1
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
2
|
Dos Santos Pereira M, Maitan Santos B, Gimenez R, Guimarães FS, Raisman-Vozari R, Del Bel E, Michel PP. The two synthetic cannabinoid compounds 4'-F-CBD and HU-910 efficiently restrain inflammatory responses of brain microglia and astrocytes. Glia 2024; 72:529-545. [PMID: 38013496 DOI: 10.1002/glia.24489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1β in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 μM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.
Collapse
Affiliation(s)
- Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Bruna Maitan Santos
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Rocio Gimenez
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
- IREN Center, National Technological University, Buenos Aires, Argentina
| | | | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick Pierre Michel
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Yildirim-Balatan C, Fenyi A, Besnault P, Gomez L, Sepulveda-Diaz JE, Michel PP, Melki R, Hunot S. Parkinson's disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype. J Neuroinflammation 2024; 21:54. [PMID: 38383421 PMCID: PMC10882738 DOI: 10.1186/s12974-024-03043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.
Collapse
Affiliation(s)
- Cansu Yildirim-Balatan
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Alexis Fenyi
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Pierre Besnault
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Lina Gomez
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Patrick P Michel
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Ronald Melki
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Stéphane Hunot
- Sorbonne Université, Paris, France.
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France.
- Inserm UMRS 1127, Paris, France.
- CNRS UMR 7225, Paris, France.
| |
Collapse
|
4
|
Pergolizzi S, Fumia A, D'Angelo R, Mangano A, Lombardo GP, Giliberti A, Messina E, Alesci A, Lauriano ER. Expression and function of toll-like receptor 2 in vertebrate. Acta Histochem 2023; 125:152028. [PMID: 37075649 DOI: 10.1016/j.acthis.2023.152028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Toll-like receptors (TLRs) are essential for identifying and detecting pathogen-associated molecular patterns (PAMPs) produced by a variety of pathogens, including viruses and bacteria. Since TLR2 is the only TLR capable of creating functional heterodimers with more than two other TLR types, it is very important for vertebrate immunity. TLR2 not only broadens the variety of PAMPs that it can recognize but has also the potential to diversify the subsequent signaling cascades. TLR2 is ubiquitous, which is consistent with the wide variety of tasks and functions it serves. Immune cells, endothelial cells, and epithelial cells have all been found to express TLR2. This review aims to gather currently available information about the preservation of this intriguing immunological molecule in the phylum of vertebrates.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124 Messina, Italy
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Giliberti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
5
|
Acertannin attenuates LPS-induced inflammation by interrupting the binding of LPS to the TLR4/MD2 complex and activating Nrf2-mediated HO-1 activation. Int Immunopharmacol 2022; 113:109344. [DOI: 10.1016/j.intimp.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
6
|
Markoutsa E, Mayilsamy K, Gulick D, Mohapatra SS, Mohapatra S. Extracellular vesicles derived from inflammatory-educated stem cells reverse brain inflammation-implication of miRNAs. Mol Ther 2022; 30:816-830. [PMID: 34371179 PMCID: PMC8821927 DOI: 10.1016/j.ymthe.2021.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation plays a key role in the development of age-related diseases. In Alzheimer's disease, neuronal cell death is attributed to amyloidbeta oligomers that trigger microglial activation. Stem cells have shown promise as therapies for inflammatory diseases- because of their paracrine activity combined with their ability to respond to the inflammatory environment. However, the mechanisms underlying stem cell-promoted neurological recovery are poorly understood. To elucidate these mechanisms, we first primed stem cells with the secretome of lipopolysaccharide- or amyloidbeta-activated microglia. Then, we compared the immunomodulatory effects of extracellular vesicles (EVs) secreted from primed and non-primed stem cells. Our results demonstrate that EVs from primed cells are more effective in inhibiting microglia and astrocyte activation, amyloid deposition, demyelination, memory loss and motor and anxiety-like behavioral dysfunction, compared to EVs from non-primed cells. MicroRNA (miRNA) profiling revealed the upregulation of at least 19 miRNAs on primed-stem cell EVs. The miRNA targets were identified, and KEGG pathway analysis showed that the overexpressed miRNAs target key genes on the toll-like receptor-4 (TLR4) signaling pathway. Overall, our results demonstrate that priming mesenchymal stem cells (MSCs) with the secretome of activated microglia results in the release of miRNAs from EVs with enhanced immune regulatory potential able to fight neuroinflammation.
Collapse
Affiliation(s)
- Eleni Markoutsa
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA,College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA,Corresponding author: Eleni Markoutsa, Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Karthick Mayilsamy
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA
| | - Dannielle Gulick
- Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA
| | - Shyam S. Mohapatra
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA,College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA,Corresponding author: Subhra Mohapatra, Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Ferreira Junior NC, dos Santos Pereira M, Francis N, Ramirez P, Martorell P, González-Lizarraga F, Figadère B, Chehin R, Del Bel E, Raisman-Vozari R, Michel PP. The Chemically-Modified Tetracycline COL-3 and Its Parent Compound Doxycycline Prevent Microglial Inflammatory Responses by Reducing Glucose-Mediated Oxidative Stress. Cells 2021; 10:cells10082163. [PMID: 34440932 PMCID: PMC8392055 DOI: 10.3390/cells10082163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
We used mouse microglial cells in culture activated by lipopolysaccharide (LPS) or α-synuclein amyloid aggregates (αSa) to study the anti-inflammatory effects of COL-3, a tetracycline derivative without antimicrobial activity. Under LPS or αSa stimulation, COL-3 (10, 20 µM) efficiently repressed the induction of the microglial activation marker protein Iba-1 and the stimulated-release of the pro-inflammatory cytokine TNF-α. COL-3′s inhibitory effects on TNF-α were reproduced by the tetracycline antibiotic doxycycline (DOX; 50 µM), the glucocorticoid dexamethasone, and apocynin (APO), an inhibitor of the superoxide-producing enzyme NADPH oxidase. This last observation suggested that COL-3 and DOX might also operate themselves by restraining oxidative stress-mediated signaling events. Quantitative measurement of intracellular reactive oxygen species (ROS) levels revealed that COL-3 and DOX were indeed as effective as APO in reducing oxidative stress and TNF-α release in activated microglia. ROS inhibition with COL-3 or DOX occurred together with a reduction of microglial glucose accumulation and NADPH synthesis. This suggested that COL-3 and DOX might reduce microglial oxidative burst activity by limiting the glucose-dependent synthesis of NADPH, the requisite substrate for NADPH oxidase. Coherent with this possibility, the glycolysis inhibitor 2-deoxy-D-glucose reproduced the immunosuppressive action of COL-3 and DOX in activated microglia. Overall, we propose that COL-3 and its parent compound DOX exert anti-inflammatory effects in microglial cells by inhibiting glucose-dependent ROS production. These effects might be strengthened by the intrinsic antioxidant properties of DOX and COL-3 in a self-reinforcing manner.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Maurício dos Santos Pereira
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Nour Francis
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Paola Ramirez
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Paula Martorell
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Florencia González-Lizarraga
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), CP 4000 Tucumán, Argentina; (F.G.-L.); (R.C.)
| | - Bruno Figadère
- BioCIS, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| | - Rosana Chehin
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), CP 4000 Tucumán, Argentina; (F.G.-L.); (R.C.)
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Correspondence: (R.R.-V.); (P.P.M.); Tel.: +33-(0)157274550 (R.R.-V.); +33-(0)157274534 (P.P.M.)
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Correspondence: (R.R.-V.); (P.P.M.); Tel.: +33-(0)157274550 (R.R.-V.); +33-(0)157274534 (P.P.M.)
| |
Collapse
|
8
|
Zhao J, Bi W, Zhang J, Xiao S, Zhou R, Tsang CK, Lu D, Zhu L. USP8 protects against lipopolysaccharide-induced cognitive and motor deficits by modulating microglia phenotypes through TLR4/MyD88/NF-κB signaling pathway in mice. Brain Behav Immun 2020; 88:582-596. [PMID: 32335193 DOI: 10.1016/j.bbi.2020.04.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) regulates inflammation in vitro; however, the mechanisms by which USP8 inhibits neuroinflammation and its pathophysiological functions are not completely understood. In this study, we aimed to determine whether USP8 exerts neuroprotective effects in a mouse model of lipopolysaccharide (LPS)-induced cognitive and motor impairment. We commenced intracerebroventricular USP8 administration 7 days prior to i.p. injection of LPS (750 μg/kg). All treatments and behavioral experiments were performed once per day for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. USP8 attenuated LPS-induced cognitive and motor impairments in mice. Moreover, USP8 downregulated several pro-inflammatory cytokines [nitric oxide (NO), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and interleukin-1β (IL-1β)] in the serum and brain, and the relevant protein factors [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)] in the brain. Furthermore, USP8 upregulated the anti-inflammatory mediators interleukin (IL)-4 and IL-10 in the serum and brain, and promoted a shift from pro-inflammatory to anti-inflammatory microglial phenotypes. The LPS-induced microglial pro-inflammatory phenotype was abolished by TLR4 inhibitor and in TLR4-/- mice; these effects were similar to those of USP8 treatment. Mechanistically, we found that USP8 increased the expression of neuregulin receptor degradation protein-1 (Nrdp1), potently downregulated the expression of TLR4 and myeloid differentiation primary response protein 88 (MyD88) protein, and inhibited the phosphorylation of IκB kinase (IKK) β and kappa B-alpha (IκBα), thereby reducing nuclear translocation of p65 by inhibiting the activation of the nuclear factor-kappaB (NF-κB) signaling pathway in LPS-induced mice. Our results demonstrated that USP8 exerts protective effects against LPS-induced cognitive and motor deficits in mice by modulating microglial phenotypes via TLR4/MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- JiaYi Zhao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - JiaWei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - RuiYi Zhou
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - Chi Kwan Tsang
- Clinical Neuoscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province 510630, China
| | - DaXiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China.
| |
Collapse
|
9
|
Lin TL, Shu CC, Chen YM, Lu JJ, Wu TS, Lai WF, Tzeng CM, Lai HC, Lu CC. Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome. Front Pharmacol 2020; 11:554. [PMID: 32425790 PMCID: PMC7212368 DOI: 10.3389/fphar.2020.00554] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbiome maintains local gut integrity and systemic host homeostasis, where optimal control of intestinal lipopolysaccharides (LPS) activity may play an important role. LPS mainly produced from gut microbiota are a group of lipid-polysaccharide chemical complexes existing in the outer membrane of Gram-negative bacteria. Traditionally, LPS mostly produced from Proteobacteria are well known for their ability in inducing strong inflammatory responses (proinflammatory LPS, abbreviated as P-LPS), leading to septic shock or even death in animals and humans. Although the basic structures and chemical properties of P-LPS derived from different bacterial species generally show similarity, subtle and differential immune activation activities are observed. On the other hand, frequently ignored, a group of LPS molecules mainly produced by certain microbiota bacteria such as Bacteroidetes show blunt or even antagonistic activity in initiating pro-inflammatory responses (anti-inflammatory LPS, abbreviated as A-LPS). In this review, besides the immune activation properties of P-LPS, we also focus on the description of anti-inflammatory effects of A-LPS, and their potential antagonistic mechanism. We address the possibility of using native or engineered A-LPS for immune modulation in prevention or even treatment of P-LPS induced chronic inflammation related diseases. Understanding the exquisite interactive relationship between structure-activity correlation of P- and A-LPS not only contributes to molecular understanding of immunomodulation and homeostasis, but also re-animates the development of novel LPS-based pharmacological strategy for prevention and therapy of chronic inflammation related diseases.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Fan Lai
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan.,Central Research Laboratory, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Chen Lu
- Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
10
|
Bowyer JF, Sarkar S, Burks SM, Hess JN, Tolani S, O'Callaghan JP, Hanig JP. Microglial activation and responses to vasculature that result from an acute LPS exposure. Neurotoxicology 2020; 77:181-192. [PMID: 32014511 DOI: 10.1016/j.neuro.2020.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
Bacterial cell wall endotoxins, i.e. lipopolysaccharides (LPS), are some of the original compounds shown to evoke the classic signs of systemic inflammation/innate immune response and neuroinflammation. The term neuroinflammation often is used to infer the elaboration of proinflammatory mediators by microglia elicited by neuronal targeted activity. However, it also is possible that the microglia are responding to vasculature through several signaling mechanisms. Microglial activation relative to the vasculature in the hippocampus and parietal cortex was determined after an acute exposure of a single subcutaneous injection of 2 mg/kg LPS. Antibodies to allograft inflammatory factor (Aif1, a.k.a. Iba1) were used to track and quantify morphological changes in microglia. Immunostaining of platelet/endothelial cell adhesion molecule 1 (Pecam1, a.k.a. Cd31) was used to visualize vasculature in the forebrain and glial acidic fibrillary protein (GFAP) to visualize astrocytes. Neuroinflammation and other aspects of neurotoxicity were evaluated histologically at 3 h, 6 h, 12 h, 24 h, 3 d and 14 d following LPS exposure. LPS did not cause neurodegeneration as determined by Fluoro Jade C labeling. Also, there were no signs of mouse IgG leakage from brain vasculature due to LPS. Some changes in microglia size occurred at 6 h, but by 12 h microglial activation had begun with the combined soma and proximal processes size increasing significantly (1.5-fold). At 24 h, almost all the microglia soma and proximal processes in the hippocampus, parietal cortex, and thalamus were closely associated with the vasculature and had increased almost 2.0-fold in size. In many areas where microglia were juxtaposed to vasculature, astrocytic endfeet appeared to be displaced. The microglial activation had subsided slightly by 3 d with microglial size 1.6-fold that of control. We hypothesize that acute LPS activation can result in vascular mediated microglial responses through several mechanisms: 1) binding to Cd14 and Tlr4 receptors on microglia processes residing on vasculature; 2) damaging vasculature and causing the release of cytokines; and 3) possibly astrocytic endfeet damage resulting in cytokine release. These acute responses may serve as an adaptive mechanism to exposure to circulating LPS where the microglia surround the vasculature. This could further prevent the pathogen(s) circulating in blood from entering the brain. However, diverting microglial interactions away from synaptic remodeling and other types of microglial interactions with neurons may have adverse effects on neuronal function.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA.
| | - Susan M Burks
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Jade N Hess
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - Serena Tolani
- Division of Neurotoxicology, National Center for Toxicology/ FDA, Jefferson, AR 72079, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, WV 26505, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/ FDA Silver Spring, MD 20993, USA
| |
Collapse
|
11
|
Vargas-Caraveo A, Sayd A, Robledo-Montaña J, Caso JR, Madrigal JLM, García-Bueno B, Leza JC. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs. J Neuroinflammation 2020; 17:6. [PMID: 31906991 PMCID: PMC6945636 DOI: 10.1186/s12974-019-1690-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background The circumventricular organs (CVOs) are blood-brain-barrier missing structures whose activation through lipopolysaccharide (LPS) is a starting point for TLR-driven (Toll-like receptors) neuroinflammation. The aim of this study was to evaluate in the CVO area postrema (AP), subfornical organ (SFO), and median eminence (ME), the inflammatory response to two TLR4 agonists: LPS from Escherichia coli (EC-LPS), the strongest endotoxin molecule described, and LPS from Porphyromonas gingivalis (PG-LPS), a pathogenic bacteria present in the periodontium related to neuroinflammation in neurodegenerative/psychiatric diseases. The response to LPS from the cyanobacteria Rhodobacter sphaeroides (RS-LPS), a TLR4 antagonist with an interesting anti-inflammatory potential, was also assessed. Methods LPSs were intraperitoneally administered to Wistar rats and, as indicatives of neuroinflammation in CVOs, the cellular localization of the nuclear factor NF-κB was studied by immunofluorescence, and microglia morphology was quantified by fractal and skeleton analysis. Results Data showed that EC-LPS increased NF-κB nuclear translocation in the three CVOs studied and PG-LPS only induced NF-κB nuclear translocation in the ME. RS-LPS showed no difference in NF-κB nuclear translocation compared to control. Microglia in the three CVOs showed an ameboid-shape after EC-LPS exposure, whereas PG-LPS only elicited a mild tendency to induce an ameboid shape. On the other hand, RS-LPS produced a markedly elongated morphology described as “rod” microglia in the three CVOs. Conclusions In conclusion, at the doses tested, EC-LPS induces a stronger neuroinflammatory response than PG-LPS in CVOs, which might be related to their different potency as TLR4 agonists. The non-reduction of basal NF-κB activation and induction of rod microglia by RS-LPS, a cell morphology only present in severe brain injury and infections, suggests that this molecule must be carefully studied before being proposed as an anti-inflammatory treatment for neuroinflammation related to neurodegenerative/psychiatric diseases.
Collapse
Affiliation(s)
- Alejandra Vargas-Caraveo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain. .,Biological and Health Sciences Division, Metropolitan Autonomous University (UAM), Campus Lerma, 52005, Lerma, Mexico.
| | - Aline Sayd
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Javier Robledo-Montaña
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12); Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
12
|
Mitsui K, Ikedo T, Kamio Y, Furukawa H, Lawton MT, Hashimoto T. TLR4 (Toll-Like Receptor 4) Mediates the Development of Intracranial Aneurysm Rupture. Hypertension 2019; 75:468-476. [PMID: 31865791 DOI: 10.1161/hypertensionaha.118.12595] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is emerging as a critical factor in the pathophysiology of intracranial aneurysm. TLR4 (toll-like receptor 4) contributes not only to the innate immune responses but also to the inflammatory processes associated with vascular disease. Therefore, we examined the contribution of the TLR4 pathway to the development of the rupture of intracranial aneurysm. We used a mouse model of intracranial aneurysm. TLR4 inhibition significantly reduced the development of aneurysmal rupture. In addition, the rupture rate and levels of proinflammatory cytokines were lower in TLR4 knockout mice than the control littermates. Macrophage/monocyte-specific TLR4 knockout mice had a lower rupture rate than the control littermate mice. Moreover, the deficiency of MyD88 (myeloid differentiation primary-response protein 88), a key mediator of TLR4, reduced the rupture rate. These findings suggest that the TLR4 pathway promotes the development of intracranial aneurysmal rupture by accelerating inflammation in aneurysmal walls. Inhibition of the TLR4 pathway in inflammatory cells may be a promising approach for the prevention of aneurysmal rupture and subsequent subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Kazuha Mitsui
- From the Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Taichi Ikedo
- From the Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Yoshinobu Kamio
- From the Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Hajime Furukawa
- From the Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Michael T Lawton
- From the Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Tomoki Hashimoto
- From the Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| |
Collapse
|
13
|
Ribeiro P, Castro MV, Perez M, Cartarozzi LP, Spejo AB, Chiarotto GB, Augusto TM, Oliveira ALR. Toll-like receptor 4 (TLR4) influences the glial reaction in the spinal cord and the neural response to injury following peripheral nerve crush. Brain Res Bull 2019; 155:67-80. [PMID: 31756421 DOI: 10.1016/j.brainresbull.2019.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/05/2019] [Accepted: 11/15/2019] [Indexed: 01/10/2023]
Abstract
After peripheral axotomy, there is a selective retraction of synaptic terminals in contact with injured motoneurons. This process, which actively involves glial cells, is influenced by the expression of immune-related molecules. Since toll-like receptors (TLRs) are upregulated by astrocytes and microglia following lesions, they might be involved in synaptic plasticity processes. Therefore, we administered lipopolysaccharide (LPS) to enhance TLR4 expression in mice and studied retrograde changes in the spinal cord ventral horn following sciatic nerve crush. To this end, adult C57BL/6J male mice were subjected to unilateral sciatic nerve crush at the mid-thigh level and, after a survival time of seven and forty days (acute and chronic phases, respectively), the spinal cords were paraformaldehyde-fixed and dissected out for immunolabeling for synaptophysin, glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1). The results show that TLR4 upregulation leads to synaptophysin downregulation close to spinal motoneuron cell bodies, indicating increased synaptic elimination. LPS exposure also further increases astrogliosis and microglial reactions in the both ventral and dorsal horns, especially ipsilateral to nerve axotomy, compared to those in untreated mice. Notably, LPS administration to TLR4-/- mice produces results similar to those observed in untreated wild-type counterparts, reinforcing the role of this receptor in the glial response to injury. Therefore, our results suggest that the overexpression of the TLR4 receptor results in augmented astrogliosis/microglial reactions and the excessive loss of synapses postinjury, which may, in turn, affect the motoneuronal regenerative response and functionality. Additionally, treatment with LPS increases the expression of β2-microglobulin, a subcomponent of MHC I. Importantly, the absence of TLR4 results in imbalanced axonal regeneration, inducing subsequent improvements and setbacks. In conclusion, our results show the involvement of TLR4 in the process of synaptic remodeling, indicating a new target for future research aimed at developing therapies for CNS and PNS repair.
Collapse
Affiliation(s)
- Patrícia Ribeiro
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| | - Mateus V Castro
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| | - Matheus Perez
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| | - Luciana P Cartarozzi
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| | - Aline B Spejo
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| | - Gabriela B Chiarotto
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| | | | - Alexandre L R Oliveira
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas 13083-970, São Paulo, Brazil.
| |
Collapse
|
14
|
dos‐Santos‐Pereira M, Guimarães FS, Del‐Bel E, Raisman‐Vozari R, Michel PP. Cannabidiol prevents LPS‐induced microglial inflammation by inhibiting ROS/NF‐κB‐dependent signaling and glucose consumption. Glia 2019; 68:561-573. [DOI: 10.1002/glia.23738] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mauricio dos‐Santos‐Pereira
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
- Faculdade de Odontologia, Departamento de Morfologia, Fisiologia e Patologia BásicaUniversidade de São Paulo Ribeirão Preto Brazil
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
| | - Franscisco S. Guimarães
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
- Faculdade de Medicina, Departamento de FarmacologiaUniversidade de São Paulo Ribeirão Preto Brazil
| | - Elaine Del‐Bel
- Faculdade de Odontologia, Departamento de Morfologia, Fisiologia e Patologia BásicaUniversidade de São Paulo Ribeirão Preto Brazil
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
| | - Rita Raisman‐Vozari
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
| | - Patrick P. Michel
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
| |
Collapse
|
15
|
Cai B, Seong KJ, Bae SW, Kook MS, Chun C, Lee JH, Choi WS, Jung JY, Kim WJ. Water-Soluble Arginyl–Diosgenin Analog Attenuates Hippocampal Neurogenesis Impairment Through Blocking Microglial Activation Underlying NF-κB and JNK MAPK Signaling in Adult Mice Challenged by LPS. Mol Neurobiol 2019; 56:6218-6238. [DOI: 10.1007/s12035-019-1496-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022]
|
16
|
Qin C, Liu Q, Hu ZW, Zhou LQ, Shang K, Bosco DB, Wu LJ, Tian DS, Wang W. Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway. Theranostics 2018; 8:5434-5451. [PMID: 30555556 PMCID: PMC6276098 DOI: 10.7150/thno.27882] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022] Open
Abstract
Rationale: Ischemic white matter damage frequently results in myelin loss, accompanied with microglial activation. We previously found that directing microglia towards an anti-inflammatory phenotype provided a beneficial microenvironment and helped maintain white matter integrity during chronic cerebral hypoperfusion. However, the molecular mechanisms underlying microglial polarization remain elusive. Methods: Hypoperfusion induced white matter damage mice model and lipopolysaccharide (LPS) induced primary cultured microglia were established. Autophagy activation in microglia was detected both in vivo and in vitro by immunofluorescence, Western blot and electron microscopy. Autophagy inhibitors/agonist were administrated to investigate the role of autophagic process in modulating microglial phenotypes. Quantitative real time-polymerase chain reaction and Western blot were carried out to investigate the possible pathway. Results: We identified rapid accumulation of autophagosomes in primary cultured microglia exposed to LPS and within activated microglia during white matter ischemic damage. Autophagy inhibitors switched microglial function from pro-inflammatory to anti-inflammatory phenotype. Furthermore, we found TLR4, one of the major receptors binding LPS, was most highly expressed on microglia in corpus callosum during white matter ischemic damage, and TLR4 deficiency could mimic the phenomenon in microglial functional transformation, and exhibit a protective activity in chronic cerebral hypoperfusion. Whereas, the anti-inflammatory phenotype of microglia in TLR4 deficiency group was largely abolished by the activation of autophagic process. Finally, our transcriptional analysis confirmed that the up-regulation of STAT1 and down-regulation of STAT6 in microglia exposure to LPS could be reversed by autophagy inhibition. Conclusion: These results indicated that TLR4-dependent autophagy regulates microglial polarization and induces ischemic white matter damage via STAT1/6 pathway.
Collapse
|
17
|
Ding Y, Liu P, Chen ZL, Zhang SJ, Wang YQ, Cai X, Luo L, Zhou X, Zhao L. Emodin Attenuates Lipopolysaccharide-Induced Acute Liver Injury via Inhibiting the TLR4 Signaling Pathway in vitro and in vivo. Front Pharmacol 2018; 9:962. [PMID: 30186181 PMCID: PMC6113398 DOI: 10.3389/fphar.2018.00962] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Aims: Emodin is an anthraquinone with potential anti-inflammatory properties. However, the possible molecular mechanisms and protective effects of emodin are not clear. The objective of this study was to investigate the possible molecular mechanisms and protective effects of emodin on lipopolysaccharide (LPS)-induced acute liver injury (ALI) via the Toll-like receptor 4 (TLR4) signaling pathway in the Raw264.7 cell line and in Balb/c mice. Methods: This study established an inflammatory cellular model and induced an ALI animal model. TLR4 was overexpressed by lentivirus and downregulated by small interfering RNA (siRNA) technology. The mRNA and protein levels of TLR4 and downstream molecules were detected in cells and liver tissue. The tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 levels in supernatant and serum were determined by ELISA. The distribution and expression of mannose receptor C type 1 (CD206) and arginase 1 (ARG1) in the liver were tested by immunofluorescence. Mouse liver function and histopathological observations were assessed. Results: Administration of emodin reduced the protein and/or mRNA levels of TLR4 and its downstream molecules following LPS challenge in Raw264.7 cells and in an animal model. Additionally, emodin suppressed the expression of TNF-α and IL-6 in cell culture supernatant and serum. The inhibitory effect of emodin was also confirmed in RAW264.7 cells, in which TLR4 was overexpressed or knocked down. Additionally, ARG1 and CD206 were elevated in the emodin groups. Emodin also decreased serum ALT and AST levels and alleviated the liver histopathological damage induced by LPS. Conclusion: Emodin showed excellent hepatoprotective effects against LPS-induced ALI, possibly by inhibiting TLR4 signaling pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jun Zhang
- National and Local Joint Engineering Research Center for High-throughput Drug Screening Technology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei University, Wuhan, China
| | - You-Qin Wang
- Graduate School of Jinzhou Medical University, Department of Pediatrics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xin Cai
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Abstract
One of the fundamental mechanisms whereby the innate immune system coordinates inflammatory signal transduction is through Toll-like receptors (TLRs), which function to protect and defend the host organism by initiating inflammatory signaling cascades in response to tissue damage or injury. TLRs are positioned at the neuroimmune interface, and accumulating evidence suggests that the inflammatory consequences of TLR activation on glia (including microglia and astrocytes), sensory neurons, and other cell types can influence nociceptive processing and lead to states of exaggerated and unresolved pain. In this review, we summarize our current understanding of how different TLRs and their accessory or adaptor molecules can contribute to the development and maintenance of persistent pain. The challenges and opportunities of targeting TLRs for new treatment strategies against chronic pain are discussed, including the therapeutic context of TLR-mediated signaling in opioid analgesia and chemotherapy-induced pain. Considering the prevalence of persistent pain and the insufficient efficacy and safety of current treatment options, a deeper understanding of Toll-like receptors holds the promise of novel therapies for managing pathological pain.
Collapse
|
19
|
Park J, Kwak CH, Ha SH, Kwon KM, Abekura F, Cho SH, Chang YC, Lee YC, Ha KT, Chung TW, Kim CH. Ganglioside GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 264.7 macrophage cells through NF-κB, AP-1, and MAPKs signaling. J Cell Biochem 2017; 119:1173-1182. [PMID: 28708322 DOI: 10.1002/jcb.26287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023]
Abstract
Gangliosides are known to specifically inhibit vascular leukocyte recruitment and consequent interaction with the injured endothelium, the basic inflammatory process. In this study, we have found that the production of nitric oxide (NO), a main regulator of inflammation, is suppressed by GM3 on murine macrophage RAW 264.7 cells, when induced by LPS. In addition, GM3 attenuated the increase in cyclooxyenase-2 (COX-2) protein and mRNA levels in lipopolysaccharide (LPS)-activated RAW 264.7 cells in a dose-dependent manner. Moreover, GM3 inhibited the expression and release of pro-inflammatory cytokines of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in RAW 264.7 macrophages. At the intracellular level, GM3 inhibited LPS-induced nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein (AP)-1 in RAW 264.7 macrophages. We, therefore, investigated whether GM3 affects mitogen-activated protein kinase (MAPK) phosphorylation, a process known as the upstream signaling regulator. GM3 dramatically reduced the expression levels of the phosphorylated forms of ERK, JNK, and p38 in LPS-activated RAW 264.7 cells. These results indicate that GM3 is a promising suppressor of the vascular inflammatory responses and ganglioside GM3 suppresses the LPS-induced inflammatory response in RAW 264.7 macrophages by suppression of NF-κB, AP-1, and MAPKs signaling. Accordingly, GM3 is suggested as a beneficial agent for the treatment of diseases that are associated with inflammation.
Collapse
Affiliation(s)
- Junyoung Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea.,Research Institute, Davinch-K Co., Ltd, Geumcheon-Gu, Seoul, Republic of Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Saha-Gu, Busan, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| |
Collapse
|