shifted macrophages from a M1 to M2 phenotype. Moreover, exposure to IL-38 alone was sufficient to inhibit macrophage apoptosis and LPS-driven activation of the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome. These effects were partly abrogated by IL-38 downregulation. In septic mice, IL-38 markedly lowered serum concentrations of proinflammatory cytokines and greatly improved survival. Conversely, IL-38 blockade aggravated their mortality. Collectively, these findings present IL-38 as a potent immune modulator that restrains the inflammatory response by suppressing macrophage apoptosis and activation of the NLRP3 inflammasome. IL-38 may help protect organs from sepsis-related injury.
Collapse
|
23
|
Lee HJ, Jung DH, Kim NK, Shin HK, Choi BT. Effects of electroacupuncture on the functionality of NG2-expressing cells in perilesional brain tissue of mice following ischemic stroke. Neural Regen Res 2021; 17:1556-1565. [PMID: 34916441 PMCID: PMC8771106 DOI: 10.4103/1673-5374.330611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neural/glial antigen 2 (NG2)-expressing cells has multipotent stem cell activity under cerebral ischemia. Our study examined the effects of electroacupuncture (EA) therapy (2 Hz, 1 or 3 mA, 20 minutes) at the Sishencong acupoint on motor function after ischemic insult in the brain by investigating the rehabilitative potential of NG2-derived cells in a mouse model of ischemic stroke. EA stimulation alleviated motor deficits caused by ischemic stroke, and 1 mA EA stimulation was more efficacious than 3 mA EA stimulation or positive control treatment with edaravone, a free radical scavenger. The properties of NG2-expressing cells were altered with 1 mA EA stimulation, enhancing their survival in perilesional brain tissue via reduction of tumor necrosis factor alpha expression. EA stimulation robustly activated signaling pathways related to proliferation and survival of NG2-expressing cells and increased the expression of neurotrophic factors such as brain-derived neurotrophic factor, tumor growth factor beta, and neurotrophin 3. In the perilesional striatum, EA stimulation greatly increased the number of NG2-expressing cells double-positive for oligodendrocyte, endothelial cell, and microglia/macrophage markers (CC1, CD31, and CD68). EA therapy also greatly activated brain-derived neurotrophic factor/tropomyosin receptor kinase B and glycogen synthase kinase 3 beta signaling. Our results indicate that EA therapy may prevent functional loss at the perilesional site by enhancing survival and differentiation of NG2-expressing cells via the activation of brain-derived neurotrophic factor -induced signaling, subsequently ameliorating motor dysfunction. The animal experiments were approved by the Animal Ethics Committee of Pusan National University (approval Nos. PNU2019-2199 and PNU2019-2884) on April 8, 2019 and June 19, 2019.
Collapse
Affiliation(s)
- Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine; Graduate Training Program of Korean Medicine for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Da Hee Jung
- Department of Korean Medical Science, School of Korean Medicine; Graduate Training Program of Korean Medicine for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Nam Kwen Kim
- Department of Korean Ophthalmology, Otolaryngology and Dermatology, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine; Graduate Training Program of Korean Medicine for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine; Graduate Training Program of Korean Medicine for Healthy Aging, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
24
|
Zhou Q, Lin L, Li H, Wang H, Jiang S, Huang P, Lin Q, Chen X, Deng Y. Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide. Mol Neurobiol 2021; 58:6552-6576. [PMID: 34585328 PMCID: PMC8639545 DOI: 10.1007/s12035-021-02568-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/12/2021] [Indexed: 02/05/2023]
Abstract
Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.
Collapse
Affiliation(s)
- Qiuping Zhou
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfen Lin
- Department of Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Haiyan Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Peixian Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiongyu Lin
- Department of Critical Care Medicine, Jieyang People's Hospital, Jieyang, 522000, Guangdong, China
| | - Xuan Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College (FCS), Shantou, 515063, China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Jiang S, Wang H, Zhou Q, Li Q, Liu N, Li Z, Chen C, Deng Y. Melatonin Ameliorates Axonal Hypomyelination of Periventricular White Matter by Transforming A1 to A2 Astrocyte via JAK2/STAT3 Pathway in Septic Neonatal Rats. J Inflamm Res 2021; 14:5919-5937. [PMID: 34803390 PMCID: PMC8595063 DOI: 10.2147/jir.s337499] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Astrocyte A1/A2 phenotypes may play differential role in the pathogenesis of periventricular white matter (PWM) damage in septic postnatal rats. This study aimed to determine whether melatonin (MEL) would improve the axonal hypomyelination through shifting A1 astrocytes towards A2. Methods One-day-old Sprague-Dawley rats were divided into control, LPS, and LPS+MEL groups. Immunofluorescence was performed to detect C1q, IL-1α, TNF-α, IBA1, GFAP, MAG, C3 and S100A10 immunoreactivity in the PWM of neonatal rats. Electron microscopy was conducted to observe alterations of axonal myelin sheath in the PWM; moreover, myelin protein expression was assessed using in situ hybridization. The effects of MEL on neurological function were evaluated by behavioral tests. In vitro, A1 astrocytes were induced by IL-1α, C1q and TNF-α, and following which the effect of MEL on C3 and S100A10 expression was determined by Western blot and immunofluorescence. Results At 1 and 3 days after LPS injection, IBA1+ microglia in the PWM were significantly increased in cell numbers which generated excess amounts of IL-1α, TNF-α, and C1q. The number of A1 astrocytes was significantly increased at 7-28d after LPS injection. In rats given MEL treatment, the number of A1 astrocytes was significantly decreased, but that of A2 astrocytes, PLP+, MBP+ and MAG+ cells was increased. By electron microscopy, ultrastructural features of axonal hypomyelination were attenuated by MEL. Furthermore, MEL improved neurological dysfunction as evaluated by different neurological tests. In vitro, MEL decreased the C3 significantly, and upregulated expression of S100A10 in primary astrocytes subjected to IL-1α, TNF-α and C1q treatment. Importantly, JAK2/STAT3 signaling pathway was found to be involved in modulation of A1/A2 phenotype transformation. Conclusion MEL effectively alleviates PWMD of septic neonatal rats, which is most likely through modulating astrocyte phenotypic transformation from A1 to A2 via the MT1/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qiuping Zhou
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Qian Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Nan Liu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Zhenggong Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Chunbo Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
26
|
Favrais G, Saliba E, Savary L, Bodard S, Gulhan Z, Gressens P, Chalon S. Partial protective effects of melatonin on developing brain in a rat model of chorioamnionitis. Sci Rep 2021; 11:22167. [PMID: 34773065 PMCID: PMC8589852 DOI: 10.1038/s41598-021-01746-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Melatonin has shown promising neuroprotective effects due to its anti-oxidant, anti-inflammatory and anti-apoptotic properties, making it a candidate drug for translation to humans in conditions that compromise the developing brain. Our study aimed to explore the impact of prenatal melatonin in an inflammatory/infectious context on GABAergic neurons and on oligodendrocytes (OLs), key cells involved in the encephalopathy of prematurity. An inflammatory/infectious agent (LPS, 300 μg/kg) was injected intraperitoneally (i.p.) to pregnant Wistar rats at gestational day 19 and 20. Melatonin (5 mg/kg) was injected i.p. following the same schedule. Immunostainings focusing on GABAergic neurons, OL lineage and myelination were performed on pup brain sections. Melatonin succeeded in preventing the LPS-induced decrease of GABAergic neurons within the retrospenial cortex, and sustainably promoted GABAergic neurons within the dentate gyrus in the inflammatory/infectious context. However, melatonin did not effectively prevent the LPS-induced alterations on OLs and myelination. Therefore, we demonstrated that melatonin partially prevented the deleterious effects of LPS according to the cell type. The timing of exposure related to the cell maturation stage is likely to be critical to achieve an efficient action of melatonin. Furthermore, it can be speculated that melatonin exerts a modest protective effect on extremely preterm infant brains.
Collapse
Affiliation(s)
- Geraldine Favrais
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France. .,Neonatology Unit, CHRU de Tours, Tours, France.
| | - Elie Saliba
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Léa Savary
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Sylvie Bodard
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Zuhal Gulhan
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | | | - Sylvie Chalon
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| |
Collapse
|
27
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
28
|
Wu W, Zhang X, Zhou J, Yang H, Chen J, Zhao L, Zhong J, Lin WJ, Wang Z. Clemastine Ameliorates Perioperative Neurocognitive Disorder in Aged Mice Caused by Anesthesia and Surgery. Front Pharmacol 2021; 12:738590. [PMID: 34497527 PMCID: PMC8419266 DOI: 10.3389/fphar.2021.738590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Perioperative neurocognitive disorder (PND) leads to progressive deterioration of cognitive function, especially in aged patients. Demyelination is closely associated with cognitive dysfunction. However, the relationship between PND and demyelination remains unclear. Here we showed that demyelination was related to the pathogenesis of PND. Clemastine, an antihistamine with potency in remyelination, was predicted to have a potential therapeutic effect on PND by next-generation sequencing and bioinformatics in our previous study. In the present study, it was given at 10 mg/kg per day for 2 weeks to evaluate the effects on PND in aged mice. We found that clemastine ameliorated PND and reduced the expression levels of inflammatory factors such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β). Further investigation suggested clemastine increased the expression of oligodendrocyte transcription factor 2 (OLIG2) and myelin basic protein (MBP) to enhance remyelination by inhibiting the overactivation of the WNT/β-catenin pathway. At the same time, the expression of post-synaptic density protein 95 (PSD95, or DLG4), brain-derived neurotrophic factor (BDNF), synaptosomal-associated protein 25 (SNAP25) and neuronal nuclei (NEUN) were also improved. Our results suggested that clemastine might be a therapy for PND caused by anesthetic and surgical factors in aged patients.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jiaxin Zhou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Hongmei Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Junjun Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Junying Zhong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
29
|
Delahaye-Duriez A, Dufour A, Bokobza C, Gressens P, Van Steenwinckel J. Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. J Neuropathol Exp Neurol 2021; 80:634-648. [PMID: 34363661 DOI: 10.1093/jnen/nlab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microglial activation during critical phases of brain development can result in short- and long-term consequences for neurological and psychiatric health. Several studies in humans and rodents have shown that microglial activation, leading to a transition from the homeostatic state toward a proinflammatory phenotype, has adverse effects on the developing brain and neurodevelopmental disorders. Targeting proinflammatory microglia may be an effective strategy for protecting the brain and attenuating neurodevelopmental disorders induced by inflammation. In this review we focus on the role of inflammation and the activation of immature microglia (pre-microglia) soon after birth in prematurity-associated neurodevelopmental disorders, and the specific features of pre-microglia during development. We also highlight the relevance of immunomodulatory strategies for regulating activated microglia in a rodent model of perinatal brain injury. An original neuroprotective approach involving a nanoparticle-based therapy and targeting microglia, with the aim of improving myelination and protecting the developing brain, is also addressed.
Collapse
Affiliation(s)
- Andrée Delahaye-Duriez
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Jean Verdier, Service d'Histologie-Embryologie-Cytogénétique, Bondy, France
| | - Adrien Dufour
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Cindy Bokobza
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Pierre Gressens
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | | |
Collapse
|
30
|
Olivieri B, Rampakakis E, Gilbert G, Fezoua A, Wintermark P. Myelination may be impaired in neonates following birth asphyxia. NEUROIMAGE-CLINICAL 2021; 31:102678. [PMID: 34082365 PMCID: PMC8182124 DOI: 10.1016/j.nicl.2021.102678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
Myelination is a developmental process that intensifies after birth during the first years of life. We used a T2* mapping sequence to assess myelination in healthy and critically ill neonates with neonatal encephalopathy. Birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Background Myelination is a developmental process that begins during the end of gestation, intensifies after birth over the first years of life, and continues well into adolescence. Any event leading to brain injury around the time of birth and during the perinatal period, such as birth asphyxia, may impair this critical process. Currently, the impact of such brain injury related to birth asphyxia on the myelination process is unknown. Objective To assess the myelination pattern over the first month of life in neonates with neonatal encephalopathy (NE) developing brain injury, compared to neonates without injury (i.e., healthy neonates and neonates with NE who do not develop brain injury). Methods Brain magnetic resonance imaging (MRI) was performed around day of life 2, 10, and 30 in healthy neonates and near-term/term neonates with NE who were treated with hypothermia. We evaluated myelination in various regions of interest using a T2* mapping sequence. In each region of interest, we compared the T2* values of the neonates with NE with brain injury to the values of the neonates without injury, according to the MRI timing, by using a repeated measures generalized linear mixed model. Results We obtained 74 MRI scans over the first month of life for 6 healthy neonates, 17 neonates with NE who were treated with hypothermia and did not develop brain injury, and 16 neonates with NE who were treated with hypothermia and developed brain injury. The T2* values significantly increased in the neonates with NE who developed injury in the posterior limbs of the internal capsule (day 2: p < 0.001; day 10: p < 0.001; and day 30: p < 0.001), the thalami (day 2: p = 0.001; day 10: p = 0.006; and day 30: p = 0.016), the lentiform nuclei (day 2: p = 0.005), the anterior white matter (day 2: p = 0.002; day 10: p = 0.006; and day 30: p = 0.002), the posterior white matter (day 2: p = 0.001; day 10: p = 0.008; and day 30: p = 0.03), the genu of the corpus callosum (day 2: p = 0.01; and day 10: p = 0.006), and the optic radiations (day 30: p < 0.001). Conclusion In the neonates with NE who were treated with hypothermia and developed brain injury, birth asphyxia impaired myelination in the regions that are myelinated at birth or soon after birth (the posterior limbs of internal capsule, the thalami, and the lentiform nuclei), in the regions where the myelination process begins only after the perinatal period (optic radiations), and in the regions where this process does not occur until months after birth (anterior/posterior white matter), which suggests that birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Collapse
Affiliation(s)
- Bianca Olivieri
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Emmanouil Rampakakis
- Medical Affairs, JSS Medical Research, Montreal, Québec, Canada; Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | - Aliona Fezoua
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada; Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Werkman IL, Kövilein J, de Jonge JC, Baron W. Impairing committed cholesterol biosynthesis in white matter astrocytes, but not grey matter astrocytes, enhances in vitro myelination. J Neurochem 2021; 156:624-641. [PMID: 32602556 PMCID: PMC7984098 DOI: 10.1111/jnc.15113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Remyelination is a regenerative process that is essential to recover saltatory conduction and to prevent neurodegeneration upon demyelination. The formation of new myelin involves the differentiation of oligodendrocyte progenitor cells (OPCs) toward oligodendrocytes and requires high amounts of cholesterol. Astrocytes (ASTRs) modulate remyelination by supplying lipids to oligodendrocytes. Remarkably, remyelination is more efficient in grey matter (GM) than in white matter (WM), which may relate to regional differences in ASTR subtype. Here, we show that a feeding layer of gmASTRs was more supportive to in vitro myelination than a feeding layer of wmASTRs. While conditioned medium from both gmASTRs and wmASTRs accelerated gmOPC differentiation, wmOPC differentiation is enhanced by secreted factors from gmASTRs, but not wmASTRs. In vitro analyses revealed that gmASTRs secreted more cholesterol than wmASTRs. Cholesterol efflux from both ASTR types was reduced upon exposure to pro-inflammatory cytokines, which was mediated via cholesterol transporter ABCA1, but not ABCG1, and correlated with a minor reduction of myelin membrane formation by oligodendrocytes. Surprisingly, a wmASTR knockdown of Fdft1 encoding for squalene synthase (SQS), an enzyme essential for the first committed step in cholesterol biosynthesis, enhanced in vitro myelination. Reduced secretion of interleukin-1β likely by enhanced isoprenylation, and increased unsaturated fatty acid synthesis, both pathways upstream of SQS, likely masked the effect of reduced levels of ASTR-derived cholesterol. Hence, our findings indicate that gmASTRs export more cholesterol and are more supportive to myelination than wmASTRs, but specific inhibition of cholesterol biosynthesis in ASTRs is beneficial for wmASTR-mediated modulation of myelination.
Collapse
Affiliation(s)
- Inge L. Werkman
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
- Present address:
Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Janine Kövilein
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Jenny C. de Jonge
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Wia Baron
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
32
|
Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Mol Psychiatry 2021; 26:103-117. [PMID: 33144710 PMCID: PMC7815509 DOI: 10.1038/s41380-020-00930-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
Depression is a common mental illness, affecting more than 300 million people worldwide. Decades of investigation have yielded symptomatic therapies for this disabling condition but have not led to a consensus about its pathogenesis. There are data to support several different theories of causation, including the monoamine hypothesis, hypothalamic-pituitary-adrenal axis changes, inflammation and immune system alterations, abnormalities of neurogenesis and a conducive environmental milieu. Research in these areas and others has greatly advanced the current understanding of depression; however, there are other, less widely known theories of pathogenesis. Oligodendrocyte lineage cells, including oligodendrocyte progenitor cells and mature oligodendrocytes, have numerous important functions, which include forming myelin sheaths that enwrap central nervous system axons, supporting axons metabolically, and mediating certain forms of neuroplasticity. These specialized glial cells have been implicated in psychiatric disorders such as depression. In this review, we summarize recent findings that shed light on how oligodendrocyte lineage cells might participate in the pathogenesis of depression, and we discuss new approaches for targeting these cells as a novel strategy to treat depression.
Collapse
Affiliation(s)
- Butian Zhou
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bruce R Ransom
- Neuroscience Department, City University of Hong Kong, Hong Kong, China.
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Huang P, Chen X, Hu X, Zhou Q, Lin L, Jiang S, Fu H, Xiong Y, Zeng H, Fang M, Chen C, Deng Y. Experimentally Induced Sepsis Causes Extensive Hypomyelination in the Prefrontal Cortex and Hippocampus in Neonatal Rats. Neuromolecular Med 2020; 22:420-436. [PMID: 32638208 DOI: 10.1007/s12017-020-08602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Neonatal sepsis is associated with cognitive deficit in the later life. Axonal myelination plays a pivotal role in neurotransmission and formation of learning and memory. This study aimed to explore if systemic lipopolysaccharide (LPS) injection would induce hypomyelination in the prefrontal cortex and hippocampus in developing septic neonatal rats. Sprague-Dawley rats (1-day old) were injected with LPS (1 mg/kg) intraperitoneally. By electron microscopy, axonal hypomyelination was evident in the subcortical white matter and hippocampus. The expression of myelin proteins including CNPase, MBP, PLP and MAG was downregulated in both areas of the brain at 7, 14 and 28 days after LPS injection. The frequency of MBP and PLP-positive oligodendrocyte was significantly reduced using in situ hybridization in the cerebral cortex and hippocampus at the corresponding time points after LPS injection, whereas the expression of NG2 and PDGFRα was noticeably increased. In tandem with this was reduction of Olig1 and Olig2 expressions which are involved in differentiation/maturation of OPCs. Expression of NFL, NFM, and NFH was significantly downregulated, indicating that axon development was disrupted after LPS injection. Morris Water Maze behavioral test, Open field test, Rotarod test, and Pole test were used to evaluate neurological behaviors of 28 days rats. The rats in the LPS group showed the impairment of motor coordination, balance, memory, and learning ability and represented bradykinesia and anxiety-like behavior. The present results suggest that following systemic LPS injection, differentiation/maturation of OPCs was affected which may be attributed to the inhibition of transcription factors Olig1 and Olig2 expression resulting in impairment to axonal development. It is suggested that this would ultimately lead to axonal hypomyelination in the prefrontal cortex and hippocampus, which may be associated with neurological deficits in later life.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xuan Chen
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China
| | - Qiuping Zhou
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Lanfen Lin
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Shuqi Jiang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Hui Fu
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Yajie Xiong
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Hongke Zeng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Ming Fang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
34
|
Fleiss B, Gressens P, Stolp HB. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Front Neurol 2020; 11:575. [PMID: 32765390 PMCID: PMC7381224 DOI: 10.3389/fneur.2020.00575] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
35
|
Luo X, Li Z, Zhao J, Deng Y, Zhong Y, Zhang M. Fyn gene silencing reduces oligodendrocytes apoptosis through inhibiting ERK1/2 phosphorylation in epilepsy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:298-304. [PMID: 31852295 DOI: 10.1080/21691401.2019.1671428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the effect of Fyn gene silencing on the apoptosis of oligodendrocytes (OLs) in epileptic model in vitro and the involved mechanism. Primary oligodendrocyte pro-genitor cells (OPCs) were separated from rats and differentiated to OLs. Immunofluorescent labeling showed positive expression of A2B5 in OPCs and Olig2 in OLs, suggesting the successful separation of OPCs and OLs. Three Fyn siRNAs (si-Fyn) and Fyn siRNA negative control (NC) were transfected into OLs. Western blot showed that among three si-Fyn groups, si-Fyn3 caused the lowest Fyn expression, so si-Fyn3 was chosen for following experiment. Cells were divided into four groups: Control, Model, NC and si-Fyn. In the Model group, cells were cultured in Mg-free extracellular fluid for 3 h. The morphology of control cells was normal. However, the migration of neurons, the aggregation of cell bodies and the "grid-like" changes of neural networks were observed in the model cells. OLs apoptosis in various groups was assessed by flow cytometry. Expression of Fyn, ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) in OLs of various groups was evaluated by western blot. Compared with the Control group, the apoptotic rates, the Fyn expression and p-ERK1/2/ERK1/2 ratio in the Model and NC groups increased significantly (p < .05). However, the apoptotic rate, the Fyn expression and p-ERK1/2/ERK1/2 ratio in the si-Fyn group were remarkably smaller than those in the Model group (p < .05). In conclusion, Fyn gene silencing reduced the apoptosis of OLs through inhibiting the phosphorylation of ERK1/2 in epileptic model.
Collapse
Affiliation(s)
- Xinming Luo
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengyu Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Deng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuqin Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Huang P, Zhou Q, Lin Q, Lin L, Wang H, Chen X, Jiang S, Fu H, Deng Y. Complement C3a induces axonal hypomyelination in the periventricular white matter through activation of WNT/β-catenin signal pathway in septic neonatal rats experimentally induced by lipopolysaccharide. Brain Pathol 2020; 30:495-514. [PMID: 31622511 PMCID: PMC8018074 DOI: 10.1111/bpa.12798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation is thought to play a pivotal role in the pathogenesis of periventricular white matter (PWM) damage (PWMD) induced by neonatal sepsis. Because the complement cascade is implicated in inflammatory response, this study was carried out to determine whether C3a is involved in PWMD, and, if so, whether it would induce axonal hypomyelination. Furthermore, we explored if C3a would act through its C3a receptor (C3aR) and thence inhibit maturation of oligodendrocyte precursor cells (OPCs) via the WNT/β-catenin signal pathway. Sprague Dawley (SD) rats aged 1 day were intraperitoneally injected with lipopolysaccharide (LPS) (1 mg/kg). C3a was upregulated in activated microglia and astrocytes in the PWM up to 7 days after LPS injection. Concomitantly, enhanced C3aR expression was observed in NG2+ oligodendrocytes (OLs). Myelin proteins including CNPase, PLP, MBP and MAG were significantly reduced in the PWM of 28-day septic rats. The number of PLP+ and MBP+ cells was markedly decreased. By electron microscopy, myelin sheath thickness was thinner and the average g-ratios were higher. This was coupled with an increase in number of NG2+ cells and decreased number of CC1+ cells. Olig1, Olig2 and SOX10 protein expression was significantly reduced in the PWM after LPS injection. Very strikingly, C3aRa administration for the first 7 days could reverse the above-mentioned pathological alterations in the PWM of septic rats. When incubated with C3a, expression of MBP, CNPase, PLP, MAG, Olig1, Olig2, SOX10 and CC1 in primary cultured OPCs was significantly downregulated as opposed to increased NG2. Moreover, WNT/β-catenin signaling pathway was found to be implicated in inhibition of OPCs maturation and differentiation induced by C3a in vitro. As a corollary, it is speculated that C3a in the PWM of septic rats is closely associated with the disorder of OPCs differentiation and maturation through WNT/β-catenin signaling pathway, which would contribute ultimately to axonal hypomyelination.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
| | - Qiuping Zhou
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhou510006GuangdongChina
| | - Qiongyu Lin
- Department of critical care medicineJieyang People's HospitalJieyang522000GuangdongChina
| | - Lanfen Lin
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Department of critical care medicineGuangdong Second Provincial General HospitalGuangzhou510317GuangdongChina
| | - Huifang Wang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Affiliated South China HospitalSourthern Medical University (Guangdong Provincial People's Hospital)Guangzhou510515GuangdongChina
| | - Xuan Chen
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Shantou University Medical CollegeShantou5105063GuangdongChina
| | - Shuqi Jiang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhou510006GuangdongChina
| | - Hui Fu
- Department of AnatomyWuhan University School of Basic Medical SciencesWuhan430072HubeiChina
| | - Yiyu Deng
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
| |
Collapse
|
37
|
Xie D, Ge X, Ma Y, Tang J, Wang Y, Zhu Y, Gao C, Pan S. Clemastine improves hypomyelination in rats with hypoxic-ischemic brain injury by reducing microglia-derived IL-1β via P38 signaling pathway. J Neuroinflammation 2020; 17:57. [PMID: 32061255 PMCID: PMC7023767 DOI: 10.1186/s12974-019-1662-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
Background Microglia activation is associated with the development of hypoxic–ischemic brain injury (HIBI). Neuroinflammation suppression might be a suitable therapeutic target in hypoxic oligodendrocyte injury. This study aims to determine whether clemastine can improve hypomyelination by suppressing the activated microglia and promoting the maturation of oligodendrocyte progenitor cells (OPCs) in HIBI. Methods A bilateral common carotid artery occlusion (BCCAO) rat model that received continuous intraperitoneal injection (1 mg/kg) for 14 days was employed to elaborate the neuroprotection effects of clemastine. Interleukin-1β (IL-1β), nod-like receptor protein 3 (NLRP3), histamine H1 receptor, and OPC differentiation levels in the corpus callosum were measured. Primary cultured OPCs and co-culture of microglia and OPCs were used to explore the link between microglia activation and hypomyelination. Data were evaluated by one-way ANOVA with Fisher’s protected least significant difference test. Results Clemastine treatment could reverse hypomyelination and restrain the upregulation of IL-1β and NLRP3 in the corpus callosum of BCCAO rats. Primary cultured OPCs treated with IL-1β showed failed maturation. However, clemastine could also reverse the OPC maturation arrest by activating the extracellular signal-regulated kinase (ERK) signaling pathway. Co-culture of microglia and OPCs with oxygen glucose deprivation treatment exhibited IL-1β and NLRP3 upregulation. Clemastine could downregulate NLRP3 and IL-1β and reverse hypomyelination by inhibiting the p38 signaling pathway. Conclusions Clemastine could restrain microglia activation, improve axonal hypomyelination in BCCAO rats, and thus might be a viable strategy to inhibit hypomyelination in the corpus callosum of patients with HIBI.
Collapse
Affiliation(s)
- Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Xiaoli Ge
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Yanli Ma
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Jialong Tang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Yajie Zhu
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China.
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China.
| |
Collapse
|
38
|
Glial Factors Regulating White Matter Development and Pathologies of the Cerebellum. Neurochem Res 2020; 45:643-655. [PMID: 31974933 PMCID: PMC7058568 DOI: 10.1007/s11064-020-02961-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
The cerebellum is a brain region that undergoes extremely dynamic growth during perinatal and postnatal development which is regulated by the proper interaction between glial cells and neurons with a complex concert of growth factors, chemokines, cytokines, neurotransmitters and transcriptions factors. The relevance of cerebellar functions for not only motor performance but also for cognition, emotion, memory and attention is increasingly being recognized and acknowledged. Since perturbed circuitry of cerebro-cerebellar trajectories can play a role in many central nervous system pathologies and thereby contribute to neurological symptoms in distinct neurodevelopmental and neurodegenerative diseases, is it the aim with this mini-review to highlight the pathways of glia–glia interplay being involved. The designs of future treatment strategies may hence be targeted to molecular pathways also playing a role in development and disease of the cerebellum.
Collapse
|
39
|
Musella A, Fresegna D, Rizzo FR, Gentile A, De Vito F, Caioli S, Guadalupi L, Bruno A, Dolcetti E, Buttari F, Bullitta S, Vanni V, Centonze D, Mandolesi G. 'Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opin Ther Targets 2020; 24:37-46. [PMID: 31899994 DOI: 10.1080/14728222.2020.1709823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: It has been recognized for about 20 years that interleukin (IL)-1 signaling is implicated in Multiple Sclerosis (MS), a disabling, chronic, inflammatory and neurodegenerative disease of the central nervous system (CNS). Only recently, multifaceted roles of IL-1 emerged in MS pathophysiology as a result of both clinical and preclinical studies. Notably, drugs that directly target the IL-1 system have not been tested so far in MS.Areas covered: Recent studies in animal models, together with the development of ex vivo chimeric MS models, have disclosed a critical role for IL-1 not only at the peripheral level but also within the CNS. In the present review, we highlight the IL-1-dependent neuropathological aspects of MS, by providing an overview of the cells of the immune and CNS systems that respond to IL-1 signaling, and by emphasizing the subsequent effects on the CNS, from demyelinating processes, to synaptopathy, and excitotoxicity.Expert opinion: Drugs that act on the IL-1 system show a therapeutic potential in several autoinflammatory diseases and preclinical studies have highlighted the effects of these compounds in MS. We will discuss why anti-IL-1 therapies in MS have been neglected to date.
Collapse
Affiliation(s)
- Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| |
Collapse
|
40
|
Petralla S, Peña-Altamira LE, Poeta E, Massenzio F, Virgili M, Barile SN, Sbano L, Profilo E, Corricelli M, Danese A, Giorgi C, Ostan R, Capri M, Pinton P, Palmieri F, Lasorsa FM, Monti B. Deficiency of Mitochondrial Aspartate-Glutamate Carrier 1 Leads to Oligodendrocyte Precursor Cell Proliferation Defects Both In Vitro and In Vivo. Int J Mol Sci 2019; 20:ijms20184486. [PMID: 31514314 PMCID: PMC6769484 DOI: 10.3390/ijms20184486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
Aspartate-Glutamate Carrier 1 (AGC1) deficiency is a rare neurological disease caused by mutations in the solute carrier family 25, member 12 (SLC25A12) gene, encoding for the mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), a component of the malate-aspartate NADH shuttle (MAS), expressed in excitable tissues only. AGC1 deficiency patients are children showing severe hypotonia, arrested psychomotor development, seizures and global hypomyelination. While the effect of AGC1 deficiency in neurons and neuronal function has been deeply studied, little is known about oligodendrocytes and their precursors, the brain cells involved in myelination. Here we studied the effect of AGC1 down-regulation on oligodendrocyte precursor cells (OPCs), using both in vitro and in vivo mouse disease models. In the cell model, we showed that a reduced expression of AGC1 induces a deficit of OPC proliferation leading to their spontaneous and precocious differentiation into oligodendrocytes. Interestingly, this effect seems to be related to a dysregulation in the expression of trophic factors and receptors involved in OPC proliferation/differentiation, such as Platelet-Derived Growth Factor α (PDGFα) and Transforming Growth Factor βs (TGFβs). We also confirmed the OPC reduction in vivo in AGC1-deficent mice, as well as a proliferation deficit in neurospheres from the Subventricular Zone (SVZ) of these animals, thus indicating that AGC1 reduction could affect the proliferation of different brain precursor cells. These data clearly show that AGC1 impairment alters myelination not only by acting on N-acetyl-aspartate production in neurons but also on OPC proliferation and suggest new potential therapeutic targets for the treatment of AGC1 deficiency.
Collapse
Affiliation(s)
- Sabrina Petralla
- Department of Pharmacy and BioTechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (L.E.P.-A.); (E.P.); (F.M.); (M.V.)
| | - Luis Emiliano Peña-Altamira
- Department of Pharmacy and BioTechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (L.E.P.-A.); (E.P.); (F.M.); (M.V.)
| | - Eleonora Poeta
- Department of Pharmacy and BioTechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (L.E.P.-A.); (E.P.); (F.M.); (M.V.)
| | - Francesca Massenzio
- Department of Pharmacy and BioTechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (L.E.P.-A.); (E.P.); (F.M.); (M.V.)
| | - Marco Virgili
- Department of Pharmacy and BioTechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (L.E.P.-A.); (E.P.); (F.M.); (M.V.)
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70121 Bari, Italy (E.P.); (F.P.)
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (L.S.); (M.C.); (A.D.); (C.G.); (P.P.)
| | - Emanuela Profilo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70121 Bari, Italy (E.P.); (F.P.)
| | - Mariangela Corricelli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (L.S.); (M.C.); (A.D.); (C.G.); (P.P.)
| | - Alberto Danese
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (L.S.); (M.C.); (A.D.); (C.G.); (P.P.)
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (L.S.); (M.C.); (A.D.); (C.G.); (P.P.)
| | - Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES, Dipartimento di Medicina Specialistica Diagnostica e Sperimentale) and C.I.G. Interdepartmental Centre “L. Galvani”, University of Bologna, 40126 Bologna, Italy; (R.O.); (M.C.)
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES, Dipartimento di Medicina Specialistica Diagnostica e Sperimentale) and C.I.G. Interdepartmental Centre “L. Galvani”, University of Bologna, 40126 Bologna, Italy; (R.O.); (M.C.)
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (L.S.); (M.C.); (A.D.); (C.G.); (P.P.)
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48010 Ravenna, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70121 Bari, Italy (E.P.); (F.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies IBIOM, CNR, 70126 Bari, Italy
| | - Francesco Massimo Lasorsa
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies IBIOM, CNR, 70126 Bari, Italy
- Correspondence: (F.M.L.); (B.M.); Tel.: +39-080-544-2772 (F.M.L.); +39-051-209-4134 (B.M.)
| | - Barbara Monti
- Department of Pharmacy and BioTechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (L.E.P.-A.); (E.P.); (F.M.); (M.V.)
- Correspondence: (F.M.L.); (B.M.); Tel.: +39-080-544-2772 (F.M.L.); +39-051-209-4134 (B.M.)
| |
Collapse
|
41
|
Espitia Pinzon N, van Mierlo H, de Jonge JC, Brevé JJP, Bol JGJM, Drukarch B, van Dam AM, Baron W. Tissue Transglutaminase Promotes Early Differentiation of Oligodendrocyte Progenitor Cells. Front Cell Neurosci 2019; 13:281. [PMID: 31312122 PMCID: PMC6614186 DOI: 10.3389/fncel.2019.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023] Open
Abstract
Demyelinated lesions of the central nervous system are characteristic for multiple sclerosis (MS). Remyelination is not very effective, particular at later stages of the disease, which results in a chronic neurodegenerative character with worsening of symptoms. Previously, we have shown that the enzyme Tissue Transglutaminase (TG2) is downregulated upon differentiation of oligodendrocyte progenitor cells (OPCs) into myelin-forming oligodendrocytes and that TG2 knock-out mice lag behind in remyelination after cuprizone-induced demyelination. Here, we examined whether astrocytic or oligodendroglial TG2 affects OPCs in a cell-specific manner to modulate their differentiation, and therefore myelination. Our findings indicate that human TG2-expressing astrocytes did not modulate OPC differentiation and myelination. In contrast, persistent TG2 expression upon OPC maturation or exogenously added recombinant TG2 accelerated OPC differentiation and myelin membrane formation. Continuous exposure of recombinant TG2 to OPCs at different consecutive developmental stages, however, decreased OPC differentiation and myelin membrane formation, while it enhanced myelination in dorsal root ganglion neuron-OPC co-cultures. In MS lesions, TG2 is absent in OPCs, while human OPCs show TG2 immunoreactivity during brain development. Exposure to the MS-relevant pro-inflammatory cytokine IFN-γ increased TG2 expression in OPCs and prolonged expression of endogenous TG2 upon differentiation. However, despite the increased TG2 levels, OPC maturation was not accelerated, indicating that TG2-mediated OPC differentiation may be counteracted by other pathways. Together, our data show that TG2, either endogenously expressed, or exogenously supplied to OPCs, accelerates early OPC differentiation. A better understanding of the role of TG2 in the OPC differentiation process during MS is of therapeutic interest to overcome remyelination failure.
Collapse
Affiliation(s)
- Nathaly Espitia Pinzon
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Hanneke van Mierlo
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jenny C de Jonge
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - John J P Brevé
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - John G J M Bol
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
42
|
Venkat P, Chopp M, Zacharek A, Cui C, Landschoot-Ward J, Qian Y, Chen Z, Chen J. Sildenafil treatment of vascular dementia in aged rats. Neurochem Int 2019; 127:103-112. [DOI: 10.1016/j.neuint.2018.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 01/08/2023]
|
43
|
Lin Q, Shen F, Zhou Q, Huang P, Lin L, Chen M, Chen X, Jiang S, He S, Zeng H, Deng Y. Interleukin-1β Disturbs the Proliferation and Differentiation of Neural Precursor Cells in the Hippocampus via Activation of Notch Signaling in Postnatal Rats Exposed to Lipopolysaccharide. ACS Chem Neurosci 2019; 10:2560-2575. [PMID: 30817119 DOI: 10.1021/acschemneuro.9b00051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infectious exposure during the perinatal period may predispose to permanent neurological disorders in later life. Here we investigated whether changes in interleukin-1β (IL-1β) are associated with cognitive dysfunction in later life of septic neonatal rats through suppression of neurogenesis in the hippocampus. Sprague-Dawley rats (1-day old) administered lipopolysaccharide (LPS) showed upregulated expression of IL-1β and IL-1 receptors in the hippocampus. At 28 days of age, rats showed longer escape latencies and decreased numbers of crossings after LPS administration. This was coupled with increased numbers of glial fibrillary acidic protein positive (GFAP+) astrocytes and decreased numbers of neuronal nuclei positive (NeuN+) cells. The numbers of sex-determining region Y-box 2 positive (SOX2+) and doublecortin positive (DCX+) cells were decreased at 1 and 3 days but was increased at 7 and 14 days. The proliferation of SOX2+ cells was inhibited at 1 and 3 days but increased at 7 and 14 days. In vitro IL-1β administration suppressed the proliferation of neural progenitor cells (NPCs) in neurospheres derived from the hippocampus. GFAP expression was upregulated in differentiated NPCs treated with IL-1β for 4 days, but expression of DCX and microtubule associated protein-2 (MAP2) was decreased. Remarkably, the Notch signaling pathway involved in antineurogenic and progliogenic differentiation of NPCs was activated after IL-1β administration. The results show that following LPS injection in neonatal rats, microglia were activated and generated excess amounts of IL-1β in the hippocampus. It is suggested that this might have contributed to inhibiting neurogenesis but promoting gliogenesis of NPCs via activation of the Notch signaling pathway and maybe one of the causes for cognitive dysfunction in septic neonatal rats in later life.
Collapse
Affiliation(s)
- Qiongyu Lin
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Jieyang People's Hospital, Jieyang Affiliated Hospital , Sun Yat-sen University , Jieyang 522000 , China
| | - Fengcai Shen
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Department of Rheumatology, the First Affiliated Hospital , Shantou University Medical College , Shantou 515063 , China
| | - Qiuping Zhou
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
| | - Peixian Huang
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Shantou University Medical College , Shantou 515063 , China
| | - Lanfen Lin
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Southern Medical University , Guangzhou 510515 , China
| | - Mengmeng Chen
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Shantou University Medical College , Shantou 515063 , China
| | - Xuan Chen
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Shantou University Medical College , Shantou 515063 , China
| | - Shuqi Jiang
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Southern Medical University , Guangzhou 510515 , China
| | - Shaoru He
- Department of Neonatology , Guangzhou General Hospital , Guangzhou 510080 , China
| | - Hongke Zeng
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
| |
Collapse
|
44
|
Tanga N, Kuboyama K, Kishimoto A, Kiyonari H, Shiraishi A, Suzuki R, Watanabe T, Fujikawa A, Noda M. The PTN-PTPRZ signal activates the AFAP1L2-dependent PI3K-AKT pathway for oligodendrocyte differentiation: Targeted inactivation of PTPRZ activity in mice. Glia 2019; 67:967-984. [PMID: 30667096 DOI: 10.1002/glia.23583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatase receptor type Z (PTPRZ) maintains oligodendrocyte precursor cells (OPCs) in an undifferentiated state. The inhibition of PTPase by its ligand pleiotrophin (PTN) promotes OPC differentiation; however, the substrate molecules of PTPRZ involved in the differentiation have not yet been elucidated in detail. We herein demonstrated that the tyrosine phosphorylation of AFAP1L2, paxillin, ERBB4, GIT1, p190RhoGAP, and NYAP2 was enhanced in OPC-like OL1 cells by a treatment with PTN. AFAP1L2, an adaptor protein involved in the PI3K-AKT pathway, exhibited the strongest response to PTN. PTPRZ dephosphorylated AFAP1L2 at tyrosine residues in vitro and in HEK293T cells. In OL1 cells, the knockdown of AFAP1L2 or application of a PI3K inhibitor suppressed cell differentiation as well as the PTN-induced phosphorylation of AKT and mTOR. We generated a knock-in mouse harboring a catalytically inactive Cys to Ser (CS) mutation in the PTPase domain. The phosphorylation levels of AFAP1L2, AKT, and mTOR were higher, and the expression of oligodendrocyte markers, including myelin basic protein (MBP) and myelin regulatory factor (MYRF), was stronger in CS knock-in brains than in wild-type brains on postnatal day 10; however, these differences mostly disappeared in the adult stage. Adult CS knock-in mice exhibited earlier remyelination after cuprizone-induced demyelination through the accelerated differentiation of OPCs. These phenotypes in CS knock-in mice were similar to those in Ptprz-deficient mice. Therefore, we conclude that the PTN-PTPRZ signal stimulates OPC differentiation partly by enhancing the tyrosine phosphorylation of AFAP1L2 in order to activate the PI3K-AKT pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cuprizone/toxicity
- Cytokines/metabolism
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/diagnostic imaging
- Disease Models, Animal
- HEK293 Cells
- Humans
- Immunoprecipitation
- In Situ Nick-End Labeling
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microfilament Proteins/metabolism
- Myelin Proteins/metabolism
- Oligodendroglia/physiology
- Proto-Oncogene Proteins c-akt
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
- Signal Detection, Psychological/drug effects
- Signal Detection, Psychological/physiology
- Signal Transduction/physiology
- Transfection
- X-Ray Microtomography
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Naomi Tanga
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Kazuya Kuboyama
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Ayako Kishimoto
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Aki Shiraishi
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ryoko Suzuki
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology (NIBB), Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
45
|
Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. Can Neonatal Systemic Inflammation and Hypoxia Yield a Cerebral Palsy-Like Phenotype in Periadolescent Mice? Mol Neurobiol 2019; 56:6883-6900. [PMID: 30941732 PMCID: PMC6728419 DOI: 10.1007/s12035-019-1548-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Cerebral palsy (CP) is one of the most common childhood-onset motor disabilities, attributed to injuries of the immature brain in the foetal or early postnatal period. The underlying mechanisms are poorly understood, rendering prevention and treatment strategies challenging. The aim of the present study was to establish a mouse model of CP for preclinical assessment of new interventions. For this purpose, we explored the impact of a double neonatal insult (i.e. systemic inflammation combined with hypoxia) on behavioural and cellular outcomes relevant to CP during the prepubertal to adolescent period of mice. Pups were subjected to intraperitoneal lipopolysaccharide (LPS) injections from postnatal day (P) 3 to P6 followed by hypoxia at P7. Gene expression analysis at P6 revealed a strong inflammatory response in a brain region-dependent manner. A comprehensive battery of behavioural assessments performed between P24 and P47 showed impaired limb placement and coordination when walking on a horizontal ladder in both males and females. Exposed males also displayed impaired performance on a forelimb skilled reaching task, altered gait pattern and increased exploratory activity. Exposed females showed a reduction in grip strength and traits of anxiety-like behaviour. These behavioural alterations were not associated with gross morphological changes, white matter lesions or chronic inflammation in the brain. Our results indicate that the neonatal double-hit with LPS and hypoxia can induce subtle long-lasting deficits in motor learning and fine motor skills, which partly reflect the symptoms of children with CP who have mild gross and fine motor impairments.
Collapse
Affiliation(s)
- Adamantia F Fragopoulou
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | - Yu Qian
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rochellys Diaz Heijtz
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden.,INSERM U1239, University of Rouen Normandy, 76130, Mont-Saint-Aignan, France
| | - Hans Forssberg
- Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.
| |
Collapse
|
46
|
Borhani-Haghighi M, Mohamadi Y, Kashani IR. In utero transplantation of neural stem cells ameliorates maternal inflammation-induced prenatal white matter injury. J Cell Biochem 2019; 120:12785-12795. [PMID: 30861185 DOI: 10.1002/jcb.28548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
Prenatal white matter injury is a serious problem due to maternal inflammation leading to postnatal disabilities. In this study, we used the periventricular leukomalacia (PVL) model as a common prenatal white matter injury by maternal administration of lipopolysaccharide (LPS). Neural stem cells (NSCs) have shown therapeutic ability in neurological disorders through a different mechanism such as immunomodulation. Here, we studied the preventive potential of NSCs following in utero transplantation into the embryonic lateral ventricle in an LPS-induced white matter injury model. Pregnant animals were divided into three groups and received phosphate buffered saline, LPS, or LPS + NSCs. The brains of offspring were obtained and evaluated by real-time polymerase chain reaction (PCR), immunohistochemy, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (TUNEL), and caspase-3 activity assay. The LPS-induced maternal inflammation degenerated the myelin sheath in the offspring periventricular region which was associated with an increased microglial number, oligodendrocytes degeneration, proinflammatory cytokine secretion, and cell apoptosis. The transplanted NSCs homed into the brain and ameliorated the evaluated parameters. The expression of proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), cell apoptosis and caspase-3 activity were inhibited by NSCs. In addition, Olig2 and myelin basic protein immunohistochemy staining showed that prenatal NSCs transplantation augmented the myelination in the periventricular white matter of offspring. In conclusion, we think that prenatal therapeutic strategies, such as in utero NSCs transplantation, may prevent prenatal white matter injury after birth.
Collapse
Affiliation(s)
- Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Abstract
Despite notable advances in the care and survival of preterm infants, a significant proportion of preterm neonates will have life-long cognitive, behavioral, and motor deficits, and robustly effective neuroprotective strategies are still missing. These therapies must target the pathophysiologic mechanisms observed in contemporaneous infants and rely on modern epidemiology, imaging, and experimental models and assessment techniques. Two drugs, magnesium sulfate and caffeine, are already in use in several units, and although their targets are apnea of prematurity and myometrial contractility (respectively), they do offer improved odds of positive outcomes. Nevertheless, these drugs have limited efficacy, and NICU-to-NICU administration varies greatly. As such, there is an obvious need for additional specific neurotherapeutic strategies to further enhance the outcome of this very fragile population of neonates. The chapter reviews these issues, highlights bottlenecks that need to be solved for meaningful progress in the field, and proposes future innovative avenues for intervention, including delayed interventions.
Collapse
Affiliation(s)
- Bobbi Fleiss
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Pierre Gressens
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom.
| |
Collapse
|
48
|
Ge Y, Huang M, Yao YM. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev 2018; 45:24-34. [PMID: 30587411 DOI: 10.1016/j.cytogfr.2018.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
The IL-1 family comprises two anti-inflammatory cytokines (IL-37, IL-38), two receptor antagonists (IL-1ra, IL-36ra), and seven ligand agonists (IL-1α, IL-1β, IL-33, IL-36α, IL-36β, IL-36γ). The members of this family exert pleiotropic effects on intercellular signaling, leading to pro- or anti-inflammatory responses. They initiate potent inflammatory and immune responses by binding to specific receptors in the IL-1 receptor family, and their activities are repressed by naturally occurring inhibitors. Various immune cells produce and are regulated by these crucial molecules, which appear to be involved in the pathogenesis of diverse diseases including cancer as well as inflammatory and autoimmune disorders. Recent decades have seen substantial progress in understanding how the IL-1 family contributes to the development of sepsis. In this review, we will briefly introduce the IL-1 family and discuss its critical role in inflammatory and immune responses. The potential significance of IL-1 members in sepsis will also be explored, together with the clinical implications for treating this dangerous condition.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
49
|
Kling DN, DeBose-Scarlett EM, Teixeira LD, Gezan SA, Lorca GL, Gonzalez CF. Sex Modulates Lactobacillus johnsonii N6.2 and Phytophenol Effectiveness in Reducing High Fat Diet Induced mTOR Activation in Sprague-Dawley Rats. Front Microbiol 2018; 9:2649. [PMID: 30459740 PMCID: PMC6232610 DOI: 10.3389/fmicb.2018.02649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is the underlying cause of some devastating diseases, including type 2 diabetes and cardiovascular disease. These diseases have been associated with over-activation of the mechanistic Target of Rapamycin (mTOR) pathway. This study utilizes a high fat diet (HFD) to induce MetS and to dissect the effects of a beneficial bacterium, L. johnsonii N6.2, and natural phenolics on mTOR complex 1 (mTORC1) expression compared to a reduced energy density diet (REDD). HFD significantly elevated MetS markers in males, as noted through an increase in weight, glucose levels, and triglyceride levels. Treatments were effective in reducing mTORC1-activating phosphorylation of pAKT-T308 and pAKT-S473 (p = 0.0012 and 0.0049, respectively) in HFD-fed females, with the combined treatments of L. johnsonii and phytophenols reducing phosphorylation below REDD-fed control levels, and significantly below HFD-fed control levels. Meanwhile, diet was the significant factor influencing male mTORC1-activating phosphorylation (p < 0.0001), as treatments were only effective in reducing phosphorylation in REDD-fed animals. Downstream analysis of mTORC1 activated genes phosphogluconate dehydrogenase (pgd) and phosphofructose kinase (pfk) followed this similar trend, enforcing the significant effect sex has on a treatments’ ability to modulate diet induced abnormalities. Analyzing mTORC1 stimulators such as insulin, inflammatory cytokines, and tryptophan, revealed no significant differences among groups. These results indicate that the effects observed on mTORC1 are a direct consequence of the treatments, and not exerted indirectly via the modulation of stimuli. This study highlights the potential use of commensal microorganisms and natural compounds in reducing the onset of metabolic diseases through mTORC1.
Collapse
Affiliation(s)
- Danielle N Kling
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, Unites States
| | - Evon M DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, Unites States
| | - Leandro D Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, Unites States
| | - Salvador A Gezan
- School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, Unites States
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, Unites States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, Unites States
| |
Collapse
|
50
|
Wu M, Xu L, Wang Y, Zhou N, Zhen F, Zhang Y, Qu X, Fan H, Liu S, Chen Y, Yao R. S100A8/A9 induces microglia activation and promotes the apoptosis of oligodendrocyte precursor cells by activating the NF-κB signaling pathway. Brain Res Bull 2018; 143:234-245. [PMID: 30266587 DOI: 10.1016/j.brainresbull.2018.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022]
Abstract
S100A8/A9, a heterodimer complex composed of calcium-binding proteins S100A8 and S100A9, is significantly increased in the serum of multiple sclerosis (MS) patients. Relevant reports have revealed that MS pathology is commonly associated with the activation of microglial cells and the damage of oligodendrocyte precursor cells (OPCs). Moreover, microglia activation following stimulation increases the expression of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), which further exacerbate the damage to OPCs. In this study, we were the first to confirm that S100A8/A9 treatment induced the activation, proliferation and migration of the murine microglia cell line BV-2; moreover, this treatment caused the cells to switch from an anti-inflammatory activated (M2) phenotype to a pro-inflammatory activated (M1) phenotype. Meanwhile, the level of the phosphorylated nuclear factor-κB (p-NF-κB) P65 protein was remarkably elevated, and the production of pro-inflammatory factors (IL-1β, TNF-α, MMP-9) and chemokines (CCL2, CCL3, CXCL10) was also increased in the S100A8/A9-treated BV-2 microglial cells. Inhibition of NF-κB P65 phosphorylation reversed the effects of S100A8/A9 on the production of pro-inflammatory factors and chemokines. We also explored the effects of S100A8/A9 and S100A8/A9-activated BV-2 microglial cells on the viability of OPCs. The results showed that both the S100A8/A9 complex and the conditioned medium (CM) of the S100A8/A9-activated BV-2 microglial cells resulted in OPC apoptosis, which was more pronounced in the case of the CM treatment. However, OPC apoptosis in the CM group was obviously decreased through the inhibition of NF-κB p65 phosphorylation. This study indicates that S100A8/A9 induces the activation of BV-2 microglial cells and promotes the production of pro-inflammatory factors by activating the NF-κB signaling pathway, which further exacerbates OPC damage.
Collapse
Affiliation(s)
- Meili Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Lu Xu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Yu Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Ning Zhou
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Fei Zhen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Ying Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Hongbin Fan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Sihan Liu
- Department of Rehabilitation, The First People's Hospital of Changzhou, Jiangsu, 213000, PR China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China.
| |
Collapse
|