1
|
The Conditioning Lesion Response in Dorsal Root Ganglion Neurons Is Inhibited in Oncomodulin Knock-Out Mice. eNeuro 2022; 9:ENEURO.0477-21.2022. [PMID: 35131866 PMCID: PMC8874952 DOI: 10.1523/eneuro.0477-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Regeneration can occur in peripheral neurons after injury, but the mechanisms involved are not fully delineated. Macrophages in dorsal root ganglia (DRGs) are involved in the enhanced regeneration that occurs after a conditioning lesion (CL), but how macrophages stimulate this response is not known. Oncomodulin (Ocm) has been proposed as a proregenerative molecule secreted by macrophages and neutrophils, is expressed in the DRG after axotomy, and stimulates neurite outgrowth by DRG neurons in culture. Wild-type (WT) and Ocm knock-out (KO) mice were used to investigate whether Ocm plays a role in the CL response in DRG neurons after sciatic nerve transection. Neurite outgrowth was measured after 24 and 48 h in explant culture 7 d after a CL. Sciatic nerve regeneration was also measured in vivo 7 d after a CL and 2 d after a subsequent sciatic nerve crush. The magnitude of the increased neurite outgrowth following a CL was significantly smaller in explants from Ocm KO mice than in explants from WT mice. In vivo after a CL, increased regeneration was found in WT animals but not in KO animals. Macrophage accumulation and levels of interleukin-6 (IL-6) mRNA were measured in axotomized DRG from WT and Ocm KO animals, and both were significantly higher than in sham-operated ganglia. At 6 h after axotomy, Il-6 mRNA was higher in WT than in Ocm KO mice. Our data support the hypothesis that Ocm plays a necessary role in producing a normal CL response and that its effects possibly result in part from stimulation of the expression of proregenerative macrophage cytokines such as IL-6.
Collapse
|
2
|
Siems SB, Jahn O, Eichel MA, Kannaiyan N, Wu LMN, Sherman DL, Kusch K, Hesse D, Jung RB, Fledrich R, Sereda MW, Rossner MJ, Brophy PJ, Werner HB. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. eLife 2020; 9:e51406. [PMID: 32130108 PMCID: PMC7056269 DOI: 10.7554/elife.51406] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Lai Man N Wu
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Institute of Anatomy, University of LeipzigLeipzigGermany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Department of Clinical Neurophysiology, University Medical CenterGöttingenGermany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| |
Collapse
|
3
|
Isaacs J, Feger MA, Mallu S, Patel G, Debkowska M, Yager D, Ernst B, Chilukuri S, Moser M, Kurtz C. Side-to-side supercharging nerve allograft enhances neurotrophic potential. Muscle Nerve 2019; 61:243-252. [PMID: 31724205 DOI: 10.1002/mus.26753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Critical limitations of processed acellular nerve allograft (PNA) are linked to Schwann cell function. Side-to-side bridge grafting may enhance PNA neurotrophic potential. METHODS Sprague-Dawley rats underwent tibial nerve transection and immediate repair with 20-mm PNA (n = 33) or isograft (ISO; n = 9) or 40-mm PNA (n = 33) or ISO (n = 9). Processed acellular nerve allograft groups received zero, one, or three side-to-side bridge grafts between the peroneal nerve and graft. Muscle weight, force generation, and nerve histomorphology were tested 20 weeks after repair. Selected animals underwent neuron back labeling with fluorescent dyes. RESULTS Inner axon diameters, g-ratios, and axon counts were smaller in the distal vs proximal aspect of each graft (P < .05). Schwann cell counts were greater, with a lower proportion of senescent cells for groups with bridges (P < .05). Retrograde labeling demonstrated that 6.6% to 17.7% of reinnervating neurons were from the peroneal pool. DISCUSSION Bridge grafting positively influenced muscle recovery and Schwann cell counts and senescence after long PNA nerve reconstruction.
Collapse
Affiliation(s)
- Jonathan Isaacs
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Mark A Feger
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Satya Mallu
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Gaurangkumar Patel
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Monika Debkowska
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Dorne Yager
- Divison of Plastic Surgery, Department of General Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Brady Ernst
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Sravya Chilukuri
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Matthew Moser
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Camden Kurtz
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
4
|
Isaacs J, Patel G, Mallu S, Ugwu-Oju O, Desai A, Borschel G, David D, Protzuk O, Shah S, Semus R. Effect of Reverse End-to-Side (Supercharging) Neurotization in Long Processed Acellular Nerve Allograft in a Rat Model. J Hand Surg Am 2019; 44:419.e1-419.e10. [PMID: 30172450 DOI: 10.1016/j.jhsa.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/06/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Processed acellular nerve allograft (PNA) has been suggested as a convenient tool for overcoming short and medium nerve defects. Although the clinical implications are unclear, animal data suggest that PNA becomes less effective at longer lengths. Although reverse or supercharging end-to-side nerve transfer may improve the neurotrophic potential in chronically denervated nerve tissue, the application of this strategy to long acellular nerve allograft has not been previously investigated. We hypothesized that supercharging acellular nerve allograft would increase its effective length. METHODS Sprague-Dawley and Thy1-green fluorescent protein Sprague-Dawley rats underwent transection of the tibial nerve, followed by immediate repair with 20-, 40-, or 60-mm acellular nerve allografts processed identically to commercially available human acellular nerve allograft (AxoGen, Inc., Alachua, FL) or isograft. Half of the allograft group was supercharged with a reverse end-to-side transfer from the ipsilateral peroneal nerve. At 10 weeks, the reconstructed nerve in the Thy1-green fluorescent rat groups were exposed and examined under a fluorescence-enabled microscope. At 20 weeks, the remaining rats underwent motor testing and tissue harvest for morphological examination. RESULTS In comparison with a nonenhanced allograft, supercharging had a statistically significant positive impact on the reinnervated muscle normalized force generation and distal axon counts for all graft sizes. Muscles in the supercharged group were heavier than those in the allograft group for the 40-mm-length grafts and G-ratio measurements were higher in the supercharged allograft group for 60-mm-length grafts only. CONCLUSIONS This study supports that hypothesis that supercharging nerve transfer improves axon regeneration within PNA. CLINICAL RELEVANCE When an appropriate donor nerve is available, supercharging nerve transfer may improve nerve regeneration in PNA across long nerve defects.
Collapse
Affiliation(s)
- Jonathan Isaacs
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA.
| | - Gaurangkumar Patel
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Satya Mallu
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Obinna Ugwu-Oju
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Anish Desai
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Gregory Borschel
- Division of Plastic Reconstructive Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dylan David
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Omar Protzuk
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Shalin Shah
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Rachel Semus
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA
| |
Collapse
|
5
|
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Front Cell Neurosci 2019; 13:128. [PMID: 31024258 PMCID: PMC6460947 DOI: 10.3389/fncel.2019.00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.
Collapse
Affiliation(s)
- Arul Duraikannu
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Wang H, Shi L, Liang T, Wang B, Wu W, Su G, Wei J, Li P, Huang R. MiR-696 Regulates C2C12 Cell Proliferation and Differentiation by Targeting CNTFRα. Int J Biol Sci 2017; 13:413-425. [PMID: 28529450 PMCID: PMC5436562 DOI: 10.7150/ijbs.17508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/06/2017] [Indexed: 12/28/2022] Open
Abstract
Micro-696 (miR-696) has been previously known as an exercise related miRNA, which has a profound role in fatty acid oxidation and mitochondrial biogenesis of skeletal muscle. However, its role in skeletal myoblast proliferation and differentiation is still unclear. In this study, we found that miR-696 expressed highly in skeletal muscle and reduced during C2C12 myoblasts differentiation. MiR-696 overexpression repressed C2C12 myoblast proliferation and myofiber formation, while knockdown of endogenous miR-696 expression showed opposite results. During myogenesis, we observed an inversed expression pattern between miR-696 and CNTFRα in vitro, and demonstrated that miR-696 could specifically target CNTFRα and repress the expression of CNTFRα. Additionally, we further found that knockdown of CNTFRα suppressed the proliferation and differentiation of C2C12 cells. Taking all things together, we propose a novel insight that miR-696 down-regulates C2C12 cell myogenesis by inhibiting CNTFRα expression.
Collapse
Affiliation(s)
- Han Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Shi
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Liang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - BinBin Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - WangJun Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Julong Wei
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Abstract
As most elegantly confirmed by the recent success in deriving mice with null mutations in the genes for specific neurotrophic factors or their respective receptors, it is clear that neurotrophic factors alone or in combination are essential for the development of many classes of neurons. Specific neurotrophic factors have now been characterized that have actions on primary sensory afferents, sympathetic and parasym pathetic neurons, and motor neurons—the major contributors to the axon bundles that comprise the periph eral nervous system. The peripheral tissues or "end organs" that these neurons innervate have traditionally been thought of as the key source of neurotrophic factor support, but it is now evident that this "target- derived neurotrophic factor hypothesis" has restricted validity. Rather, the totality of neurotrophic support required to promote the survival, maturation, and maintenance of a neuron appears to be derived not only from targets, but also from support cells and possibly even neurons themselves. In this article, we review the role played by multiple sources of neurotrophic factors, especially factors derived from non-neuronal cells, not only in development, but also in the maintenance and regenerative responses of the adult PNS. In par ticular, we focus on neurotrophic factors of the neurotrophin family and ciliary neurotrophic factor. The Neuro scientist 1:192-199, 1995
Collapse
Affiliation(s)
| | - Vivien Wong
- Regeneron Pharmaceuticals Inc. Tarrytown, New York
| | | |
Collapse
|
8
|
3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater 2015; 41:43-55. [DOI: 10.1016/j.jmbbm.2014.09.029] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022]
|
9
|
Complementary effects of two growth factors in multifunctionalized silk nanofibers for nerve reconstruction. PLoS One 2014; 9:e109770. [PMID: 25313579 PMCID: PMC4196919 DOI: 10.1371/journal.pone.0109770] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022] Open
Abstract
With the aim of forming bioactive guides for peripheral nerve regeneration, silk fibroin was electrospun to obtain aligned nanofibers. These fibers were functionalized by incorporating Nerve Growth Factor (NGF) and Ciliary NeuroTrophic Factor (CNTF) during electrospinning. PC12 cells grown on the fibers confirmed the bioavailability and bioactivity of the NGF, which was not significantly released from the fibers. Primary neurons from rat dorsal root ganglia (DRGs) were grown on the nanofibers and anchored to the fibers and grew in a directional fashion based on the fiber orientation, and as confirmed by growth cone morphology. These biofunctionalized nanofibers led to a 3-fold increase in neurite length at their contact, which was likely due to the NGF. Glial cell growth, alignment and migration were stimulated by the CNTF in the functionalized nanofibers. Organotypic culture of rat fetal DRGs confirmed the complementary effect of both growth factors in multifunctionalized nanofibers, which allowed glial cell migration, alignment and parallel axonal growth in structures resembling the ‘bands of Bungner’ found in situ. Graftable multi-channel conduits based on biofunctionalized aligned silk nanofibers were developed as an organized 3D scaffold. Our bioactive silk tubes thus represent new options for a biological and biocompatible nerve guidance conduit.
Collapse
|
10
|
Abstract
As ensheathing and secretory cells, Schwann cells are a ubiquitous and vital component of the endoneurial microenvironment of peripheral nerves. The interdependence of axons and their ensheathing Schwann cells predisposes each to the impact of injury in the other. Further, the dependence of the blood-nerve interface on trophic support from Schwann cells during development, adulthood, and after injury suggests these glial cells promote the structural and functional integrity of nerve trunks. Here, the developmental origin, injury-induced changes, and mature myelinating and nonmyelinating phenotypes of Schwann cells are reviewed prior to a description of nerve fiber pathology and consideration of pathogenic mechanisms in human and experimental diabetic neuropathy. A fundamental role for aldose-reductase-containing Schwann cells in the pathogenesis of diabetic neuropathy, as well as the interrelationship of pathogenic mechanisms, is indicated by the sensitivity of hyperglycemia-induced biochemical alterations, such as polyol pathway flux, formation of reactive oxygen species, generation of advanced glycosylation end products (AGEs) and deficient neurotrophic support, to blocking polyol pathway flux.
Collapse
Affiliation(s)
- Andrew P Mizisin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, Giordano A. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci 2013; 7:263. [PMID: 24409114 PMCID: PMC3873503 DOI: 10.3389/fnins.2013.00263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/16/2013] [Indexed: 12/05/2022] Open
Abstract
In the mouse hypothalamus, ciliary neurotrophic factor (CNTF) is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD), of ob/ob obese mice, and of mice fed a calorie restriction (CR) regimen. RT-PCR showed that CNTF mRNA increased significantly in HFD mice and decreased significantly in CR animals. Western blotting confirmed that CNTF expression was higher in HFD mice and reduced in CR mice, but high interindividual variability blunted the significance of these differences. By immunohistochemistry, hypothalamic tuberal and mammillary region tanycytes stained strongly for CNTF in HFD mice, whereas CR mice exhibited markedly reduced staining. RT-PCR and Western blotting disclosed that changes in CNTF expression were paralleled by changes in the expression of its specific receptor, CNTF receptor α (CNTFRα). Injection of recombinant CNTF and detection of phospho-signal transducer and activator of transcription 3 (P-STAT3) showed that CNTF responsiveness by the ependymal layer, mainly by tanycytes, was higher in HFD than CR mice. In addition, in HFD mice CNTF administration induced distinctive STAT3 signaling in a large neuron population located in the dorsomedial and ventromedial nuclei, perifornical area and mammillary body. The hypothalamic expression of CNTF and CNTFRα did not change in the hyperphagic, leptin-deficient ob/ob obese mice; accordingly, P-STAT3 immunoreactivity in CNTF-treated ob/ob mice was confined to ependymal layer and arcuate neurons. Collectively, these data suggest that hypothalamic CNTF is involved in controlling the energy balance and that CNTF signaling plays a role in HFD obese mice at specific sites.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy
| | - Arianna Smorlesi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy
| | - Andrea Frontini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy ; Center of Obesity, Università Politecnica delle Marche-United Hospitals Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy
| |
Collapse
|
12
|
Repair of the Peripheral Nerve-Remyelination that Works. Brain Sci 2013; 3:1182-97. [PMID: 24961524 PMCID: PMC4061866 DOI: 10.3390/brainsci3031182] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In this review we summarize the events known to occur after an injury in the peripheral nervous system. We have focused on the Schwann cells, as they are the most important cells for the repair process and facilitate axonal outgrowth. The environment created by this cell type is essential for the outcome of the repair process. The review starts with a description of the current state of knowledge about the initial events after injury, followed by Wallerian degeneration, and subsequent regeneration. The importance of surgical repair, carried out as soon as possible to increase the chances of a good outcome, is emphasized throughout the review. The review concludes by describing the target re-innervation, which today is one of the most serious problems for nerve regeneration. It is clear, compiling this data, that even though regeneration of the peripheral nervous system is possible, more research in this area is needed in order to perfect the outcome.
Collapse
|
13
|
Penna V, Stark GB, Wewetzer K, Radtke C, Lang EM. Comparison of Schwann cells and olfactory ensheathing cells for peripheral nerve gap bridging. Cells Tissues Organs 2012; 196:534-42. [PMID: 22699447 DOI: 10.1159/000338059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2012] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Previously, we introduced the biogenic conduit (BC) as a novel autologous nerve conduit for bridging peripheral nerve defects and tested its regenerative capacity in a short- and long-term setting. The aim of the present study was to clarify whether intraluminal application of regeneration-promoting glial cells, including Schwann cells (SC) and olfactory ensheathing cells (OEC), displayed differential effects after sciatic nerve gap bridging. MATERIAL AND METHODS BCs were generated as previously described. The conduits filled with fibrin/SC (n = 8) and fibrin/OEC (n = 8) were compared to autologous nerve transplants (NT; n = 8) in the 15-mm sciatic nerve gap lesion model of the rat. The sciatic functional index was evaluated every 4 weeks. After 16 weeks, histological evaluation followed regarding nerve area, axon number, myelination index and N ratio. RESULTS Common to all groups was a continual improvement in motor function during the observation period. Recovery was significantly better after SC transplantation compared to OEC (p < 0.01). Both cell transplantation groups showed significantly worse function than the NT group (p < 0.01). Whereas nerve area and axon number were correlated to function, being significantly lowest in the OEC group (p < 0.001), both cell groups showed lowered myelination (p < 0.001) and lower N ratio compared to the NT group. DISCUSSION SC-filled BCs led to improved regeneration compared to OEC-filled BCs in a 15-mm-long nerve gap model of the rat.
Collapse
Affiliation(s)
- Vincenzo Penna
- Department of Plastic and Hand Surgery, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Li BC, Xu C, Zhang JY, Li Y, Duan ZX. Differing Schwann Cells and Olfactory Ensheathing Cells Behaviors, from Interacting with Astrocyte, Produce Similar Improvements in Contused Rat Spinal Cord's Motor Function. J Mol Neurosci 2012; 48:35-44. [DOI: 10.1007/s12031-012-9740-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
15
|
Patodia S, Raivich G. Role of transcription factors in peripheral nerve regeneration. Front Mol Neurosci 2012; 5:8. [PMID: 22363260 PMCID: PMC3277281 DOI: 10.3389/fnmol.2012.00008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/24/2012] [Indexed: 11/13/2022] Open
Abstract
Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways, integrating diverse inputs, and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional roles of a number of different transcription factors - c-Jun, activating transcription factor 3, cAMP response element binding protein, signal transducer, and activator of transcription-3, CCAAT/enhancer binding proteins β and δ, Oct-6, Sox11, p53, nuclear factor kappa-light-chain-enhancer of activated B cell, and ELK3 - in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping, and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving anatomical and functional regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Smriti Patodia
- Centre for Perinatal Brain Protection and Repair, University College London London, UK
| | | |
Collapse
|
16
|
Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, Theodore N. Chemical priming for spinal cord injury: a review of the literature. Part I-factors involved. Childs Nerv Syst 2011; 27:1297-306. [PMID: 21170536 DOI: 10.1007/s00381-010-1364-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 12/29/2022]
Abstract
INTRODUCTION There are significant differences between the propensity of neural regeneration between the central and peripheral nervous systems. MATERIALS AND METHODS Following a review of the literature, we describe the role of growth factors, guiding factors, and neurite outgrowth inhibitors in the physiology and development of the nervous system as well as the pathophysiology of the spinal cord. We also detail their therapeutic role as well as those of other chemical substances that have recently been found to modify regrowth following cord injury. CONCLUSIONS Multiple factors appear to have promising futures for the possibility of improving spinal cord injury following injury.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AR, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
After axotomy of embryonic hippocampal neurons in vitro, some of the axotomized axons lose their identity, and new axons arise and grow. This axotomy-induced axonogenesis requires importin, suggesting that some injury-induced signals are transported via axons to elicit axonogenesis after axotomy. In this study, we show that STAT3 is activated in response to axotomy. Because STAT3 was co-immunoprecipitated with importin β in the axotomized neurons, we suggest that STAT3 is retrogradely transported as molecular cargo of importin α/β heterodimers. Indeed, inhibition of importin α binding with STAT3 resulted in the attenuation of axonogenesis. Silencing STAT3 blocked the axonogenesis, demonstrating that STAT3 is necessary for axotomy-induced axonogenesis. Furthermore, the overexpression of STAT3 enhanced axotomy-induced axonogenesis. Taken together, these results demonstrate that activation and retrograde transport of STAT3 in injured axons have key roles in the axotomy-induced axonogenesis of hippocampal neurons.
Collapse
|
18
|
King-Robson J. Encouraging regeneration in the central nervous system: Is there a role for olfactory ensheathing cells? Neurosci Res 2011; 69:263-75. [DOI: 10.1016/j.neures.2010.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|
19
|
Raivich G. Transcribing the path to neurological recovery-From early signals through transcription factors to downstream effectors of successful regeneration. Ann Anat 2011; 193:248-58. [PMID: 21501955 DOI: 10.1016/j.aanat.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
The peripheral nervous system is known to regenerate comparatively well and this ability is mirrored in the de novo expression or upregulation of a wide variety of molecules involved in axonal outgrowth starting with transcription factors, but also including growth-stimulating substances, guidance and cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions. Recent studies using pharmacological agents, and global as well as neuron-selective gene inactivation techniques have shed light on those endogenous molecules that play a non-redundant role in mediating regenerative axonal outgrowth in vivo. The aim of the current review is to sketch the sequence of molecular events from early sensors of injury to transcription factors to downstream effectors that cooperate in successful regeneration and functional recovery.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| |
Collapse
|
20
|
Abstract
Nerve repair after transection has variable and unpredictable outcomes. In addition to advancements in microvascular surgical techniques, nerve allografts and conduits are available options in peripheral nerve reconstruction. When tensionless nerve repair is not feasible, or in chronic injuries, autografts have been traditionally used. As substitute to autografts, decellularized allografts and conduits have become available. These conduits can reduce donor site morbidity, functional loss at the donor area in cases where autografts are used, and immune reaction from transplants or unprocessed allografts. The development of new biomaterials for use in conduits, as well as use of cytokines, growth factors, and other luminal fillers, may help in the treatment of acute and chronic nerve injuries. The indications and properties of nerve conduits and allografts are detailed in this article.
Collapse
Affiliation(s)
- Michael Rivlin
- Department of Orthopaedics, Thomas Jefferson University Hospital, 1015 Walnut Street, Curtis Building, Room 801, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
21
|
Afshari FT, Kwok JC, White L, Fawcett JW. Schwann cell migration is integrin-dependent and inhibited by astrocyte-produced aggrecan. Glia 2010; 58:857-69. [PMID: 20155822 DOI: 10.1002/glia.20970] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schwann cells transplantation has considerable promise in spinal cord trauma to bridge the site of injury and for remyelination in demyelinating conditions. They support axonal regeneration and sprouting by secreting growth factors and providing a permissive surface and matrix molecules while shielding axons from the inhibitory environment of the central nervous system. However, following transplantation Schwann cells show limited migratory ability and they are unable to intermingle with the host astrocytes. This in turn leads to formation of a sharp boundary and an abrupt transition between the Schwann cell graft and the host tissue astrocytes, therefore preventing regenerating axons from exiting the graft. The objective of this study was to identify inhibitory elements on astrocytes involved in restricting Schwann cell migration. Using in vitro assays of cell migration, we show that aggrecan produced by astrocytes is involved in the inhibition of Schwann cell motility on astrocytic monolayers. Knockdown of this proteoglycan in astrocytes using RNAi or digestion of glycosaminglycan chains on aggrecan improves Schwann cell migration. We further show aggrecan mediates its effect by disruption of integrin function in Schwann cells, and that the inhibitory effects of aggrecan can overcome by activation of Schwann cell integrins.
Collapse
Affiliation(s)
- Fardad T Afshari
- Department of Clinical Neurosciences, Cambridge University Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | | | | | | |
Collapse
|
22
|
Simon CM, Jablonka S, Ruiz R, Tabares L, Sendtner M. Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy. Hum Mol Genet 2009; 19:973-86. [PMID: 20022887 DOI: 10.1093/hmg/ddp562] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is caused by homozygous loss or mutation of the SMN1 gene on human chromosome 5. Depending on the levels of SMN protein produced from a second SMN gene (SMN2), different forms of the disease are distinguished. In patients with milder forms of the disease, type III or type IV SMA that normally reach adulthood, enlargement of motor units is regularly observed. However, the underlying mechanisms are not understood. Smn(+/-) mice, a mouse model of type III/IV SMA, reveal progressive loss of motor neurons and denervation of motor endplates starting at 4 weeks of age. Loss of spinal motor neurons between 1 month and 12 months reaches 40%, whereas muscle strength is not reduced. In these animals, amplitude of single motor unit action potentials in the gastrocnemic muscle is increased more than 2-fold. Confocal analysis reveals pronounced sprouting of innervating motor axons. As ciliary neurotrophic factor (CNTF) is highly expressed in Schwann cells, we investigated its role for a compensatory sprouting response and maintenance of muscle strength in this mouse model. Genetic ablation of CNTF results in reduced sprouting and decline of muscle strength in Smn(+/-) mice. These findings indicate that CNTF is necessary for a sprouting response and thus enhances the size of motor units in skeletal muscles of Smn(+/-) mice. This compensatory mechanism could guide the way to new therapies for this motor neuron disease.
Collapse
Affiliation(s)
- Christian M Simon
- Institute for Clinical Neurobiology, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Synergistic effects of osteonectin and NGF in promoting survival and neurite outgrowth of superior cervical ganglion neurons. Brain Res 2009; 1289:1-13. [PMID: 19596278 DOI: 10.1016/j.brainres.2009.06.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 01/01/2023]
Abstract
Schwann cells (SCs) play a major role in the successful regeneration of peripheral nerves regeneration. Here we examined the effects of osteonectin (ON), a major factor secreted by SCs, on survival and neuritogenesis of mouse superior cervical ganglion (SCG) neurons. SC conditioned medium (SCCM) not only promoted the survival and neuritogenesis of SCG neurons at a level comparable to nerve growth factor (NGF) but also doubled the neurite length of NGF-treated SCG neurons. SCCM neuritogenic effects were not blocked by the tyrosine kinase receptor (Trk) inhibitor K252a demonstrating that these are not due solely to classical neurotrophic factors. Anti-ON neutralizing antibody diminished the SCCM-induced survival and neuritogenesis significantly. In the presence of K252a, the SCCM neuritogenic effects were blocked completely by anti-ON which suggests synergistic effects of ON with Trk-mediated growth factors. ON alone increased the survival and neurite outgrowth of SCG neurons significantly at high density cultures. ON at low concentration acts synergistically with NGF which induced maximum survival and neurite outgrowth (>50% increase). However, ON at high concentration was detrimental to survival (64% decrease) and neurite outgrowth (87% decrease) even in the presence of NGF. The well documented counter-adhesive effect of ON may account for this observation. Nevertheless, the growth promoting effects of ON became more pronounced as the cell density increased which suggests a possible interaction of ON with growth factors secreted by SCG neurons (autocrine or paracrine effects). Taken together, our study indicates that ON plays important roles in nervous system repair through its synergistic effects with growth factors.
Collapse
|
24
|
Lavdas AA, Matsas R. Towards personalized cell-replacement therapies for brain repair. Per Med 2009; 6:293-313. [DOI: 10.2217/pme.09.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inability of the CNS to efficiently repair damage caused by trauma and neurodegenerative or demyelinating diseases has underlined the necessity for developing novel therapeutic strategies. Cell transplantation to replace lost neurons and the grafting of myelinating cells to repair demyelinating lesions are promising approaches for treating CNS injuries and demyelination. In this review, we will address the prospects of using stem cells or myelinating glial cells of the PNS, as well as olfactory ensheathing cells, in cell-replacement therapies. The recent generation of induced pluripotent stem cells from adult somatic cells by introduction of three or four genes controlling ‘stemness’ and their subsequent differentiation to desired phenotypes, constitutes a significant advancement towards personalized cell-replacement therapies.
Collapse
Affiliation(s)
- Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
25
|
Ban DX, Kong XH, Feng SQ, Ning GZ, Chen JT, Guo SF. Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury. Brain Res 2008; 1256:149-61. [PMID: 19103176 DOI: 10.1016/j.brainres.2008.11.098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/03/2023]
Abstract
Basic research in spinal cord injury (SCI) has made great strides in recent years, and some new insights and strategies have been applied in promoting effective axonal regrowth and sprouting. However, a relatively safe and efficient transplantation technique remains undetermined. This study, therefore, was aimed to address a question of how to graft Schwann cells to achieve the best possible therapeutic effects. To clarify the issue, the rats were subjected to spinal cord injury at T10. Autologous activated Schwann cells (AASCs) were obtained by prior ligation of saphenous nerve and subsequently isolated and purified in vitro and then grafted into spinal cord-injured rats via three different routes (group I: intravenous, group II: intrathecal and group III: intraspinal cord). Neurologic function was serially evaluated by Basso, Beattie, Bresnahan locomotor rating scale and footprint analysis. We also evaluated the migration of the transplanted cells at 2 weeks after transplantation. Using biotinylated dextran amine (BDA) anterograde tracing, we demonstrated that more regenerative axons of corticospinal tract (CST) surrounding the injured cavity in group III than those in the other two groups, and we also confirmed it further by quantitative analysis. The microenvironment surrounding the injured spinal cord has been improved to the greatest extent in group III, as determined by immunohistological staining. Relatively complete myelin sheaths and more neurofilaments in axons were found in groups II and III than those in group I under electron microscopy. The results showed that intraspinal cord injection of AASCs promoted recovery of hindlimb locomotor function of injured rats more efficiently than the other grafting routes. In addition, intact myelin sheaths and sufficient neurofilaments in axons were not adequate for full functional recovery after SCI, suggesting that reestablishment of normal synaptic connection is indispensable. The findings in this study strongly suggest that transplantation of AASCs directly into the spinal cord may be one of the promising candidates for potential scaffold for injured spinal cord, and such strategy of transplantation of AASCs could be hopeful to treat patients with SCI.
Collapse
Affiliation(s)
- De-Xiang Ban
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Neuroprotective properties of ciliary neurotrophic factor for cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol 2008; 130:669-79. [PMID: 18679704 DOI: 10.1007/s00418-008-0484-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2008] [Indexed: 12/15/2022]
Abstract
We observed that recombinant ciliary neurotrophic factor (CNTF) enhanced survival and neurite outgrowth of cultured adult rat dorsal root ganglion (DRG) neurons. Among other neurotrophic factors (NGF and GDNF) and interleukin (IL)-6 cytokine members [IL-6, LIF, cardiotrophin-1, and oncostatin M (OSM)] at the same concentration (50 ng/ml), CNTF, as well as LIF and OSM, displayed high efficacy for the promotion of the number of viable neurons and neurite-bearing cells. CNTF enhanced the number of neurite-bearing cells in both small neurons (soma diameter <30 microm) and large neurons (soma diameter > or =30 microm), whereas NGF and GDNF promoted that in only small neurons. Western blot analysis revealed that CNTF induced phosphorylation of STAT3, Akt, and ERK1/2 in the neurons. Furthermore, the neurite outgrowth-promoting activity of CNTF was diminished by co-treatment with Janus kinase (JAK) 2 inhibitor, AG490; STAT3 inhibitor, STA-21; phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor, LY294002; and mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, in a concentration-dependent manner. Its survival-promoting activity was also affected by AG490, STA-21, and LY294002 at higher concentrations, but not by PD98059. These findings suggest the involvement of JAK2/STAT3, PI3K/Akt, and MEK/ERK signaling pathways in CNTF-induced neurite outgrowth, where the former two pathways are thought to play major roles in mediating the survival response of neurons to CNTF.
Collapse
|
27
|
Abstract
Peripheral nerves are essential connections between the central nervous system and muscles, autonomic structures and sensory organs. Their injury is one of the major causes for severe and longstanding impairment in limb function. Acute peripheral nerve lesion has an important inflammatory component and is considered as ischemia-reperfusion (IR) injury. Surgical repair has been the standard of care in peripheral nerve lesion. It has reached optimal technical development but the end results still remain unpredictable and complete functional recovery is rare. Nevertheless, nerve repair is not primarily a mechanical problem and microsurgery is not the only key to success. Lately, there have been efforts to develop alternatives to nerve graft. Work has been carried out in basal lamina scaffolds, biologic and non-biologic structures in combination with neurotrophic factors and/or Schwann cells, tissues, immunosuppressive agents, growth factors, cell transplantation, principles of artificial sensory function, gene technology, gangliosides, implantation of microchips, hormones, electromagnetic fields and hyperbaric oxygenation (HBO). HBO appears to be a beneficial adjunctive treatment for surgical repair in the acute peripheral nerve lesion, when used at lower pressures and in a timely fashion (<6 hours).
Collapse
Affiliation(s)
- E Cuauhtemoc Sanchez
- Hyperbaric Medicine Department, Hospital Angeles del Pedregal, Mexico, DF, Mexico.
| |
Collapse
|
28
|
Sango K, Yanagisawa H, Takaku S. Expression and histochemical localization of ciliary neurotrophic factor in cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol 2007; 128:35-43. [PMID: 17520269 DOI: 10.1007/s00418-007-0290-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is abundantly expressed in Schwann cells in adult mammalian peripheral nerves, but not in neurons. After peripheral nerve injury, CNTF released from disrupted Schwann cells is likely to promote neuronal survival and axonal regeneration. In the present study, we examined the expression and histochemical localization of CNTF in adult rat DRG in vivo and in vitro. In contrast to the restricted expression in Schwann cells in vivo, we observed abundant CNTF mRNA and protein expression in DRG neurons after 3 h, 2, 7, and 15 days in dissociated cell culture. At later stages (7 and 15 days) of culture, CNTF immunoreactivity was detected in both neuronal cell bodies and regenerating neurites. These results suggest that CNTF is synthesized and transported to neurites in cultured DRG neurons. Since we failed to observe CNTF immunoreactivity in DRG neurons in explant culture, disruption of cell-cell interactions, rather than the culture itself, may be an inducible factor for localization of CNTF in the neurons.
Collapse
Affiliation(s)
- Kazunori Sango
- Division of Neural Development and Regeneration, Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan.
| | | | | |
Collapse
|
29
|
Wright MC, Son YJ. Ciliary neurotrophic factor is not required for terminal sprouting and compensatory reinnervation of neuromuscular synapses: re-evaluation of CNTF null mice. Exp Neurol 2007; 205:437-48. [PMID: 17445802 PMCID: PMC1931609 DOI: 10.1016/j.expneurol.2007.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/28/2022]
Abstract
Loss of synaptic activity or innervation induces sprouting of intact motor nerve terminals that adds or restores nerve-muscle connectivity. Ciliary neurotrophic factor (CNTF) and terminal Schwann cells (tSCs) have been implicated as molecular and cellular mediators of the compensatory process. We wondered if the previously reported lack of terminal sprouting in CNTF null mice was due to abnormal reactivity of tSCs. To this end, we examined nerve terminal and tSC responses in CNTF null mice using experimental systems that elicited extensive sprouting in wildtype mice. Contrary to the previous report, we found that motor nerve terminals in the null mice sprout extensively in response to major sprouting-stimuli such as exogenously applied CNTF per se, botulinum toxin-elicited paralysis, and partial denervation by L4 spinal root transection. In addition, the number, length and growth patterns of terminal sprouts, and the extent of reinnervation by terminal or nodal sprouts, were similar in wildtype and null mice. tSCs in the null mice were also reactive to the sprouting-stimuli, elaborating cellular processes that accompanied terminal sprouts or guided reinnervation of denervated muscle fibers. Lastly, CNTF was absent in quiescent tSCs in intact, wildtype muscles and little if any was detected in reactive tSCs in denervated muscles. Thus, CNTF is not required for induction of nerve terminal sprouting, for reactivation of tSCs, and for compensatory reinnervation after nerve injury. We interpret these results to support the notion that compensatory sprouting in adult muscles is induced primarily by contact-mediated mechanisms, rather than by diffusible factors.
Collapse
Affiliation(s)
- Megan C Wright
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
30
|
He JC, Neves SR, Jordan JD, Iyengar R. Role of the Go/i signaling network in the regulation of neurite outgrowth. Can J Physiol Pharmacol 2007; 84:687-94. [PMID: 16998532 DOI: 10.1139/y06-025] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neurite outgrowth is a complex differentiation process stimulated by many neuronal growth factors and transmitters and by electrical activity. Among these stimuli are ligands for G-protein-coupled receptors (GPCR) that function as neurotransmitters. The pathways involved in GPCR-triggered neurite outgrowth are not fully understood. Many of these receptors couple to Galphao, one of the most abundant proteins in the neuronal growth cones. We have studied the Go signaling network involved in neurite outgrowth in Neuro2A cells. Galphao can induce neurite outgrowth. The CB1 cannabinoid receptor, a Go/i-coupled receptor expressed endogenously in Neuro2A cells, triggers neurite outgrowth by activating Rap1, which promotes the Galphao-stimulated proteasomal degradation of Rap1GAPII. CB1-receptor-mediated Rap1 activation leads to the activation of a signaling network that includes the small guanosine triphosphate (GTP)ases Ral and Rac, the protein kinases Src, and c-Jun N-terminal kinase (JNK), which converge onto the activation of signal transducer and activator of transcription 3 (Stat3), a key transcription factor that mediates the gene expression process of neurite outgrowth in Neuro2A cells. This review describes current findings from our laboratory and also discusses alternative pathways that Go/i might mediate to trigger neurite outgrowth. We also analyze the role neurotransmitters, which stimulate Go/i to activate a complex signaling network controlling neurite outgrowth, play in regeneration after neuronal injury.
Collapse
Affiliation(s)
- John Cijiang He
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, One Gustave L levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
31
|
Raivich G, Makwana M. The making of successful axonal regeneration: Genes, molecules and signal transduction pathways. ACTA ACUST UNITED AC 2007; 53:287-311. [PMID: 17079020 DOI: 10.1016/j.brainresrev.2006.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/12/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022]
Abstract
Unlike its central counterpart, the peripheral nervous system is well known for its comparatively good potential for regeneration following nerve fiber injury. This ability is mirrored by the de novo expression or upregulation of a wide variety of molecules including transcription factors, growth-stimulating substances, cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions, that promote neurite outgrowth in cultured neurons. However, their role in vivo is less known. Recent studies using neutralizing antibodies, gene inactivation and overexpression techniques have started to shed light on those endogenous molecules that play a key role in axonal outgrowth and the process of successful functional repair in the injured nervous system. The aim of the current review is to provide a summary on this rapidly growing field and the experimental techniques used to define the specific effects of candidate signaling molecules on axonal regeneration in vivo.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| | | |
Collapse
|
32
|
Pearse DD, Sanchez AR, Pereira FC, Andrade CM, Puzis R, Pressman Y, Golden K, Kitay BM, Blits B, Wood PM, Bunge MB. Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery. Glia 2007; 55:976-1000. [PMID: 17526000 DOI: 10.1002/glia.20490] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schwann cells (SCs) and olfactory ensheathing glia (OEG) have shown promise for spinal cord injury repair. We sought their in vivo identification following transplantation into the contused adult rat spinal cord at 1 week post-injury by: (i) DNA in situ hybridization (ISH) with a Y-chromosome specific probe to identify male transplants in female rats and (ii) lentiviral vector-mediated expression of EGFP. Survival, migration, and axon-glia association were quantified from 3 days to 9 weeks post-transplantation. At 3 weeks after transplantation into the lesion, a 60-90% loss of grafted cells was observed. OEG-only grafts survived very poorly within the lesion (<5%); injection outside the lesion led to a 60% survival rate, implying that the injury milieu was hostile to transplanted cells and or prevented their proliferation. At later times post-grafting, p75(+)/EGFP(-) cells in the lesion outnumbered EGFP(+) cells in all paradigms, evidence of significant host SC infiltration. SCs and OEG injected into the injury failed to migrate from the lesion. Injection of OEG outside of the injury resulted in their migration into the SC-injected injury site, not via normal-appearing host tissue but along the pia or via the central canal. In all paradigms, host axons were seen in association with or ensheathed by transplanted glia. Numerous myelinated axons were found within regions of grafted SCs but not OEG. The current study details the temporal survival, migration, axon association of SCs and OEG, and functional recovery after grafting into the contused spinal cord, research previously complicated due to a lack of quality, long-term markers for cell tracking in vivo.
Collapse
Affiliation(s)
- Damien D Pearse
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alluin O, Feron F, Desouches C, Dousset E, Pellissier JF, Magalon G, Decherchi P. Metabosensitive Afferent Fiber Responses after Peripheral Nerve Injury and Transplantation of an Acellular Muscle Graft in Association with Schwann Cells. J Neurotrauma 2006; 23:1883-94. [PMID: 17184196 DOI: 10.1089/neu.2006.23.1883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies dedicated to the repair of peripheral nerve focused almost exclusively on motor or mechanosensitive fiber regeneration. Poor attention has been paid to the metabosensitive fibers from group III and IV (also called ergoreceptor). Previously, we demonstrated that the metabosensitive response from the tibialis anterior muscle was partially restored when the transected nerve was immediately sutured. In the present study, we assessed motor and metabosensitive responses of the regenerated axons in a rat model in which 1 cm segment of the peroneal nerve was removed and immediately replaced by an autologous nerve graft or an acellular muscle graft. Four groups of animals were included: control animals (C, no graft), transected animals grafted with either an autologous nerve graft (Gold Standard-GS) or an acellular muscle filled with Schwann Cells (MSC) or Culture Medium (MCM). We observed that (1) the tibialis anterior muscle was atrophied in GS, M(SC) and M(CM) groups, with no significant difference between grafted groups; (2) the contractile properties of the reinnervated muscles after nerve stimulation were similar in all groups; (3) the metabosensitive afferent responses to electrically induced fatigue was smaller in M(SC) and MCM groups; and (4) the metabosensitive afferent responses to two chemical agents (KCl and lactic acid) was decreased in GS, M(SC) and M(CM) groups. Altogether, these data indicate a motor axonal regeneration and an immature metabosensitive afferent fiber regrowth through acellular muscle grafts. Similarities between the two groups grafted with acellular muscles suggest that, in our conditions, implanted Schwann cells do not improve nerve regeneration. Future studies could include engineered conduits that mimic as closely as possible the internal organization of uninjured nerve.
Collapse
Affiliation(s)
- Olivier Alluin
- Laboratoire des Déterminants Physiologiques de l'Activité Physique (UPRES EA 3285), Institut Fédératif de Recherche (IFR) 107, Faculté des Sciences du Sport, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The implantation of exogenous cells or tissues has been a popular and successful strategy to overcome physical discontinuity and support axon growth in experimental models of spinal cord injury (SCI). Cellular therapies exhibit a multifarious potential for SCI restoration, providing not only a supportive substrate upon which axons can traverse the injury site, but also reducing progressive tissue damage and scarring, facilitating remyelination repair, and acting as a source for replacing and re-establishing lost neural tissue and its circuitry. The past two decades of research into cell therapies for SCI repair have seen the progressive evolution from whole tissue strategies, such as peripheral nerve grafts, to the use of specific, purified cell types from a diverse range of sources and, recently, to the employment of stem or neural precursor cell populations that have the potential to form a full complement of neural cell types. Although the progression of cell therapies from laboratory to clinical implementation has been slow, human SCI safety and efficacy trials involving several cell types within the US appear to be close at hand.
Collapse
Affiliation(s)
- Damien D Pearse
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Department of Neurological Surgery, Lois Pope Life Center, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA.
| | | |
Collapse
|
35
|
Abstract
The Schwann cell is one of the most widely studied cell types for repair of the spinal cord. These cells play a crucial role in endogenous repair of peripheral nerves due to their ability to dedifferentiate, migrate, proliferate, express growth promoting factors, and myelinate regenerating axons. Following trauma to the spinal cord, Schwann cells migrate from the periphery into the injury site, where they apparently participate in endogenous repair processes. For transplantation into the spinal cord, large numbers of Schwann cells are necessary to fill injury-induced cystic cavities. Several culture systems have been developed that provide large, highly purified populations of Schwann cells. Importantly, the development of in vitro systems to harvest human Schwann cells presents a unique opportunity for autologous transplantation in the clinic. In animal models of spinal cord injury (SCI), grafting Schwann cells or peripheral nerve into the lesion site has been shown to promote axonal regeneration and myelination. However, axons do not regenerate beyond the transplant due to the inhibitory nature of the glial scar surrounding the injury. To overcome the glial scar inhibition, additional approaches such as increasing the intrinsic capacity of axons to regenerate and/or removal of the inhibitory molecules associated with reactive astrocytes and/or oligodendrocyte myelin should be incorporated. Clearly, Schwann cells have great potential for repair of the injured spinal cord, but they need to be combined with other interventions to maximize axonal regeneration and functional recovery.
Collapse
Affiliation(s)
- Martin Oudega
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida, USA.
| | | |
Collapse
|
36
|
Desouches C, Alluin O, Mutaftschiev N, Dousset E, Magalon G, Boucraut J, Feron F, Decherchi P. La réparation nerveuse périphérique : 30 siècles de recherche. Rev Neurol (Paris) 2005; 161:1045-59. [PMID: 16288170 DOI: 10.1016/s0035-3787(05)85172-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.
Collapse
Affiliation(s)
- C Desouches
- Service de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique, Hôpitaux de Marseille, Hôpital de la Conception, Marseille
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Holtmann B, Wiese S, Samsam M, Grohmann K, Pennica D, Martini R, Sendtner M. Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function. J Neurosci 2005; 25:1778-87. [PMID: 15716414 PMCID: PMC6725944 DOI: 10.1523/jneurosci.4249-04.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Members of the ciliary neurotrophic factor (CNTF)-leukemia inhibitory factor (LIF) gene family play an essential role for survival of developing and postnatal motoneurons. When subunits of the shared receptor complex are inactivated by homologous recombination, the mice die at approximately birth and exhibit reduced numbers of motoneurons in the spinal cord and brainstem nuclei. However, mice in which cntf, lif, or cardiotrophin-1 (ct-1) are inactivated can survive and show less motoneuron cell loss. This suggests cooperative and redundant roles of these ligands. However, their cooperative functions are not well understood. We generated cntf/lif/ct-1 triple-knock-out and combinations of double-knock-out mice to study the individual and combined roles of CNTF, LIF and CT-1 on postnatal motoneuron survival and function. Triple-knock-out mice exhibit increased motoneuron cell loss in the lumbar spinal cord that correlates with muscle weakness during early postnatal development. LIF deficiency leads to pronounced loss of distal axons and motor endplate alterations, whereas CNTF-and/or CT-1-deficient mice do not show significant changes in morphology of these structures. In cntf/lif/ct-1 triple-knock-out mice, various degrees of muscle fiber type grouping are found, indicating that denervation and reinnervation had occurred. We conclude from these findings that CNTF, LIF, and CT-1 have distinct functions for motoneuron survival and function and that LIF plays a more important role for postnatal maintenance of distal axons and motor endplates than CNTF or CT-1.
Collapse
Affiliation(s)
- Bettina Holtmann
- The Institute for Clinical Neurobiology, Department of Neurology, D-97080 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Conwit RA, Ling S, Roth S, Stashuk D, Hurley B, Ferrell R, Metter EJ. The relationship between ciliary neurotrophic factor (CNTF) genotype and motor unit physiology: preliminary studies. BMC PHYSIOLOGY 2005; 5:15. [PMID: 16181490 PMCID: PMC1249585 DOI: 10.1186/1472-6793-5-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 09/23/2005] [Indexed: 12/03/2022]
Abstract
Background Ciliary neurotrophic factor (CNTF) is important for neuronal and muscle development, and genetic variation in the CNTF gene has been associated with muscle strength. The effect of CNTF on nerve development suggests that CNTF genotype may be associated with force production via its influence on motor unit size and firing patterns. The purpose of this study is to examine whether CNTF genotype differentially affects motor unit activation in the vastus medialis with increasing isometric force during knee extension. Results Sixty-nine healthy subjects were genotyped for the presence of the G and A (null) alleles in the CNTF gene (n = 57 G/G, 12 G/A). They were tested using a dynamometer during submaximal isometric knee extension contractions that were from 10–50% of their maximal strength. During the contractions, the vastus medialis was studied using surface and intramuscular electromyography with spiked triggered averaging to assess surface-detected motor unit potential (SMUP) area and mean firing rates (mFR) from identified motor units. CNTF genotyping was performed using standard PCR techniques from DNA obtained from leucocytes of whole blood samples. The CNTF G/A genotype was associated with smaller SMUP area motor units and lower mFR at higher force levels, and fewer but larger units at lower force levels than G/G homozygotes. The two groups used motor units with different size and activation characteristics with increasing force generation. While G/G subjects tended to utilize larger motor units with increasing force, G/A subjects showed relatively less increase in size by using relatively larger units at lower force levels. At higher force levels, G/A subjects were able to generate more force per motor unit size suggesting more efficient motor unit function with increasing muscle force. Conclusion Differential motor unit responses were observed between CNTF genotypes at force levels utilized in daily activities.
Collapse
Affiliation(s)
- Robin A Conwit
- National Institute on Neurological Disorders and Stroke, Rockville, MD, USA 20892
| | - Shari Ling
- Clinical Research Branch, National Institute on Aging, National Institute on Aging Intramural Research Program, Harbor Hospital, 5Floor, Baltimore, MD, USA 21225
| | - Stephen Roth
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Daniel Stashuk
- University of Waterloo, Department of Systems Design Engineering, Waterloo, Ontario, Canada
| | - Ben Hurley
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Robert Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Jeffrey Metter
- Clinical Research Branch, National Institute on Aging, National Institute on Aging Intramural Research Program, Harbor Hospital, 5Floor, Baltimore, MD, USA 21225
| |
Collapse
|
39
|
Lee KH, Yoon DH, Park YG, Lee BH. Effects of glial transplantation on functional recovery following acute spinal cord injury. J Neurotrauma 2005; 22:575-89. [PMID: 15892602 DOI: 10.1089/neu.2005.22.575] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous efforts have been made to maximize the efficacy of treatment for spinal cord injury (SCI). Recently, oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells have been reported to remyelinate focal areas of demyelinated spinal cord in adult rats. We conducted a study to investigate the therapeutic potential of transplantation of O-2A cells in a rat model of acute SCI. SCI was induced with an NYU Impactor at T9 of rats. O-2A cells labeled with bromodeoxyuridine (BrdU) were transplanted into sites of SCI at 1 week after the induction of SCI. At 6 weeks after cell transplantation, a behavioral test showed significant functional improvement in animals that had received O-2A-cell transplants as compared to animals given cell-culture medium alone. An electrophysiological study revealed that the transplants did not improve the amplitude or latency of somatosensory evoked potentials, but a recording of motor evoked potentials showed that the latency of these potentials in the O-2A-cell-transplant group was significantly shorter than that in the group treated with cell-culture medium. Following transplantation of BrdU-labeled O-2A cells, cells positive for BrdU were detected at and near sites of SCI. Cells labeled for both BrdU and 2',3' -cyclic nucleotide-3-phosphodiesterase were also detected, showing that the transplanted O-2A cells differentiated into oligodendrocytes. By contrast, cells labeled for BrdU and glial fibrillary acidic protein, or for neuronal nuclei antigen, were not detected. Furthermore, a tract-tracing study showed that numbers of retrogradely labeled neurons increased in areas of the brain stem after O-2A-cell transplantation. The study data showed that after being transplanted into an animal with SCI, O-2A cells migrated to the area adjacent to the site of injury and differentiated into oligodendrocytes. The behavioral test and the electrophysiological and morphological studies showed that transplantation of O-2A cells may play an important role in functional recovery and the regeneration of axons after SCI.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Medical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
40
|
Barakat DJ, Gaglani SM, Neravetla SR, Sanchez AR, Andrade CM, Pressman Y, Puzis R, Garg MS, Bunge MB, Pearse DD. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant 2005; 14:225-40. [PMID: 15929557 DOI: 10.3727/000000005783983106] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to an ever-growing population of individuals with chronic spinal cord injury, there is a need for experimental models to translate efficacious regenerative and reparative acute therapies to chronic injury application. The present study assessed the ability of fluid grafts of either Schwann cells (SCs) or olfactory ensheathing glia (OEG) to facilitate the growth of supraspinal and afferent axons and promote restitution of hind limb function after transplantation into a 2-month-old, moderate, thoracic (T8) contusion in the rat. The use of cultured glial cells, transduced with lentiviral vectors encoding enhanced green fluorescent protein (EGFP), permitted long-term tracking of the cells following spinal cord transplantation to examine their survival, migration, and axonal association. At 3 months following grafting of 2 million SCs or OEG in 6 microl of DMEM/F12 medium into the injury site, stereological quantification of the three-dimensional reconstructed spinal cords revealed that an average of 17.1 +/- 6.8% of the SCs and 2.3 +/- 1.4% of the OEG survived from the number transplanted. In the OEG grafted spinal cord, a limited number of glia were unable to prevent central cavitation and were found in patches around the cavity rim. The transplanted SCs, however, formed a substantive graft within the injury site capable of supporting the ingrowth of numerous, densely packed neurofilament-positive axons. The SC grafts were able to support growth of both ascending calcitonin gene-related peptide (CGRP)-positive and supraspinal serotonergic axons and, although no biotinylated dextran amine (BDA)-traced corticospinal axons were present within the center of the grafts, the SC transplants significantly increased corticospinal axon numbers immediately rostral to the injury-graft site compared with injury-only controls. Moreover, SC grafted animals demonstrated modest, though significant, improvements in open field locomotion and exhibited less foot position errors (base of support and foot rotation). Whereas these results demonstrate that SC grafts survive, support axon growth, and can improve functional outcome after chronic contusive spinal cord injury, further development of OEG grafting procedures in this model and putative combination strategies with SC grafts need to be further explored to produce substantial improvements in axon growth and function.
Collapse
Affiliation(s)
- D J Barakat
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Peripheral nerve injury is normally followed by a robust regenerative response. Here we describe the early changes associated with injury from the initial rise in intracellular calcium and the subsequent activation of transcription factors and cytokines leading to an inflammatory reaction, and the expression of growth factors, cytokines, neuropeptides, and other secreted molecules involved in cell-to-cell communication promoting regeneration and neurite outgrowth. The aim of this review is to summarize the molecular mechanisms that play a part in executing successful regeneration.
Collapse
Affiliation(s)
- Milan Makwana
- Centre for Perinatal Brain Protection & Repair, Department of Obstetrics and Gynaecology, University College London, UK
| | | |
Collapse
|
42
|
Villegas R, Villegas GM, Núñez J, Hernández M, Castillo C. Neuron-like differentiation of PC12 cells treated with media conditioned by either sciatic nerves, optic nerves, or Schwann cells. Cell Mol Neurobiol 2005; 25:451-61. [PMID: 16047552 DOI: 10.1007/s10571-005-3153-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In previous works we reported the finding of neurotrophic activity in a serum-free Dulbecco's modified Eagle's medium conditioned by rat sciatic nerves, previously maintained in culture for 11 days. This medium produces rapid neuron-like differentiation of cultured PC12 cells, as revealed by an increase in the size of the cell body and by the extension of short and/or long neurites by most of the cells. Neuregulin present in the conditioned medium was demonstrated to play a key role in the observed differentiation. In the present work, taking into consideration those latter results, the neurotrophic activity of conditioned media prepared with sciatic and optic nerves cultured during days 1-4 and 9-12 were studied. Evaluation of the trophic activities of those media revealed an opposite timing in the activities of sciatic and optic nerves conditioned media. The activity of the sciatic nerve was not observed in the 1-4-day period, increasing then up to the 9-12-day period. On the contrary, the optic nerve conditioned medium was active in the 1-4-day period, decreasing down to the 9-12-day period. These results led us to explore the contribution of the different cellular constituents of those nerves to their neurotrophic properties. As a first step in that direction we also investigated the neurotrophic activity of media conditioned during 12 days by cultured Schwann cells isolated from rat sciatic nerves. The Schwann cell conditioned media did produce a rapid differentiation of the PC12 cells similar to that caused by the sciatic nerve conditioned medium, though of a lower magnitude. Variations in the trophic activities of the conditioned media used in the present work is discussed taking into consideration the production of trophic and inhibitory factors by the peripheral and central glial cells. The role played by the optic nerve glia and myelin is being investigated at present.
Collapse
Affiliation(s)
- Raimundo Villegas
- Centro de Biociencias y Medicina Molecular, Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela.
| | | | | | | | | |
Collapse
|
43
|
Fournier HD, Mercier P, Menei P. Repair of avulsed ventral nerve roots by direct ventral intraspinal implantation after brachial plexus injury. Hand Clin 2005; 21:109-18. [PMID: 15668071 DOI: 10.1016/j.hcl.2004.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Currently, the authors' research confirms that,in humans, communication between the cord and effector muscles can be re-established after multi-ple nerve root avulsion by the implantation of peripheral nerve grafts. Outcomes are still modest,but the possibility of improvement exists. The technique of reimplantation makes it possible to envisage global repair with the possibility of repair of all avulsed regions. The most important factor that could maximize the extent of functional recovery is reducing the time between the injury and corrective surgery: the diagnosis of avulsion within 10 days and reparative surgery within 3 weeks is the objective. This goal will involve a global re-evaluation of how these patients are managed. The problem of the recovery of sensory function (tactile and fine perception and proprioception) warrants further work. It seems likely that methods combining medullary reimplantation with neurotization will be the best way of correcting these lesions of the brachial plexus. In this context, cross-disciplinary collaboration is probably more important than ever. The place that methods based on reimplantation will have in the final picture remains to be seen. The key question is in which patients should medullary reimplantation be attempted and which method should be used. Moreover, medullary reimplantation should be considered as an adjunct to all other surgical options and should not compromise the chance of the latter modalities to be effective.An important point remains: are physicians going to be able to map out all the boundaries of this question in the future?
Collapse
Affiliation(s)
- Henri D Fournier
- Service de Neurochirurgie, Centre Hospitalier Universitaire, 4 Rue Larrey, 49033 Angers, Cedex 9, France.
| | | | | |
Collapse
|
44
|
Vergara C, Ramirez B. CNTF, a pleiotropic cytokine: emphasis on its myotrophic role. ACTA ACUST UNITED AC 2004; 47:161-73. [PMID: 15572170 DOI: 10.1016/j.brainresrev.2004.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/19/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a cytokine whose neurotrophic and differentiating effects over cells in the central nervous system (CNS) have been clearly demonstrated. This article summarizes the general characteristics of CNTF, its receptor and the signaling pathway that it activates and focuses on its effects over skeletal muscle, one of its major target tissues outside the central nervous system. The evidence for the existence of other molecules that signal through the same complex as CNTF is also reviewed.
Collapse
Affiliation(s)
- Cecilia Vergara
- Biology Department, Faculty of Sciences, University of Chile, Casilla 653, Santiago, Chile.
| | | |
Collapse
|
45
|
Pearse DD, Marcillo AE, Oudega M, Lynch MP, Wood PM, Bunge MB. Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? J Neurotrauma 2004; 21:1223-39. [PMID: 15453992 DOI: 10.1089/neu.2004.21.1223] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methylprednisolone (MP) and interleukin-10 (IL-10) are tissue protective acutely after spinal cord injury (SCI); their combination offers additive protection (Takami et al., 2002a). Our study examined if acute administration of MP (30 mg/kg i.v. at 5 min, and 2 and 4 h after injury) and IL-10 (30 mg/kg i.p. at 30 min after injury) increases the efficacy of Schwann cell (SC) or SC plus olfactory ensheathing glia (SC/OEG) grafts transplanted into rat thoracic cord 1 week after contusive injury. Efficacy was determined by histology, anterograde and retrograde tracing, immunohistochemistry for gliosis and specific nerve fibers, and several behavioral tests. Administration of MP/IL-10 or SC or SC/OEG transplantation significantly increased the total volume of a 9-mm segment of cord encompassing the injury site at 12 weeks. The combination of either SC or SC/OEG transplantation with MP/IL-10 most significantly reduced cavitation. The individual treatments all significantly increased the volume of normal-appearing tissue compared to injury-only controls; however, significant decreases in the volume of normal-appearing tissue were seen when MP/IL-10 and cell grafts were combined compared to MP/IL-10 alone. SC/OEG grafts were effective in promoting serotonergic fiber growth into the graft and led to more reticulospinal fibers caudal to the graft; combination with MP/IL-10 did not further increase fiber number. Only the combination of MP/IL-10 with SC/OEG transplants significantly improved gross locomotor performance (BBB scores) over injury-only controls. MP/IL-10 given prior to SC-only transplants, however, worsened behavioral outcome. Because beneficial effects of MP/IL-10 were not always additive when combined with cell transplantation, we need to understand (1) how tissue protective agents may transform the milieu of the injured spinal cord to the benefit or detriment of later transplanted cells and (2) whether neuroprotectants need to be re-administered at the time of cell grafting or less invasive transplantation techniques employed to reduce damage to tissue spared by an earlier protection strategy.
Collapse
Affiliation(s)
- Damien Daniel Pearse
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
46
|
Azanchi R, Bernal G, Gupta R, Keirstead HS. Combined demyelination plus Schwann cell transplantation therapy increases spread of cells and axonal regeneration following contusion injury. J Neurotrauma 2004; 21:775-88. [PMID: 15253804 DOI: 10.1089/0897715041269696] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several cell populations have been shown to provide a permissive environment for axonal extension following transplantation to injury sites. The limited spread of transplanted cells from implantation sites in the mature CNS, and the superior substrate and trophic environment that they provide, likely contribute to the fact that few transplantation-based therapies have elicited axonal extension beyond the transplant. The aim of this study was to determine whether (1) regions of demyelination cranial and caudal to a spinal cord injury site would improve the spread of Schwann cells transplanted into the site of injury, and (2) whether this combination therapy was associated with improved anatomical regeneration. Three days following contusion injury, anti-galactocerebroside antibodies plus complement proteins were injected into the dorsal column cranial and caudal to the injury site, resulting in complete and well defined regions of demyelination that extended 8 mm either side of the injury site. One day later, naïve Schwann cells in suspension were injected into the contusion site. Transplanted Schwann cells homogeneously redistributed throughout the contusion site and the adjacent regions of demyelination cranial and caudal to the contusion site, providing a long-distance prospective path for repair that was free of myelin and contained transplanted cells. Animals that received demyelination plus transplantation therapy, but not untreated or single-treatment groups, exhibited robust axonal regeneration beyond the contusion site within the treated dorsal column. Axonal regeneration in these animals was not associated with an improvement in locomotor ability. These findings suggest that this combination therapy may overcome a central limitation of transplant strategies in which the permissive environment provided remains at the implantation site.
Collapse
Affiliation(s)
- Roya Azanchi
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, College of Medicine, University of California at Irvine, 92697-4292, USA
| | | | | | | |
Collapse
|
47
|
Lee N, Neitzel KL, Devlin BK, MacLennan AJ. STAT3 phosphorylation in injured axons before sensory and motor neuron nuclei: potential role for STAT3 as a retrograde signaling transcription factor. J Comp Neurol 2004; 474:535-45. [PMID: 15174071 DOI: 10.1002/cne.20140] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
STAT3 is a latent transcription factor that is activated by plasma membrane growth factor receptor complexes. Conditional gene disruption data indicate that it contributes to the survival of cranial motor neurons after peripheral nerve lesion. In agreement, levels of activated STAT3 (Tyr705-phosphorylated STAT3) have been shown to increase in the nuclei of adult cranial motor neurons during their regeneration after the same injury. The data presented here demonstrate that STAT3 is similarly but not identically affected in sciatic motor neurons after sciatic nerve injury. In addition, we find that sensory neuron nuclei also display an analogous increase in activated STAT3, thereby supporting a role for STAT3 in the survival and regeneration of these cells. Most interesting, the present data indicate that peripheral nerve lesion leads to a very rapid activation of STAT3 in axons at the lesion site. This response increases during the first 24 hours after injury and extends back to the motor and sensory neurons such that phospho-STAT3-immunoreactive axons are first detected in the dorsal root ganglia and ventral spinal cord at the same postlesion time intervals at which the activated STAT3 is first detected in the neuronal nuclei. Together these data raise the possibility that axonal STAT3, activated at the injury site, acts as a retrograde signaling transcription factor, which promotes the survival and regeneration of both sensory and motor neurons.
Collapse
Affiliation(s)
- Nancy Lee
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267-0576, USA
| | | | | | | |
Collapse
|
48
|
Mizisin AP, Vu Y, Shuff M, Calcutt NA. Ciliary neurotrophic factor improves nerve conduction and ameliorates regeneration deficits in diabetic rats. Diabetes 2004; 53:1807-12. [PMID: 15220205 DOI: 10.2337/diabetes.53.7.1807] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ciliary neurotrophic factor (CNTF) protein and bioactivity are reduced in the peripheral nerve of hyperglycemic rats with a cause related to metabolism of hexose sugars by aldose reductase. Here the efficacy of CNTF treatment against disorders of nerve function in hyperglycemic rats was investigated. CNTF treatment from the onset of 8 weeks of galactose feeding prevented nerve conduction slowing in a dose-dependent manner. Streptozotocin-induced diabetic rats were maintained for 4 weeks before CNTF treatment was initiated. Four weeks of CNTF treatment significantly improved nerve conduction compared with untreated diabetic rats and also normalized the recovery of toe spread after sciatic nerve crush. One week of CNTF treatment significantly improved the distance of sensory nerve regeneration achieved after nerve crush injury compared with untreated diabetic rats. CNTF was without effects on any parameter in nondiabetic rats. Eight weeks of diabetes did not impair macrophage recruitment 1 and 7 days after nerve crush; neither did intraneural injections of CNTF and CNTFRalpha enhance recruitment in diabetic or control rats. These observations point to the potential utility of CNTF in treating nerve dysfunction in experimental diabetes.
Collapse
Affiliation(s)
- Andrew P Mizisin
- Department of Pathology, 0612, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0612, USA.
| | | | | | | |
Collapse
|
49
|
Ansselin A, Fink T, Davey D. Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells. Neuropathol Appl Neurobiol 2003. [DOI: 10.1111/j.1365-2990.1997.tb01313.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A.D. Ansselin
- Department of Physiology, Institute for Biomedical Research and ,
- Electron Microscope Unit, University of Sydney, Australia
| | - T. Fink
- Department of Physiology, Institute for Biomedical Research and ,
| | - D.F. Davey
- Department of Physiology, Institute for Biomedical Research and ,
| |
Collapse
|
50
|
Gatzinsky KP, Holtmann B, Daraie B, Berthold CH, Sendtner M. Early onset of degenerative changes at nodes of Ranvier in alpha-motor axons of Cntf null (-/-) mutant mice. Glia 2003; 42:340-9. [PMID: 12730954 DOI: 10.1002/glia.10221] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nodes of Ranvier are sites of specific interaction between Schwann cells and axons. Besides their crucial role in transmission of action potentials, the nodes of Ranvier and in particular the paranodal axon-Schwann cell networks (ASNs) are thought to function as local centers in large motor axons for removal, degradation, and disposal of organelles. In order to test whether ciliary neurotrophic factor (CNTF), which is present at high levels in the Schwann cell cytoplasm, is involved in the maintenance of these structures, we have examined lumbar ventral root nerve fibers of alpha-motor neurons by electron microscopy in 3- and 9-month-old Cntf null ((-/-)) mutant mice. Nerve fibers and nodes of Ranvier in 3-month-old Cntf(-/-) mutants appeared morphologically normal, except that ASNs were more voluminous in the mutants than in wild-type control animals at this age. In 9-month-old Cntf(-/-) animals, morphological changes, such as reduction in nerve fiber and axon diameter, myelin sheath disruption, and loss of ASNs at nodes of Ranvier, were observed. These findings suggest that endogenous CNTF, in addition to its role in promoting motor neuron survival and regeneration, is needed for long-term maintenance of alpha-motor nerve fibers. The premature loss of paranodal ASNs in animals lacking CNTF, which seems to be a defect related to a disturbed interaction in the nodal region between the axon and its myelinating Schwann cells, could impede the maintenance of a normal milieu in the motor axon, preceding more general neuronal damage.
Collapse
Affiliation(s)
- Kliment P Gatzinsky
- Department of Anatomy and Cell Biology, University of Göteborg, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|