1
|
Moon S, Park J, Lim S, Suh SY, Le A, Demer JL. Scanning Laser Ophthalmoscopy Demonstrates Pediatric Optic Disc and Peripapillary Strain During Horizontal Eye Rotation. Curr Eye Res 2024; 49:437-445. [PMID: 38185657 DOI: 10.1080/02713683.2023.2295789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
Purpose: We employed automated analysis of scanning laser ophthalmoscopy (SLO) to determine if mechanical strains imposed on disc, and retinal and choroidal vessels during horizontal duction in children differ from those of adults.Methods: Thirty-one children aged 11.3 ± 2.7 (standard deviation) years underwent SLO in central gaze, and 35° ab- and adduction. Automated registration with deep learning-based optical flow analysis quantified vessel deformations as horizontal, vertical, shear, and equivalent strains. Choroidal vessel displacements in lightly pigmented fundi, and central disc vessel displacements, were also observed.Results: As in adults, strain in vessels during horizontal duction was greatest at the disc and decreased with distance from it. Strain in the pediatric disc was similar to published values in young adults,1 but in the peripapillary region was greater and propagated significantly more peripherally to at least three disc radii from it. During adduction in children, the nasal disc was compressed and disc vessels distorted, but the temporal half experienced tensile strain, while peripapillary tissues were compressed. The pattern was similar but strains were less in abduction (p < .001). Choroidal vessels were visualized in 24 of the 62 eyes and shifted directionally opposite overlying retinal vessels.Conclusions: Horizontal duction deforms the normal pediatric optic disc, central retinal vessels, peripapillary retina, and choroid, shearing the inner retina over the choroid. These mechanical effects occur at the sites of remodeling of the disc, sclera, and choroid associated with typical adult features that later emerge later, including optic cup enlargement, temporal disc tilting, and peripapillary atrophy.
Collapse
Affiliation(s)
- Sunghyuk Moon
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Joseph Park
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Seongjin Lim
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - Soh Youn Suh
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
| | - Alan Le
- Alcon Research, Ltd, Lake Forest, CA, USA
| | - Joseph L Demer
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Hong J, Kirkland JM, Acheta J, Marziali LN, Beck B, Jeanette H, Bhatia U, Davis G, Herron J, Roué C, Abi-Ghanem C, Feltri ML, Zuloaga K, Bechler ME, Poitelon Y, Belin S. YAP and TAZ regulate remyelination in the central nervous system. Glia 2024; 72:156-166. [PMID: 37724047 PMCID: PMC10659087 DOI: 10.1002/glia.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/20/2023]
Abstract
Myelinating cells are sensitive to mechanical stimuli from their extracellular matrix. Ablation of YAP and TAZ mechanotransducers in Schwann cells abolishes the axon-Schwann cell recognition, myelination, and remyelination in the peripheral nervous system. It was unknown if YAP and TAZ are also required for myelination and remyelination in the central nervous system. Here we define the importance of oligodendrocyte (OL) YAP and TAZ in vivo, by specific deletion in oligodendroglial cells in adult OLs during myelin repair. Blocking YAP and TAZ expression in OL lineage cells did not affect animal viability or any major defects on OL maturation and myelination. However, using a mouse model of demyelination/remyelination, we demonstrate that YAP and TAZ modulate the capacity of OLs to remyelinate axons, particularly during the early stage of the repair process, when OL proliferation is most important. These results indicate that YAP and TAZ signaling is necessary for effective remyelination of the mouse brain.
Collapse
Affiliation(s)
- Jiayue Hong
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Jules M Kirkland
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Jenica Acheta
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Leandro N Marziali
- Institute for Myelin and Glia Exploration, Dept. Biochemistry, University at Buffalo, Buffalo, NY, 14203, USA
| | - Brianna Beck
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Haley Jeanette
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Urja Bhatia
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Grace Davis
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Jacob Herron
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Clémence Roué
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Charly Abi-Ghanem
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Dept. Biochemistry, University at Buffalo, Buffalo, NY, 14203, USA
- Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kristen Zuloaga
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Marie E Bechler
- Department of Cell and Developmental Biology, and Department of Neuroscience and Physiology State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Yannick Poitelon
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Sophie Belin
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| |
Collapse
|
3
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Fabbri R, Spennato D, Conte G, Konstantoulaki A, Lazzarini C, Saracino E, Nicchia GP, Frigeri A, Zamboni R, Spray DC, Benfenati V. The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. Pharmacol Ther 2023; 245:108403. [PMID: 37024060 DOI: 10.1016/j.pharmthera.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Interoception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu. Their ability to dynamically communicate "listening" and "talking" to neurons is necessary to monitor and regulate homeostasis and information integration in the nervous system. This review introduces the concept of "Glioception" and focuses on the process by which glial cells sense, interpret and integrate information about the inner state of the organism. Glial cells are ideally positioned to act as sensors and integrators of diverse interoceptive signals and can trigger regulatory responses via modulation of the activity of neuronal networks, both in physiological and pathological conditions. We believe that understanding and manipulating glioceptive processes and underlying molecular mechanisms provide a key path to develop new therapies for the prevention and alleviation of devastating interoceptive dysfunctions, among which pain is emphasized here with more focused details.
Collapse
Affiliation(s)
- Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy.
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, BO, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Grazia Paola Nicchia
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, BA, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Antonio Frigeri
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
5
|
Fan Z, Liang L, Ma R, Xie R, Zhao Y, Zhang M, Guo B, Zeng T, He D, Zhao X, Zhang H. Maternal sevoflurane exposure disrupts oligodendrocyte myelination of the postnatal hippocampus and induces cognitive and motor impairments in offspring. Biochem Biophys Res Commun 2022; 614:175-182. [DOI: 10.1016/j.bbrc.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
6
|
Li M, Xiao L, Chen X. Histone Acetylation and Methylation Underlie Oligodendroglial and Myelin Susceptibility in Schizophrenia. Front Cell Neurosci 2022; 16:823708. [PMID: 35360494 PMCID: PMC8960244 DOI: 10.3389/fncel.2022.823708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a complex neuropsychiatric disorder affected by both genetic and epigenetic factors. Except for neuronal dysfunction, oligodendroglial abnormalities also contribute to the disease pathogenesis, characterized by a robust dysregulation of oligodendrocyte and myelin related genes. Accumulating evidence shows that histone modifications play important roles in transcriptional regulation of the genes crucial for oligodendrocyte differentiation and myelination. Specifically, the histone acetylation and methylation were two well-recognized histone modification abnormalities in the schizophrenic brains. In this mini-review, we will describe the dynamic changes of histone acetylation and methylation in schizophrenia, which may coordinate and induce deleterious epigenetic memory in oligodendroglial cells, and further lead to oligodendrocyte and myelin deficits. Precise modulation of histone modification status in oligodendroglial cells needs to secure the balance of epigenetic marks, which may revise the therapeutic strategy for the white matter etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mei Li
- Department of Physiology, Research Center of Neuroscience, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Laboratory of Human Physiology, Lab Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Lan Xiao,
| | - Xianjun Chen
- Department of Physiology, Research Center of Neuroscience, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
- Xianjun Chen,
| |
Collapse
|
7
|
Hagemann TL. Alexander disease: models, mechanisms, and medicine. Curr Opin Neurobiol 2022; 72:140-147. [PMID: 34826654 PMCID: PMC8901527 DOI: 10.1016/j.conb.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Alexander disease is a primary disorder of astrocytes caused by gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), which lead to protein aggregation and a reactive astrocyte response, with devastating effects on the central nervous system. Over the past two decades since the discovery of GFAP as the culprit, several cellular and animal models have been generated, and much has been learned about underlying mechanisms contributing to the disease. Despite these efforts, many aspects of Alexander disease have remained enigmatic, particularly the initiating events in GFAP accumulation and astrocyte pathology, the relation between astrocyte dysfunction and myelin deficits, and the variability in age of onset and disease severity. More recent work in both old and new models has begun to address these complex questions and identify new therapeutics that finally offer the promise of effective treatment.
Collapse
Affiliation(s)
- Tracy L. Hagemann
- Waisman Center, University of Wisconsin – Madison, 1500 Highland Ave, Madison, WI 53705
| |
Collapse
|
8
|
Dansu DK, Sauma S, Casaccia P. Oligodendrocyte progenitors as environmental biosensors. Semin Cell Dev Biol 2021; 116:38-44. [PMID: 33092959 PMCID: PMC8053729 DOI: 10.1016/j.semcdb.2020.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 01/10/2023]
Abstract
The past decade has seen an important revision of the traditional concept of the role and function of glial cells. From "passive support" for neurons, oligodendrocyte lineage cells are now recognized as metabolic exchangers with neurons, a cellular interface with blood vessels and responders to gut-derived metabolites or changes in the social environment. In the developing brain, the differentiation of neonatal oligodendrocyte progenitors (nOPCs) is required for normal brain function. In adulthood, the differentiation of adult OPCs (aOPCs) serves an important role in learning, behavioral adaptation and response to myelin injury. Here, we propose the concept of OPCs as environmental biosensors, which "sense" chemical and physical stimuli over time and adjust to the new challenges by modifying their epigenome and consequent transcriptome. Because epigenetics defines the ability of the cell to "adapt" gene expression to changes in the environment, we propose a model of OPC differentiation resulting from time-dependent changes of the epigenomic landscape in response to declining mitogens, raising hormone levels, neuronal activity, changes in space constraints or stiffness of the extracellular matrix. We propose that the intrinsically different functional properties of aOPCs compared to nOPCs result from the accrual of "epigenetic memories" of distinct events, which are "recorded" in the nuclei of OPCs as histone and DNA marks, defining a "unique epigenomic landscape" over time.
Collapse
Affiliation(s)
- David K Dansu
- Graduate Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA
| | - Sami Sauma
- Graduate Program in Biology, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA; Graduate Program in Biology, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
9
|
Li Y, Tang W, Guo M. The Cell as Matter: Connecting Molecular Biology to Cellular Functions. MATTER 2021; 4:1863-1891. [PMID: 35495565 PMCID: PMC9053450 DOI: 10.1016/j.matt.2021.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viewing cell as matter to understand the intracellular biomolecular processes and multicellular tissue behavior represents an emerging research area at the interface of physics and biology. Cellular material displays various physical and mechanical properties, which can strongly affect both intracellular and multicellular biological events. This review provides a summary of how cells, as matter, connect molecular biology to cellular and multicellular scale functions. As an impact in molecular biology, we review recent progresses in utilizing cellular material properties to direct cell fate decisions in the communities of immune cells, neurons, stem cells, and cancer cells. Finally, we provide an outlook on how to integrate cellular material properties in developing biophysical methods for engineered living systems, regenerative medicine, and disease treatments.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenhui Tang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Gene expression profiles of YAP1, TAZ, CRB3, and VDR in familial and sporadic multiple sclerosis among an Iranian population. Sci Rep 2021; 11:7713. [PMID: 33833274 PMCID: PMC8032816 DOI: 10.1038/s41598-021-87131-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in the regulatory mechanisms that control the process of myelination in the nervous system, may lead to the impaired myelination in the Multiple sclerosis. The Hippo pathway is an important mediator of myelination in the nervous system and might contribute to the pathophysiology of MS. This study examined via qPCR the RNA expression of YAP1, TAZ, and CRB3 as the key effectors of the Hippo pathway and also, VDR in the peripheral blood of 35 sporadic, 37 familial MS patients; and also 34 healthy first-degree relatives of the familial MS patients (HFR) and 40 healthy individuals without a family history of the disease (control). The results showed the increased expression of VDR in the sporadic group, as compared to other groups. There was also an increased expression of TAZ in the familial and HFR groups, as compared to the control group. The familial and sporadic patients displayed a significantly lower level of expression of YAP1 in comparison to the HFR group. The increased expression level in the sporadic patients and control group, as compared to the HFR group, was seen in CRB3. We also assessed different clinical parameters and MRI characteristics of the patients. Overall, these findings suggest that Hippo pathway effectors and also VDR gene may play a potential role in the pathophysiology of the sporadic and familial forms of MS. Confirmation of different gene expression patterns in sporadic and familial MS groups may have obvious implications for the personalization of therapies in the disease.
Collapse
|
11
|
Ermakov D, Ermakov A. Memetic approach to cultural evolution. Biosystems 2021; 204:104378. [PMID: 33607224 DOI: 10.1016/j.biosystems.2021.104378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023]
Abstract
Charles Darwin, the founder of the idea of natural selection, believed that this selection is not limited exclusively to biology: changes in language, consciousness, and technology are also adaptive. The transmission of culture is not a human prerogative. To date, several approaches for the understanding of the biological basis of cultural evolution were developed. Memetics stands out among other interdisciplinary theories that consider the development of culture and society through the prism of biological phenomena, because it is based on the concept of the biological replicator, meme and the mechanisms of cultural evolution are understood by analogy with biological evolution. The concepts of the biological and cultural replicators are similar; however, the nature of memes and the specific mechanisms of their replication are still poorly understood. In this review, we consider the strengths and weaknesses of the memetic approach to the study of cultural phenomena in the context of the cultural and technological evolution of mankind.
Collapse
Affiliation(s)
- Dmitry Ermakov
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia.
| | - Alexander Ermakov
- Lomonosov Moscow State University, Faculty of Biology, Department of Embryology, 1, b. 12 Lenin Hills, Moscow, 119991, Russia; Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str., 26, Moscow, 119334, Russia; Scientific Center of Children's Health, Ministry of Healthcare of the Russian Federation, Lomonosovsky prospect, 2/62, Moscow, 117296, Moscow, Russia.
| |
Collapse
|
12
|
Grossemy S, Chan PPY, Doran PM. Enhanced Neural Differentiation Using Simultaneous Application of 3D Scaffold Culture, Fluid Flow, and Electrical Stimulation in Bioreactors. Adv Biol (Weinh) 2021; 5:e2000136. [PMID: 33852182 DOI: 10.1002/adbi.202000136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/25/2021] [Indexed: 12/22/2022]
Abstract
Neural differentiation is studied using a simultaneous application of 3D scaffold culture and hydrodynamic and electrical stimuli in purpose-designed recirculation bioreactors operated with continuous fluid flow. Pheochromocytoma (PC12) cells are seeded into nonwoven microfibrous viscose-rayon scaffolds functionalized with poly-l-lysine and laminin. Compared with the results from static control cultures with and without electrical stimulation and bioreactor cultures with the fluid flow without electrical stimulation, expression levels of the differentiation markers β3-tubulin, shootin1, and ephrin type-A receptor 2 are greatest when cells are cultured in bioreactors with fluid flow combined with in-situ electrical stimulus. Immunocytochemical assessment of neurite development and morphology within the scaffolds confirm the beneficial effects of exposing the cells to concurrent hydrodynamic and electrical treatments. Under the conditions tested, electrical stimulation by itself produces more pronounced levels of cell differentiation than fluid flow alone; however, significant additional improvements in differentiation are achieved by combining these treatments. Fluid flow and electrical stimuli exert independent and noninteractive effects on cellular differentiation, suggesting that interference between the mechanisms of differentiation enhancement by these two treatments is minimal during their simultaneous application. This work demonstrates the beneficial effects of combining several different potent physical environmental stimuli in cell culture systems to promote neurogenesis.
Collapse
Affiliation(s)
- Simon Grossemy
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| | - Peggy P Y Chan
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|
13
|
Yattah C, Hernandez M, Huang D, Park H, Liao W, Casaccia P. Dynamic Lamin B1-Gene Association During Oligodendrocyte Progenitor Differentiation. Neurochem Res 2020; 45:606-619. [PMID: 32020491 PMCID: PMC7060805 DOI: 10.1007/s11064-019-02941-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022]
Abstract
Differentiation of oligodendrocytes (OL) from progenitor cells (OPC) is the result of a unique program of gene expression, which is further regulated by the formation of topological domains of association with the nuclear lamina. In this study, we show that cultured OPC were characterized by progressively declining levels of endogenous Lamin B1 (LMNB1) during differentiation into OL. We then identify the genes dynamically associated to the nuclear lamina component LMNB1 during this transition, using a well established technique called DamID, which is based on the ability of a bacterially-derived deoxyadenosine methylase (Dam), to modify genomic regions in close proximity. We expressed a fusion protein containing Dam and LMNB1 in OPC (OPCLMNB1-Dam) and either kept them proliferating or differentiated them into OL (OLLMNB1-Dam) and identified genes that were dynamically associated to LMNB1 with differentiation. Importantly, we identified Lss, the gene encoding for lanosterol synthase, a key enzyme in cholesterol synthesis, as associated to the nuclear lamina in OLLMNB1-Dam. This finding could at least in part explain the lipid dysregulation previously reported for mouse models of ADLD characterized by persistent LMNB1 expression in oligodendrocytes.
Collapse
Affiliation(s)
- Camila Yattah
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Marylens Hernandez
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dennis Huang
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - HyeJin Park
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Will Liao
- New York Genome Center, New York, NY, 10013, USA
| | - Patrizia Casaccia
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate Program in Biochemistry and in Biology, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat Neurosci 2020; 23:363-374. [PMID: 32066987 PMCID: PMC7292734 DOI: 10.1038/s41593-019-0581-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023]
Abstract
Recent reports have revealed oligodendrocyte precursor cell (OPC)
heterogeneity. It remains unclear if such heterogeneity reflects different
subtypes of cells with distinct functions, or rather transiently acquired states
of cells with the same function. By integrating lineage formation of individual
OPC clones, single-cell transcriptomics, calcium imaging and neural activity
manipulation, we show that OPCs in the zebrafish spinal cord can be divided into
two functionally distinct groups. One subgroup forms elaborate networks of
processes and exhibits a high degree of calcium signalling, but infrequently
differentiates, despite contact with permissive axons. Instead, these OPCs
divide in an activity and calcium dependent manner to produce another subgroup
with higher process motility and less calcium signaling, which readily
differentiates. Our data show that OPC subgroups are functionally diverse in
responding to neurons and reveal that activity regulates proliferation of a
subset of OPCs that is distinct from the cells that generate differentiated
oligodendrocytes.
Collapse
|
15
|
Duman M, Martinez-Moreno M, Jacob C, Tapinos N. Functions of histone modifications and histone modifiers in Schwann cells. Glia 2020; 68:1584-1595. [PMID: 32034929 DOI: 10.1002/glia.23795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/25/2023]
Abstract
Schwann cells (SCs) are the main glial cells present in the peripheral nervous system (PNS). Their primary functions are to insulate peripheral axons to protect them from the environment and to enable fast conduction of electric signals along big caliber axons by enwrapping them in a thick myelin sheath rich in lipids. In addition, SCs have the peculiar ability to foster axonal regrowth after a lesion by demyelinating and converting into repair cells that secrete neurotrophic factors and guide axons back to their former target to finally remyelinate regenerated axons. The different steps of SC development and their role in the maintenance of PNS integrity and regeneration after lesion are controlled by various factors among which transcription factors and chromatin-remodeling enzymes hold major functions. In this review, we discussed how histone modifications and histone-modifying enzymes control SC development, maintenance of PNS integrity and response to injury. The functions of histone modifiers as part of chromatin-remodeling complexes are discussed in another review published in the same issue of Glia.
Collapse
Affiliation(s)
- Mert Duman
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Margot Martinez-Moreno
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nikos Tapinos
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| |
Collapse
|
16
|
Casaccia P. Emerging concepts in neuroscience research: 2019 highlights. Lancet Neurol 2020; 19:21-22. [PMID: 31839244 DOI: 10.1016/s1474-4422(19)30452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Patrizia Casaccia
- Advanced Science Research Center, Graduate Center of the City University of New York, New York, NY 10031, USA; Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA.
| |
Collapse
|
17
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|