1
|
Ralvenius WT, Mungenast AE, Woolf H, Huston MM, Gillingham TZ, Godin SK, Penney J, Cam HP, Gao F, Fernandez CG, Czako B, Lightfoot Y, Ray WJ, Beckmann A, Goate AM, Marcora E, Romero-Molina C, Ayata P, Schaefer A, Gjoneska E, Tsai LH. A novel molecular class that recruits HDAC/MECP2 complexes to PU.1 motifs reduces neuroinflammation. J Exp Med 2023; 220:e20222105. [PMID: 37642942 PMCID: PMC10465325 DOI: 10.1084/jem.20222105] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD. We analyzed single-cell transcriptomic datasets from microglia of human AD patients and found an enrichment of PU.1-binding motifs in the differentially expressed genes. In hippocampal tissues from transgenic mice with neurodegeneration, we found vastly increased genomic PU.1 binding. We then screened for PU.1 inhibitors using a PU.1 reporter cell line and discovered A11, a molecule with anti-inflammatory efficacy and nanomolar potency. A11 regulated genes putatively by recruiting a repressive complex containing MECP2, HDAC1, SIN3A, and DNMT3A to PU.1 motifs, thus representing a novel mechanism and class of molecules. In mouse models of AD, A11 ameliorated neuroinflammation, loss of neuronal integrity, AD pathology, and improved cognitive performance. This study uncovers a novel class of anti-inflammatory molecules with therapeutic potential for neurodegenerative disorders.
Collapse
Affiliation(s)
- William T. Ralvenius
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison E. Mungenast
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Woolf
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret M. Huston
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Z. Gillingham
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen K. Godin
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay Penney
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugh P. Cam
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fan Gao
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Celia G. Fernandez
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Czako
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaima Lightfoot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adrian Beckmann
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alison M. Goate
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Romero-Molina
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pinar Ayata
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elizabeta Gjoneska
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
2
|
McFarland KN, Chakrabarty P. Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics 2022; 19:186-208. [PMID: 35286658 PMCID: PMC9130399 DOI: 10.1007/s13311-021-01179-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Immune activation accompanies the development of proteinopathy in the brains of Alzheimer's dementia patients. Evolving from the long-held viewpoint that immune activation triggers the pathological trajectory in Alzheimer's disease, there is accumulating evidence now that microglial activation is neither pro-amyloidogenic nor just a simple reactive process to the proteinopathy. Preclinical studies highlight an interesting aspect of immunity, i.e., spurring immune system activity may be beneficial under certain circumstances. Indeed, a dynamic evolving relationship between different activation states of the immune system and its neuronal neighbors is thought to regulate overall brain organ health in both healthy aging and progression of Alzheimer's dementia. A new premise evolving from genome, transcriptome, and proteome data is that there might be at least two major phases of immune activation that accompany the pathological trajectory in Alzheimer's disease. Though activation on a chronic scale will certainly lead to neurodegeneration, this emerging knowledge of a potential beneficial aspect of immune activation allows us to form holistic insights into when, where, and how much immune system activity would need to be tuned to impact the Alzheimer's neurodegenerative cascade. Even with the trove of recently emerging -omics data from patients and preclinical models, how microglial phenotypes are functionally related to the transition of a healthy aging brain towards progressive degenerative state remains unknown. A deeper understanding of the synergism between microglial functional states and brain organ health could help us discover newer interventions and therapies that enable us to address the current paucity of disease-modifying therapies in Alzheimer's disease.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Comparative Review of Microglia and Monocytes in CNS Phagocytosis. Cells 2021; 10:cells10102555. [PMID: 34685535 PMCID: PMC8534258 DOI: 10.3390/cells10102555] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Macrophages maintain tissue homeostasis by phagocytosing and removing unwanted materials such as dead cells and cell debris. Microglia, the resident macrophages of the central nervous system (CNS), are no exception. In addition, a series of recent studies have shown that microglia phagocytose the neuronal synapses that form the basis of neural circuit function. This discovery has spurred many neuroscientists to study microglia. Importantly, in the CNS parenchyma, not only microglia but also blood-derived monocytes, which essentially differentiate into macrophages after infiltration, exert phagocytic ability, making the study of phagocytosis in the CNS even more interesting and complex. In particular, in the diseased brain, the phagocytosis of tissue-damaging substances, such as myelin debris in multiple sclerosis (MS), has been shown to be carried out by both microglia and blood-derived monocytes. However, it remains largely unclear why blood-derived monocytes need to invade the parenchyma, where microglia are already abundant, to assist in phagocytosis. We will also discuss whether this phagocytosis can affect the fate of the phagocytosing cell itself as well as the substance being phagocytosed and the surrounding environment in addition to future research directions. In this review, we will introduce recent studies to answer a question that often arises when studying microglial phagocytosis: under what circumstances and to what extent blood-derived monocytes infiltrate the CNS and contribute to phagocytosis. In addition, the readers will learn how recent studies have experimentally distinguished between microglia and infiltrating monocytes. Finally, we aim to contribute to the progress of phagocytosis research by discussing the effects of phagocytosis on phagocytic cells.
Collapse
|
4
|
Romero-Molina C, Navarro V, Jimenez S, Muñoz-Castro C, Sanchez-Mico MV, Gutierrez A, Vitorica J, Vizuete M. Should We Open Fire on Microglia? Depletion Models as Tools to Elucidate Microglial Role in Health and Alzheimer's Disease. Int J Mol Sci 2021; 22:9734. [PMID: 34575898 PMCID: PMC8471219 DOI: 10.3390/ijms22189734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia play a critical role in both homeostasis and disease, displaying a wide variety in terms of density, functional markers and transcriptomic profiles along the different brain regions as well as under injury or pathological conditions, such as Alzheimer's disease (AD). The generation of reliable models to study into a dysfunctional microglia context could provide new knowledge towards the contribution of these cells in AD. In this work, we included an overview of different microglial depletion approaches. We also reported unpublished data from our genetic microglial depletion model, Cx3cr1CreER/Csf1rflx/flx, in which we temporally controlled microglia depletion by either intraperitoneal (acute model) or oral (chronic model) tamoxifen administration. Our results reported a clear microglial repopulation, then pointing out that our model would mimic a context of microglial replacement instead of microglial dysfunction. Next, we evaluated the origin and pattern of microglial repopulation. Additionally, we also reviewed previous works assessing the effects of microglial depletion in the progression of Aβ and Tau pathologies, where controversial data are found, probably due to the heterogeneous and time-varying microglial phenotypes observed in AD. Despite that, microglial depletion represents a promising tool to assess microglial role in AD and design therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Victoria Navarro
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Sebastian Jimenez
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Clara Muñoz-Castro
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Maria V. Sanchez-Mico
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga (IBIMA), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain
| | - Javier Vitorica
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Marisa Vizuete
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| |
Collapse
|
5
|
Li Q, Shen C, Liu Z, Ma Y, Wang J, Dong H, Zhang X, Wang Z, Yu M, Ci L, Sun R, Shen R, Fei J, Huang F. Partial depletion and repopulation of microglia have different effects in the acute MPTP mouse model of Parkinson's disease. Cell Prolif 2021; 54:e13094. [PMID: 34312932 PMCID: PMC8349650 DOI: 10.1111/cpr.13094] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive and selective degeneration of dopaminergic neurons. Microglial activation and neuroinflammation are associated with the pathogenesis of PD. However, the relationship between microglial activation and PD pathology remains to be explored. MATERIALS AND METHODS An acute regimen of MPTP was administered to adult C57BL/6J mice with normal, much reduced or repopulated microglial population. Damages of the dopaminergic system were comprehensively assessed. Inflammation-related factors were assessed by quantitative PCR and Multiplex immunoassay. Behavioural tests were carried out to evaluate the motor deficits in MPTP-challenged mice. RESULTS The receptor for colony-stimulating factor 1 inhibitor PLX3397 could effectively deplete microglia in the nigrostriatal pathway of mice via feeding a PLX3397-formulated diet for 21 days. Microglial depletion downregulated both pro-inflammatory and anti-inflammatory molecule expression at baseline and after MPTP administration. At 1d post-MPTP injection, dopaminergic neurons showed a significant reduction in PLX3397-fed mice, but not in control diet (CD)-fed mice. However, partial microglial depletion in mice exerted little effect on MPTP-induced dopaminergic injuries compared with CD mice at later time points. Interestingly, microglial repopulation brought about apparent resistance to MPTP intoxication. CONCLUSIONS Microglia can inhibit PD development at a very early stage; partial microglial depletion has little effect in terms of the whole process of the disease; and microglial replenishment elicits neuroprotection in PD mice.
Collapse
Affiliation(s)
- Qing Li
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Chenye Shen
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jinghui Wang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hongtian Dong
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zishan Wang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei Yu
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Ruling Shen
- Joint Laboratory for Technology of Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.,Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Jian Fei
- Joint Laboratory for Technology of Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.,Shanghai Laboratory Animal Research Center, Shanghai, China.,School of Life Science and Technology, Tongji University, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Clayton K, Delpech JC, Herron S, Iwahara N, Ericsson M, Saito T, Saido TC, Ikezu S, Ikezu T. Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol Neurodegener 2021; 16:18. [PMID: 33752701 PMCID: PMC7986521 DOI: 10.1186/s13024-021-00440-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Background Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer’s disease. Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology. Methods Adeno-associated virus expressing P301L tau mutant (AAV-P301L-tau) was stereotaxically injected into the medial entorhinal cortex (MEC) in C57BL/6 (WT) and humanized APP mutant knock-in homozygote (AppNL-G-F) mice at 5 months of age. Mice were fed either chow containing a colony stimulating factor-1 receptor inhibitor (PLX5622) or control chow from 4 to 6 months of age to test the effect of microglia depletion. Animals were tested at 6 months of age for immunofluorescence, biochemistry, and FACS of microglia. In order to monitor microglial extracellular vesicle secretion in vivo, a novel lentiviral EV reporter system was engineered to express mEmerald-CD9 (mE-CD9) specifically in microglia, which was injected into the same region of MEC. Results Expressing P301L tau mutant in the MEC induced tau propagation to the granule cell layer of the hippocampal dentate gyrus, which was significantly exacerbated in AppNL-G-F mice compared to WT control mice. Administration of PLX5622 depleted nearly all microglia in mouse brains and dramatically reduced propagation of p-tau in WT and to a greater extent in AppNL-G-F mice, although it increased plaque burden and plaque-associated p-tau+ dystrophic neurites. Plaque-associated MGnD microglia strongly expressed an EV marker, tumor susceptibility gene 101, indicative of heightened synthesis of EVs. Intracortical injection of mE-CD9 lentivirus successfully induced microglia-specific expression of mE-CD9+ EV particles, which were significantly enhanced in Mac2+ MGnD microglia compared to Mac2− homeostatic microglia. Finally, consecutive intracortical injection of mE-CD9 lentivirus and AAV-P301L-tau into AppNL-G-F mice revealed encapsulation of p-tau in microglia-specific mE-CD9+ EVs as determined by super-resolution microscopy and immuno-electron microscopy. Discussion Our findings suggest that MGnD microglia hyper-secrete p-tau+ EVs while compacting Aβ plaques and clearing NP tau, which we propose as a novel mechanistic link between amyloid plaque deposition and exacerbation of tau propagation in AppNL-G-F mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00440-9.
Collapse
Affiliation(s)
- Kevin Clayton
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Jean Christophe Delpech
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Shawn Herron
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Naotoshi Iwahara
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.,Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Seiko Ikezu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Tsuneya Ikezu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA. .,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA. .,Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
8
|
Han J, Sarlus H, Wszolek ZK, Karrenbauer VD, Harris RA. Microglial replacement therapy: a potential therapeutic strategy for incurable CSF1R-related leukoencephalopathy. Acta Neuropathol Commun 2020; 8:217. [PMID: 33287883 PMCID: PMC7720517 DOI: 10.1186/s40478-020-01093-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
CSF1R-related leukoencephalopathy is an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia caused by colony stimulating factor 1 receptor (CSF1R) gene mutations. The disease has a global distribution and currently has no cure. Individuals with CSF1R-related leukoencephalopathy variably present clinical symptoms including cognitive impairment, progressive neuropsychiatric and motor symptoms. CSF1R is predominantly expressed on microglia within the central nervous system (CNS), and thus CSF1R-related leukoencephalopathy is now classified as a CNS primary microgliopathy. This urgent unmet medical need could potentially be addressed by using microglia-based immunotherapies. With the rapid recent progress in the experimental microglial research field, the replacement of an empty microglial niche following microglial depletion through either conditional genetic approaches or pharmacological therapies (CSF1R inhibitors) is being studied. Furthermore, hematopoietic stem cell transplantation offers an emerging means of exchanging dysfunctional microglia with the aim of reducing brain lesions, relieving clinical symptoms and prolonging the life of patients with CSF1R-related leukoencephalopathy. This review article introduces recent advances in microglial biology and CSF1R-related leukoencephalopathy. Potential therapeutic strategies by replacing microglia in order to improve the quality of life of CSF1R-related leukoencephalopathy patients will be presented.
Collapse
|
9
|
Han J, Zhu K, Zhou K, Hakim R, Sankavaram SR, Blomgren K, Lund H, Zhang XM, Harris RA. Sex-Specific Effects of Microglia-Like Cell Engraftment during Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2020; 21:6824. [PMID: 32957621 PMCID: PMC7555782 DOI: 10.3390/ijms21186824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disorder of the central nervous system (CNS) that usually presents in young adults and predominantly in females. Microglia, a major resident immune cell in the CNS, are critical players in both CNS homeostasis and disease. We have previously demonstrated that microglia can be efficiently depleted by the administration of tamoxifen in Cx3cr1CreER/+Rosa26DTA/+ mice, with ensuing repopulation deriving from both the proliferation of residual CNS resident microglia and the engraftment of peripheral monocyte-derived microglia-like cells. In this study, tamoxifen was administered to Cx3cr1CreER/+Rosa26DTA/+ and Cx3cr1CreER/+ female and male mice. Experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, was induced by active immunization with myelin oligodendrocyte glycoprotein (MOG) one month after tamoxifen injections in Cx3cr1CreER/+Rosa26DTA/+ mice and Cx3cr1CreER/+ mice, a time point when the CNS niche was colonized by microglia derived from both CNS microglia and peripherally-derived macrophages. We demonstrate that engraftment of microglia-like cells following microglial depletion exacerbated EAE in Cx3cr1CreER/+Rosa26DTA/+ female mice as assessed by clinical symptoms and the expression of CNS inflammatory factors, but these findings were not evident in male mice. Higher major histocompatibility complex class II expression and cytokine production in the female CNS contributed to the sex-dependent EAE severity in mice following engraftment of microglia-like cells. An underestimated yet marked sex-dependent microglial activation pattern may exist in the injured CNS during EAE.
Collapse
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (K.Z.); (H.L.); (X.-M.Z.)
| | - Keying Zhu
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (K.Z.); (H.L.); (X.-M.Z.)
| | - Kai Zhou
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (K.Z.); (K.B.)
| | - Ramil Hakim
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (R.H.); (S.R.S.)
| | - Sreenivasa Raghavan Sankavaram
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (R.H.); (S.R.S.)
| | - Klas Blomgren
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (K.Z.); (K.B.)
- Pediatric Oncology, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Harald Lund
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (K.Z.); (H.L.); (X.-M.Z.)
- Department of Physiology and Pharmacology, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Xing-Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (K.Z.); (H.L.); (X.-M.Z.)
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden; (K.Z.); (H.L.); (X.-M.Z.)
| |
Collapse
|
10
|
Kim E, Otgontenger U, Jamsranjav A, Kim SS. Deleterious Alteration of Glia in the Brain of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186676. [PMID: 32932623 PMCID: PMC7555758 DOI: 10.3390/ijms21186676] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The deterioration of neurons in Alzheimer’s disease (AD) arises from genetic, immunologic, and cellular factors inside the cortex. The traditional consensus of the amyloid-beta (Aβ) paradigm as a singular cause of AD has been under revision, with the accumulation of exploding neurobiological evidence. Among the multifaceted casualties of AD, the involvement of glia gains significance for its dynamic contribution to neurons, either in a neuroprotective or neurotoxic fashion. Basically, microglia and astrocytes contribute to neuronal sustainability by releasing neuroprotective cytokines, maintaining an adequate amount of glutamate in the synapse, and pruning excessive synaptic terminals. Such beneficial effects divert to the other detrimental cascade in chronic neuroinflammatory conditions. In this change, there are new discoveries of specific cytokines, microRNAs, and complementary factors. Previously unknown mechanisms of ion channels such as Kv1.3, Kir2.1, and HCN are also elucidated in the activation of microglia. The activation of glia is responsible for the excitotoxicity through the overflow of glutamate transmitter via mGluRs expressed on the membrane, which can lead to synaptic malfunction and engulfment. The communication between microglia and astrocytes is mediated through exosomes as well as cytokines, where numerous pieces of genetic information are transferred in the form of microRNAs. The new findings tell us that the neuronal environment in the AD condition is a far more complicated and dynamically interacting space. The identification of each molecule in the milieu and cellular communication would contribute to a better understanding of AD in the neurobiological perspective, consequently suggesting a possible therapeutic clue.
Collapse
Affiliation(s)
| | | | | | - Sang Seong Kim
- Correspondence: ; Tel.: +82-31-400-5812; Fax: +82-31-400-5958
| |
Collapse
|