1
|
Bottero M, Pessina G, Bason C, Vigo T, Uccelli A, Ferrara G. Nerve-Glial antigen 2: unmasking the enigmatic cellular identity in the central nervous system. Front Immunol 2024; 15:1393842. [PMID: 39136008 PMCID: PMC11317297 DOI: 10.3389/fimmu.2024.1393842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are fundamental components of the extracellular matrix in the central nervous system (CNS). Among these, the Nerve-Glial antigen 2 (NG2) stands out as a transmembrane CSPG exclusively expressed in a different population of cells collectively termed NG2-expressing cells. These enigmatic cells, found throughout the developing and adult CNS, have been indicated with various names, including NG2 progenitor cells, polydendrocytes, synantocytes, NG2 cells, and NG2-Glia, but are more commonly referred to as oligodendrocyte progenitor cells. Characterized by high proliferation rates and unique morphology, NG2-expressing cells stand apart from neurons, astrocytes, and oligodendrocytes. Intriguingly, some NG2-expressing cells form functional glutamatergic synapses with neurons, challenging the long-held belief that only neurons possess the intricate machinery required for neurotransmission. In the CNS, the complexity surrounding NG2-expressing cells extends to their classification. Additionally, NG2 expression has been documented in pericytes and immune cells, suggesting a role in regulating brain innate immunity and neuro-immune crosstalk in homeostasis. Ongoing debates revolve around their heterogeneity, potential as progenitors for various cell types, responses to neuroinflammation, and the role of NG2. Therefore, this review aims to shed light on the enigma of NG2-expressing cells by delving into their structure, functions, and signaling pathways. We will critically evaluate the literature on NG2 expression across the CNS, and address the contentious issues surrounding their classification and roles in neuroinflammation and neurodegeneration. By unraveling the intricacies of NG2-expressing cells, we hope to pave the way for a more comprehensive understanding of their contributions to CNS health and during neurological disorders.
Collapse
Affiliation(s)
- Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giada Pessina
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
2
|
Haroon A, Seerapu H, Fang LP, Weß JH, Bai X. Unlocking the Potential: immune functions of oligodendrocyte precursor cells. Front Immunol 2024; 15:1425706. [PMID: 39044821 PMCID: PMC11263107 DOI: 10.3389/fimmu.2024.1425706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) have long been regarded as progenitors of oligodendrocytes, yet recent advances have illuminated their multifaceted nature including their emerging immune functions. This review seeks to shed light on the immune functions exhibited by OPCs, spanning from phagocytosis to immune modulation and direct engagement with immune cells across various pathological scenarios. Comprehensive understanding of the immune functions of OPCs alongside their other roles will pave the way for targeted therapies in neurological disorders.
Collapse
Affiliation(s)
- Amr Haroon
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Harsha Seerapu
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
| | - Jakob Heinrich Weß
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
| |
Collapse
|
3
|
Pantazopoulos H, Hossain NM, Chelini G, Durning P, Barbas H, Zikopoulos B, Berretta S. Chondroitin Sulphate Proteoglycan Axonal Coats in the Human Mediodorsal Thalamic Nucleus. Front Integr Neurosci 2022; 16:934764. [PMID: 35875507 PMCID: PMC9298528 DOI: 10.3389/fnint.2022.934764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence supports a key involvement of the chondroitin sulfate proteoglycans (CSPGs) NG2 and brevican (BCAN) in the regulation of axonal functions, including axon guidance, fasciculation, conductance, and myelination. Prior work suggested the possibility that these functions may, at least in part, be carried out by specialized CSPG structures surrounding axons, termed axonal coats. However, their existence remains controversial. We tested the hypothesis that NG2 and BCAN, known to be associated with oligodendrocyte precursor cells, form axonal coats enveloping myelinated axons in the human brain. In tissue blocks containing the mediodorsal thalamic nucleus (MD) from healthy donors (n = 5), we used dual immunofluorescence, confocal microscopy, and unbiased stereology to characterize BCAN and NG2 immunoreactive (IR) axonal coats and measure the percentage of myelinated axons associated with them. In a subset of donors (n = 3), we used electron microscopy to analyze the spatial relationship between axons and NG2- and BCAN-IR axonal coats within the human MD. Our results show that a substantial percentage (∼64%) of large and medium myelinated axons in the human MD are surrounded by NG2- and BCAN-IR axonal coats. Electron microscopy studies show NG2- and BCAN-IR axonal coats are interleaved with myelin sheets, with larger axons displaying greater association with axonal coats. These findings represent the first characterization of NG2 and BCAN axonal coats in the human brain. The large percentage of axons surrounded by CSPG coats, and the role of CSPGs in axonal guidance, fasciculation, conductance, and myelination suggest that these structures may contribute to several key axonal properties.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Psychiatry and Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | | | - Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
| | - Helen Barbas
- Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Neural Systems Laboratory, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Neural Systems Laboratory, Boston University, Boston, MA, United States
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program in Neuroscience, Harvard Medical School, Boston, MA, United States
- *Correspondence: Sabina Berretta,
| |
Collapse
|
4
|
Lohrberg M, Winkler A, Franz J, van der Meer F, Ruhwedel T, Sirmpilatze N, Dadarwal R, Handwerker R, Esser D, Wiegand K, Hagel C, Gocht A, König FB, Boretius S, Möbius W, Stadelmann C, Barrantes-Freer A. Lack of astrocytes hinders parenchymal oligodendrocyte precursor cells from reaching a myelinating state in osmolyte-induced demyelination. Acta Neuropathol Commun 2020; 8:224. [PMID: 33357244 PMCID: PMC7761156 DOI: 10.1186/s40478-020-01105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelinated lesions in human pons observed after osmotic shifts in serum have been referred to as central pontine myelinolysis (CPM). Astrocytic damage, which is prominent in neuroinflammatory diseases like neuromyelitis optica (NMO) and multiple sclerosis (MS), is considered the primary event during formation of CPM lesions. Although more data on the effects of astrocyte-derived factors on oligodendrocyte precursor cells (OPCs) and remyelination are emerging, still little is known about remyelination of lesions with primary astrocytic loss. In autopsy tissue from patients with CPM as well as in an experimental model, we were able to characterize OPC activation and differentiation. Injections of the thymidine-analogue BrdU traced the maturation of OPCs activated in early astrocyte-depleted lesions. We observed rapid activation of the parenchymal NG2+ OPC reservoir in experimental astrocyte-depleted demyelinated lesions, leading to extensive OPC proliferation. One week after lesion initiation, most parenchyma-derived OPCs expressed breast carcinoma amplified sequence-1 (BCAS1), indicating the transition into a pre-myelinating state. Cells derived from this early parenchymal response often presented a dysfunctional morphology with condensed cytoplasm and few extending processes, and were only sparsely detected among myelin-producing or mature oligodendrocytes. Correspondingly, early stages of human CPM lesions also showed reduced astrocyte numbers and non-myelinating BCAS1+ oligodendrocytes with dysfunctional morphology. In the rat model, neural stem cells (NSCs) located in the subventricular zone (SVZ) were activated while the lesion was already partially repopulated with OPCs, giving rise to nestin+ progenitors that generated oligodendroglial lineage cells in the lesion, which was successively repopulated with astrocytes and remyelinated. These nestin+ stem cell-derived progenitors were absent in human CPM cases, which may have contributed to the inefficient lesion repair. The present study points to the importance of astrocyte-oligodendrocyte interactions for remyelination, highlighting the necessity to further determine the impact of astrocyte dysfunction on remyelination inefficiency in demyelinating disorders including MS.
Collapse
|
5
|
Werkman IL, Lentferink DH, Baron W. Macroglial diversity: white and grey areas and relevance to remyelination. Cell Mol Life Sci 2020; 78:143-171. [PMID: 32648004 PMCID: PMC7867526 DOI: 10.1007/s00018-020-03586-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Macroglia, comprising astrocytes and oligodendroglial lineage cells, have long been regarded as uniform cell types of the central nervous system (CNS). Although regional morphological differences between these cell types were initially described after their identification a century ago, these differences were largely ignored. Recently, accumulating evidence suggests that macroglial cells form distinct populations throughout the CNS, based on both functional and morphological features. Moreover, with the use of refined techniques including single-cell and single-nucleus RNA sequencing, additional evidence is emerging for regional macroglial heterogeneity at the transcriptional level. In parallel, several studies revealed the existence of regional differences in remyelination capacity between CNS grey and white matter areas, both in experimental models for successful remyelination as well as in the chronic demyelinating disease multiple sclerosis (MS). In this review, we provide an overview of the diversity in oligodendroglial lineage cells and astrocytes from the grey and white matter, as well as their interplay in health and upon demyelination and successful remyelination. In addition, we discuss the implications of regional macroglial diversity for remyelination in light of its failure in MS. Since the etiology of MS remains unknown and only disease-modifying treatments altering the immune response are available for MS, the elucidation of macroglial diversity in grey and white matter and its putative contribution to the observed difference in remyelination efficiency between these regions may open therapeutic avenues aimed at enhancing endogenous remyelination in either area.
Collapse
Affiliation(s)
- Inge L Werkman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dennis H Lentferink
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
6
|
Sánchez-González R, Bribián A, López-Mascaraque L. Cell Fate Potential of NG2 Progenitors. Sci Rep 2020; 10:9876. [PMID: 32555386 PMCID: PMC7303219 DOI: 10.1038/s41598-020-66753-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/26/2020] [Indexed: 11/11/2022] Open
Abstract
Determining the origin of different glial subtypes is crucial to understand glial heterogeneity, and to enhance our knowledge of glial and progenitor cell behavior in embryos and adults. NG2-glia are homogenously distributed in a grid-like manner in both, gray and white matter of the adult brain. While some NG2-glia in the CNS are responsible for the generation of mature oligodendrocytes (OPCs), most of them do not differentiate and they can proliferate outside of adult neurogenic niches. Thus, NG2-glia constitute a heterogeneous population containing different subpopulations with distinct functions. We hypothesized that their diversity emerges from specific progenitors during development, as occurs with other glial cell subtypes. To specifically target NG2-pallial progenitors and to define the NG2-glia lineage, as well as the NG2-progenitor potential, we designed two new StarTrack strategies using the NG2 promoter. These approaches label NG2 expressing progenitor cells, permitting the cell fates of these NG2 progenitors to be tracked in vivo. StarTrack labelled cells producing different neural phenotypes in different regions depending on the age targeted, and the strategy selected. This specific genetic targeting of neural progenitors in vivo has provided new data on the heterogeneous pool of NG2 progenitors at both embryonic and postnatal ages.
Collapse
|
7
|
Abstract
Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.
Collapse
|
8
|
The roles of neuron-NG2 glia synapses in promoting oligodendrocyte development and remyelination. Cell Tissue Res 2020; 381:43-53. [PMID: 32236697 DOI: 10.1007/s00441-020-03195-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022]
Abstract
NG2 immunopositive progenitor cells, also simply termed as NG2 glia and thought mainly to be oligodendrocyte precursor cells (OPCs), form synaptic connections with neurons in gray and white matters of brain. One of the most classical features of oligodendrocyte lineage cells is myelination, which will favor neuronal signaling transmission. Thus, is there a causal link between the specific synapses of neuron-NG2 glia and myelination? Building on this, here, we will discuss several relevant issues. First, in order to understand the synapses, it is necessary to integrate the definite inputs onto NG2 glia. We show that the synaptic activities and myelination are not synchronized, so the synapses are more likely to regulate early development of NG2 glia and prepare for myelination. Furthermore, several studies have suggested that the synapses also play a role in recovery of pathological conditions, such as multiple sclerosis (MS). Therefore, elucidating the activities of neuron-NG2 glia synapses will be beneficial for both physiological and pathological conditions. Graphical abstract The existence of neuron-NG2 glia synapses reveals that the neuronal activities projecting to NG2 glia is an elaborate regulation, and the signaling from neurons to NG2 glia is frequent in early stage. The neuron-NG2 glia synapses indirectly provide a basic condition to support myelination by extrasynaptic communication. The neuron-NG2 glia synapses also promote remyelination, and it occurs similar to physiological conditions.
Collapse
|
9
|
Swier VJ, White KA, Meyerholz DK, Chefdeville A, Khanna R, Sieren JC, Quelle DE, Weimer JM. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS One 2020; 15:e0228222. [PMID: 32074109 PMCID: PMC7029865 DOI: 10.1371/journal.pone.0228222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genetically modified swine disease models are becoming increasingly important for studying molecular, physiological and pathological characteristics of human disorders. Given the limited history of these model systems, there remains a great need for proven molecular reagents in swine tissue. Here, to provide a resource for neurological models of disease, we validated antibodies by immunohistochemistry for use in examining central nervous system (CNS) markers in a recently developed miniswine model of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumor predisposition disorder stemming from mutations in NF1, a gene that encodes the Ras-GTPase activating protein neurofibromin. Patients classically present with benign neurofibromas throughout their bodies and can also present with neurological associated symptoms such as chronic pain, cognitive impairment, and behavioral abnormalities. As validated antibodies for immunohistochemistry applications are particularly difficult to find for swine models of neurological disease, we present immunostaining validation of antibodies implicated in glial inflammation (CD68), oligodendrocyte development (NG2, O4 and Olig2), and neuron differentiation and neurotransmission (doublecortin, GAD67, and tyrosine hydroxylase) by examining cellular localization and brain region specificity. Additionally, we confirm the utility of anti-GFAP, anti-Iba1, and anti-MBP antibodies, previously validated in swine, by testing their immunoreactivity across multiple brain regions in mutant NF1 samples. These immunostaining protocols for CNS markers provide a useful resource to the scientific community, furthering the utility of genetically modified miniswine for translational and clinical applications.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- Graduate Interdisciplinary Program in Neuroscience; College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica C. Sieren
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
10
|
Girolamo F, Errede M, Longo G, Annese T, Alias C, Ferrara G, Morando S, Trojano M, Kerlero de Rosbo N, Uccelli A, Virgintino D. Defining the role of NG2-expressing cells in experimental models of multiple sclerosis. A biofunctional analysis of the neurovascular unit in wild type and NG2 null mice. PLoS One 2019; 14:e0213508. [PMID: 30870435 PMCID: PMC6417733 DOI: 10.1371/journal.pone.0213508] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/24/2019] [Indexed: 01/09/2023] Open
Abstract
During experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis associated with blood-brain barrier (BBB) disruption, oligodendrocyte precursor cells (OPCs) overexpress proteoglycan nerve/glial antigen 2 (NG2), proliferate, and make contacts with the microvessel wall. To explore whether OPCs may actually be recruited within the neurovascular unit (NVU), de facto intervening in its cellular and molecular composition, we quantified by immunoconfocal morphometry the presence of OPCs in contact with brain microvessels, during postnatal cerebral cortex vascularization at postnatal day 6, in wild-type (WT) and NG2 knock-out (NG2KO) mice, and in the cortex of adult naïve and EAE-affected WT and NG2KO mice. As observed in WT mice during postnatal development, a higher number of juxtavascular and perivascular OPCs was revealed in adult WT mice during EAE compared to adult naïve WT mice. In EAE-affected mice, OPCs were mostly associated with microvessels that showed altered claudin-5 and occludin tight junction (TJ) staining patterns and barrier leakage. In contrast, EAE-affected NG2KO mice, which did not show any significant increase in vessel-associated OPCs, seemed to retain better preserved TJs and BBB integrity. As expected, absence of NG2, in both OPCs and pericytes, led to a reduced content of vessel basal lamina molecules, laminin, collagen VI, and collagen IV. In addition, analysis of the major ligand/receptor systems known to promote OPC proliferation and migration indicated that vascular endothelial growth factor A (VEGF-A), platelet-derived growth factor-AA (PDGF-AA), and the transforming growth factor-β (TGF-β) were the molecules most likely involved in proliferation and recruitment of vascular OPCs during EAE. These results were confirmed by real time-PCR that showed Fgf2, Pdgfa and Tgfb expression on isolated cerebral cortex microvessels and by dual RNAscope-immunohistochemistry/in situ hybridization (IHC/ISH), which detected Vegfa and Vegfr2 transcripts on cerebral cortex sections. Overall, this study suggests that vascular OPCs, in virtue of their developmental arrangement and response to neuroinflammation and growth factors, could be integrated among the classical NVU cell components. Moreover, the synchronized activation of vascular OPCs and pericytes during both BBB development and dysfunction, points to NG2 as a key regulator of vascular interactions.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail: (DV); (FG)
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Carlotta Alias
- B+LabNet—Environmental Sustainability Lab, University of Brescia, Brescia, Italy
| | - Giovanni Ferrara
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Sara Morando
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino–IRCCS, Genoa, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail: (DV); (FG)
| |
Collapse
|
11
|
Gou X, Tang Y, Qu Y, Xiao D, Ying J, Mu D. Could the inhibitor of DNA binding 2 and 4 play a role in white matter injury? Rev Neurosci 2019; 30:625-638. [PMID: 30738015 DOI: 10.1515/revneuro-2018-0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 01/12/2023]
Abstract
Abstract
White matter injury (WMI) prevents the normal development of myelination, leading to central nervous system myelination disorders and the production of chronic sequelae associated with WMI, such as chronic dyskinesia, cognitive impairment and cerebral palsy. This results in a large emotional and socioeconomic burden. Decreased myelination in preterm infant WMI is associated with the delayed development or destruction of oligodendrocyte (OL) lineage cells, particularly oligodendrocyte precursor cells (OPCs). The development of cells from the OL lineage involves the migration, proliferation and different stages of OL differentiation, finally leading to myelination. A series of complex intrinsic, extrinsic and epigenetic factors regulate the OPC cell cycle withdrawal, OL lineage progression and myelination. We focus on the inhibitor of DNA binding 2 (ID2), because it is widely involved in the different stages of OL differentiation and genesis. ID2 is a key transcription factor for the normal development of OL lineage cells, and the pathogenesis of WMI is closely linked with OL developmental disorders. ID4, another family member of the IDs protein, also plays a similar role in OL differentiation and genesis. ID2 and ID4 belong to the helix-loop-helix family; they lack the DNA-binding sequences and inhibit oligodendrogenesis and OPC differentiation. In this review, we mainly discuss the roles of ID2 in OL development, especially during OPC differentiation, and summarize the ID2-mediated intracellular and extracellular signaling pathways that regulate these processes. We also discuss ID4 in relation to bone morphogenetic protein signaling and oligodendrogenesis. It is likely that these developmental mechanisms are also involved in the myelin repair or remyelination in human neurological diseases.
Collapse
Affiliation(s)
- Xiaoyun Gou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ying Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Chi-Castañeda D, Ortega A. Glial Cells in the Genesis and Regulation of Circadian Rhythms. Front Physiol 2018; 9:88. [PMID: 29483880 PMCID: PMC5816069 DOI: 10.3389/fphys.2018.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian "master clock," which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called "clock genes." A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as "clock-controlled genes." In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.,Soluciones para un México Verde S.A. de C.V., Ciudad de Mexico, Mexico
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
13
|
George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res 2018; 96:573-588. [PMID: 29344975 DOI: 10.1002/jnr.24151] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
The brain extracellular matrix (ECM) plays a crucial role in both the developing and adult brain by providing structural support and mediating cell-cell interactions. In this review, we focus on the major constituents of the ECM and how they function in both normal and injured brain, and summarize the changes in the composition of the ECM as well as how these changes either promote or inhibit recovery of function following traumatic brain injury (TBI). Modulation of ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Naijil George
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| |
Collapse
|
14
|
Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 2017; 37:3300-3317. [PMID: 28753105 PMCID: PMC5624399 DOI: 10.1177/0271678x17722436] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022]
Abstract
The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.
Collapse
Affiliation(s)
- Maj S Thomsen
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lisa J Routhe
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Baxi EG, DeBruin J, Jin J, Strasburger HJ, Smith MD, Orthmann-Murphy JL, Schott JT, Fairchild AN, Bergles DE, Calabresi PA. Lineage tracing reveals dynamic changes in oligodendrocyte precursor cells following cuprizone-induced demyelination. Glia 2017; 65:2087-2098. [PMID: 28940645 DOI: 10.1002/glia.23229] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 11/10/2022]
Abstract
The regeneration of oligodendrocytes is a crucial step in recovery from demyelination, as surviving oligodendrocytes exhibit limited structural plasticity and rarely form additional myelin sheaths. New oligodendrocytes arise through the differentiation of platelet-derived growth factor receptor α (PDGFRα) expressing oligodendrocyte progenitor cells (OPCs) that are widely distributed throughout the CNS. Although there has been detailed investigation of the behavior of these progenitors in white matter, recent studies suggest that disease burden in multiple sclerosis (MS) is more strongly correlated with gray matter atrophy. The timing and efficiency of remyelination in gray matter is distinct from white matter, but the dynamics of OPCs that contribute to these differences have not been defined. Here, we used in vivo genetic fate tracing to determine the behavior of OPCs in gray and white matter regions in response to cuprizone-induced demyelination. Our studies indicate that the temporal dynamics of OPC differentiation varies significantly between white and gray matter. While OPCs rapidly repopulate the corpus callosum and mature into CC1 expressing mature oligodendrocytes, OPC differentiation in the cingulate cortex and hippocampus occurs much more slowly, resulting in a delay in remyelination relative to the corpus callosum. The protracted maturation of OPCs in gray matter may contribute to greater axonal pathology and disease burden in MS.
Collapse
Affiliation(s)
- Emily G Baxi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph DeBruin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jing Jin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hayley J Strasburger
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, Maryland
| | - Jason T Schott
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amanda N Fairchild
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, Maryland
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, Maryland
| |
Collapse
|
16
|
Boulanger JJ, Messier C. Oligodendrocyte progenitor cells are paired with GABA neurons in the mouse dorsal cortex: Unbiased stereological analysis. Neuroscience 2017; 362:127-140. [PMID: 28827179 DOI: 10.1016/j.neuroscience.2017.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/17/2022]
Abstract
Oligodendrocyte progenitor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during early stages of post-natal life. However, OPCs persist beyond developmental myelination and represent an important population of cycling cells in the gray and white matter of the adult brain. While adult OPCs form unique territories that are maintained through self-avoidance, some cortical OPCs appear to position their cell body very close to that of a neuron, forming what are known as OPC-neuron pairs. We used unbiased systematic stereological analysis of the NG2-CreERTM:EYFP reporter mouse to determine that close to 170,000 OPC-neuron pairs can be found in the dorsal portion of the adult neocortex, with approximately 40% of OPCs and 4% of neurons in pairs. Through stereological analysis, we also determined that reference memory training does not change the prevalence of OPC-neuron pairs or the proportion of OPCs and neurons that form them. GABAergic agent administration did not affect the proportion of OPCs and neurons that can be found in pairs. However, the GABAB-receptor agonist baclofen and the GABAA receptor antagonist picrotoxin significantly increased the estimated number of pairs when compared to the control group and the GABAB-receptor antagonist (i.e. saclofen) group. Density of OPC-neuron pairs was increased by the GABAA receptor antagonist picrotoxin. Finally, histological analysis of OPC-neuron pairs suggested that in the dorsal portion of the cortex, GABAergic interneurons represent the most common neuronal component of the pairs, and that calbindin, calretinin and parvalbumin GABAergic interneurons found in the cortex take part in these pairs. Using previous estimates of the number of GABAergic neurons in the rodent cortex, we estimate that roughly one in four GABAergic neurons are paired with an OPC.
Collapse
|
17
|
Boulanger JJ, Messier C. Unbiased stereological analysis of the fate of oligodendrocyte progenitor cells in the adult mouse brain and effect of reference memory training. Behav Brain Res 2017; 329:127-139. [PMID: 28442356 DOI: 10.1016/j.bbr.2017.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/20/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are glial cells that differentiate into myelinating oligodendrocytes during early stages of post-natal life. However, OPCs persist beyond developmental myelination and represent an important population of cycling cells in the gray and white matter of the adult brain. Here, we used unbiased systematic stereological analysis to determine the total number of OPCs in the neocortex and corpus callosum of the adult mouse. We found that the ratio of OPCs to neurons is of 1:10 in the adult neocortex. Likewise, the ratio of OPCs to oligodendrocytes is of 1:1 in the cortex and 1:7 in the corpus callosum. We also used BrdU labeling and the NG2-CreER™:EYFP reporter mouse to determine the proportion of proliferating adult OPCs and their fate. We show that OPCs continue to differentiate into oligodendrocytes in adulthood, with white matter OPCs being more likely to differentiate into an oligodendrocyte phenotype than gray matter OPCs. The differentiation of OPCs into an oligodendrocyte phenotype can occur either directly from a spontaneous differentiation by an OPC or following OPC cell division. We also provide evidence for the neuronal differentiation of adult OPCs in the cortical gray matter. Although activity-dependent neural network activity has been hypothesized to serve as a modulator of OPC proliferation and differentiation, we found that reference memory training did not affect the proportion of proliferating and differentiated OPCs in the adult mouse brain.
Collapse
|
18
|
Fattorini G, Melone M, Sánchez-Gómez MV, Arellano RO, Bassi S, Matute C, Conti F. GAT-1 mediated GABA uptake in rat oligodendrocytes. Glia 2017; 65:514-522. [PMID: 28071826 DOI: 10.1002/glia.23108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023]
Abstract
Stimulated by the results of a recent paper on the effects of tiagabine, a selective inhibitor of the main GABA transporter GAT-1, on oligodendrogenesis, we verified the possibility that GAT-1 may be expressed in oligodendrocytes using immunocytochemical methods and functional assays. Light microscopic analysis of the subcortical white matter of all animals revealed the presence of numerous GAT-1+ cells of different size (from 3 to 29 µm) and morphology. An electron microscope analysis revealed that, besides fibrous astrocytes and interstitial neurons, GAT-1 immunoreactivity was present in immature and mature oligodendrocytes. Co-localization studies between GAT-1 and markers specific for oligodendrocytes (NG2 and RIP) showed that about 12% of GAT-1 positive cells in the white matter were immature oligodendrocytes, while about 15% were mature oligodendrocytes. In vitro functional assays showed that oligodendrocytes exhibit tiagabine-sensitive Na+ -dependent GABA uptake. Although relationships between GABA and oligodendrocytes have been known for many years, this is the first demonstration that GAT-1 is expressed in oligodendrocytes. The present results on the one hand definitely closes the era of "neuronal" and "glial" GABA transporters, on the other they suggest that oligodendrocytes may contribute to pathophysiology of the several diseases in which GAT-1 have been implicated to date. GLIA 2017;65:514-522.
Collapse
Affiliation(s)
- Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, 60026, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, 60121, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, 60026, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, 60121, Italy
| | - María Victoria Sánchez-Gómez
- Achucarro Basque Center for Neuroscience, CIBERNED, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, 48940, Spain
| | - Rogelio O Arellano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Silvia Bassi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, 60026, Italy
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, CIBERNED, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, 48940, Spain
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, 60026, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, 60121, Italy.,Fondazione di Medicina Molecolare, Università Politecnica delle Marche, Ancona, 60026, Italy
| |
Collapse
|
19
|
Li P, Li HX, Jiang HY, Zhu L, Wu HY, Li JT, Lai JH. Expression of NG2 and platelet-derived growth factor receptor alpha in the developing neonatal rat brain. Neural Regen Res 2017; 12:1843-1852. [PMID: 29239330 PMCID: PMC5745838 DOI: 10.4103/1673-5374.219045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor receptor alpha (PDGFRα) is a marker of oligodendrocyte precursor cells in the central nervous system. NG2 is also considered a marker of oligodendrocyte precursor cells. However, whether there are differences in the distribution and morphology of oligodendrocyte precursor cells labeled by NG2 or PDGFRα in the developing neonatal rat brain remains unclear. In this study, by immunohistochemical staining, NG2 positive (NG2+) cells were ubiquitous in the molecular layer, external pyramidal layer, internal pyramidal layer, and polymorphic layer of the cerebral cortex, and corpus callosum, external capsule, piriform cortex, and medial septal nucleus. NG2+ cells were stellate or fusiform in shape with long processes that were progressively decreased and shortened over the course of brain development. The distribution and morphology of PDGFRα positive (PDGFRα+) cells were coincident with NG2+ cells. The colocalization of NG2 and PDGFRα in the cell bodies and processes of some cells was confirmed by double immunofluorescence labeling. Moreover, cells double-labeled for NG2 and PDGFRα were predominantly in the early postnatal stage of development. The numbers of NG2+/PDGFRα+ cells and PDGFRα+ cells decreased, but the number of NG2+ cells increased from postnatal days 3 to 14 in the developing brain. In addition, amoeboid microglial cells of the corpus callosum, newborn brain macrophages in the normal developing brain, did not express NG2 or PDGFRα, but NG2 expression was detected in amoeboid microglia after hypoxia. The present results suggest that NG2 and PDGFRα are specific markers of oligodendrocyte precursor cells at different stages during early development. Additionally, the NG2 protein is involved in inflammatory and pathological processes of amoeboid microglial cells.
Collapse
Affiliation(s)
- Ping Li
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province; Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Heng-Xi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong-Yan Jiang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Lie Zhu
- Department of Plastic Surgery, Changzheng Hospital, Shanghai, China
| | - Hai-Ying Wu
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jin-Tao Li
- Neuroscience Institute, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiang-Hua Lai
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
20
|
Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100987. [PMID: 27782041 PMCID: PMC5086726 DOI: 10.3390/ijerph13100987] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/27/2016] [Indexed: 01/02/2023]
Abstract
Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs) relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children's health. Here we examined the effects of longterm (14 days) and low dose (1 μM) exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold) between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.
Collapse
|
21
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
22
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016; 4:71. [PMID: 27551677 PMCID: PMC4923166 DOI: 10.3389/fcell.2016.00071] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
23
|
Levine J. The reactions and role of NG2 glia in spinal cord injury. Brain Res 2016; 1638:199-208. [PMID: 26232070 PMCID: PMC4732922 DOI: 10.1016/j.brainres.2015.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 01/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) react rapidly to brain and spinal cord injuries. This reaction is characterized by the retraction of cell processes, cell body swelling and increased expression of the NG2 chondroitin sulfate proteoglycan. Reactive OPCs rapidly divide and accumulate surrounding the injury site where they become major cellular components of the glial scar. The glial reaction to injury is an attempt to restore normal homeostasis and re-establish the glia limitans but the exact role of reactive OPCs in these processes is not well understood. Traumatic injury results in extensive oligodendrocyte cell death and the proliferating OPCs generate the large number of precursor cells necessary for remyelination. Reactive OPCs, however, also are a source of axon-growth inhibitory proteoglycans and may interact with invading inflammatory cells in complex ways. Here, I discuss these and other properties of OPCs after spinal cord injury. Understanding the regulation of these disparate properties may lead to new therapeutic approaches to devastating injuries of the spinal cord. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Joel Levine
- Department of Neurobiology and Behavior, Stonybrook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
24
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016. [PMID: 27551677 DOI: 10.3389/fcell.2016.00071.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
25
|
Mauney SA, Pietersen CY, Sonntag KC, Woo TUW. Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia. Schizophr Res 2015; 169:374-380. [PMID: 26585218 PMCID: PMC4681621 DOI: 10.1016/j.schres.2015.10.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
Abstract
The pathophysiology of schizophrenia involves disturbances of information processing across brain regions, possibly reflecting, at least in part, a disruption in the underlying axonal connectivity. This disruption is thought to be a consequence of the pathology of myelin ensheathment, the integrity of which is tightly regulated by oligodendrocytes. In order to gain insight into the possible neurobiological mechanisms of myelin deficit, we determined the messenger RNA (mRNA) expression profile of laser captured cells that were immunoreactive for 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a marker for oligodendrocyte progenitor cells (OPCs) in addition to differentiating and myelinating oligodendrocytes, in the white matter of the prefrontal cortex in schizophrenia subjects. Our findings pointed to the hypothesis that OPC differentiation might be impaired in schizophrenia. To address this hypothesis, we quantified cells that were immunoreactive for neural/glial antigen 2 (NG2), a selective marker for OPCs, and those that were immunoreactive for oligodendrocyte transcription factor 2 (OLIG2), an oligodendrocyte lineage marker that is expressed by OPCs and maturing oligodendrocytes. We found that the density of NG2-immunoreactive cells was unaltered, but the density of OLIG2-immunoreactive cells was significantly decreased in subjects with schizophrenia, consistent with the notion that OPC differentiation impairment may contribute to oligodendrocyte disturbances and thereby myelin deficits in schizophrenia.
Collapse
Affiliation(s)
- Sarah A. Mauney
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478,Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478
| | - Charmaine Y. Pietersen
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478,Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478
| | - Kai-C. Sonntag
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478,Department of Psychiatry, Harvard Medical School, Boston, MA 02215
| | - Tsung-Ung W. Woo
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478,Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215,Department of Psychiatry, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
26
|
Ge WP, Jia JM. Local production of astrocytes in the cerebral cortex. Neuroscience 2015; 323:3-9. [PMID: 26343293 DOI: 10.1016/j.neuroscience.2015.08.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/19/2022]
Abstract
Astrocytes are the largest glial population in the mammalian brain. Astrocytes in the cerebral cortex are reportedly generated from four sources, namely radial glia, progenitors in the subventricular zone (SVZ progenitors), locally proliferating glia, and NG2 glia; it remains an open question, however, as to what extent these four cell types contribute to the substantial increase in astrocytes that occurs postnatally in the cerebral cortex. Here we summarize all possible sources of astrocytes and discuss their roles in this postnatal increase. In particular, we focus on astrocytes derived from local proliferation within the cortex.
Collapse
Affiliation(s)
- W-P Ge
- Children's Research Institute, Department of Pediatrics, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - J-M Jia
- Children's Research Institute, Department of Pediatrics, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
27
|
Lineage, fate, and fate potential of NG2-glia. Brain Res 2015; 1638:116-128. [PMID: 26301825 DOI: 10.1016/j.brainres.2015.08.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/20/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
NG2 cells represent a fourth major glial cell population in the mammalian central nervous system (CNS). They arise from discrete germinal zones in mid-gestation embryos and expand to occupy the entire CNS parenchyma. Genetic fate mapping studies have shown that oligodendrocytes and a subpopulation of ventral protoplasmic astrocytes arise from NG2 cells. This review describes recent findings on the fate and fate potential of NG2 cells under physiological and pathological conditions. We discuss age-dependent changes in the fate and fate potential of NG2 cells and possible mechanisms that could be involved in restricting their oligodendrocyte differentiation or fate plasticity. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
|
28
|
Differential activation of ER stress pathways in myelinating cerebellar tracts. Int J Dev Neurosci 2015; 47:347-60. [PMID: 26297908 DOI: 10.1016/j.ijdevneu.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022] Open
Abstract
Myelin production during brain development requires an increase in membrane protein and lipid production in oligodendrocytes and this primarily occurs in the endoplasmic reticulum (ER), an organelle which initiates the Unfolded Protein Response (UPR) when under stress. We hypothesise that the UPR is activated in white matter tracts during myelination in order to expand the ER capacity of oligodendrocytes. Using early and late stage markers, critical myelination time points were identified by immunohistochemistry in developing rat cerebellum. These were correlated to peaks in ER stress signalling by staining for activated UPR transducers (pIRE1, ATF6 and pPERK) and associated downstream molecules (peIF2α, PDI, GRP78, GRP94, CHOP and calreticulin) in cerebellar tracts III and IV. Gene expression in developing cerebellum was assessed by qPCR. Actively myelinating tracts were shown to have differential expression of pIRE1, PERK and ATF6 as well as UPR targets GRP94, GRP78 and PDI. Activated pIRE1-positive cells were widespread at P14 and P17 and at significantly higher numbers during myelination than at other stages. Nuclear-localised ATF6 (indicative of the active transcription factor) peaked at P10, concurrent with the initial phase of myelination. The percentage of cells positive for pPERK was less than 1% at postnatal ages but increased significantly in adult tissue. The downstream targets GRP78, GRP94 and PDI were significantly up-regulated at P17 compared to P7 and remained significantly elevated in adults. The majority of cells positive for these markers and ATF6 were oligodendrocytes as confirmed by dual-labelling. Although gene expression in the cerebellum for GRP78, GRP94 and PDI did not change significantly over time, ATF6 and XBP1s both showed significant fold changes between early and late timepoints. This data helps promote understanding of events occurring during developmental myelination and may have implications for the development of reparative treatments in diseases such as multiple sclerosis.
Collapse
|
29
|
Sakry D, Yigit H, Dimou L, Trotter J. Oligodendrocyte precursor cells synthesize neuromodulatory factors. PLoS One 2015; 10:e0127222. [PMID: 25966014 PMCID: PMC4429067 DOI: 10.1371/journal.pone.0127222] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022] Open
Abstract
NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling.
Collapse
Affiliation(s)
- Dominik Sakry
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
- * E-mail: (JT); (DS)
| | - Hatice Yigit
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, D-80336 Munich, Germany
| | - Jacqueline Trotter
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
- * E-mail: (JT); (DS)
| |
Collapse
|
30
|
Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 2014; 12:e1001993. [PMID: 25387269 PMCID: PMC4227637 DOI: 10.1371/journal.pbio.1001993] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/29/2014] [Indexed: 01/09/2023] Open
Abstract
This study shows that the activity of neurons can trigger shedding of a protein, NG2, from the surface of oligodendrocyte precursor cells; this protein in turn modulates synaptic transmission, revealing a two-way conversation between neurons and glia. The role of glia in modulating neuronal network activity is an important question. Oligodendrocyte precursor cells (OPC) characteristically express the transmembrane proteoglycan nerve-glia antigen 2 (NG2) and are unique glial cells receiving synaptic input from neurons. The development of NG2+ OPC into myelinating oligodendrocytes has been well studied, yet the retention of a large population of synapse-bearing OPC in the adult brain poses the question as to additional functional roles of OPC in the neuronal network. Here we report that activity-dependent processing of NG2 by OPC-expressed secretases functionally regulates the neuronal network. NG2 cleavage by the α-secretase ADAM10 yields an ectodomain present in the extracellular matrix and a C-terminal fragment that is subsequently further processed by the γ-secretase to release an intracellular domain. ADAM10-dependent NG2 ectodomain cleavage and release (shedding) in acute brain slices or isolated OPC is increased by distinct activity-increasing stimuli. Lack of NG2 expression in OPC (NG2-knockout mice), or pharmacological inhibition of NG2 ectodomain shedding in wild-type OPC, results in a striking reduction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in pyramidal neurons of the somatosensory cortex and alterations in the subunit composition of their α-amino-3-hydroxy-5-methyl-4-isoxazolepr opionicacid (AMPA) receptors. In NG2-knockout mice these neurons exhibit diminished AMPA and NMDA receptor-dependent current amplitudes; strikingly AMPA receptor currents can be rescued by application of conserved LNS protein domains of the NG2 ectodomain. Furthermore, NG2-knockout mice exhibit altered behavior in tests measuring sensorimotor function. These results demonstrate for the first time a bidirectional cross-talk between OPC and the surrounding neuronal network and demonstrate a novel physiological role for OPC in regulating information processing at neuronal synapses. Although glial cells substantially outnumber neurons in the mammalian brain, much remains to be discovered regarding their functions. Among glial cells, oligodendrocyte precursors differentiate into oligodendrocytes, whose function is to enwrap nerves with myelin to ensure proper impulse conduction. However, oligodendrocyte precursors also comprise a stable population in all major regions of the adult brain, making up around 5% of the total number of neurons and glia. Synapses are classically formed between neurons. Nonetheless, oligodendrocyte precursors are unique among glial cells in that they receive direct synaptic input from different types of neurons; whether OPC also send signals to neurons is still unknown. Here we show a bidirectional communication between neurons and oligodendrocyte precursors: neuronal activity regulates the cleavage of a glial membrane protein and the release of an extracellular domain that in turn modulates synaptic transmission between neurons. Our data thus show that a particular subtype of glial cells, oligodendrocyte precursors, functionally integrate into the neuronal network and we link this bidirectional signaling to mouse behavior and disease.
Collapse
|
31
|
Abrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury. J Neurosci 2014; 34:10285-97. [PMID: 25080590 DOI: 10.1523/jneurosci.4915-13.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
When the brain or spinal cord is injured, glial cells in the damaged area undergo complex morphological and physiological changes resulting in the formation of the glial scar. This scar contains reactive astrocytes, activated microglia, macrophages and other myeloid cells, meningeal cells, proliferating oligodendrocyte precursor cells (OPCs), and a dense extracellular matrix. Whether the scar is beneficial or detrimental to recovery remains controversial. In the acute phase of recovery, scar-forming astrocytes limit the invasion of leukocytes and macrophages, but in the subacute and chronic phases of injury the glial scar is a physical and biochemical barrier to axonal regrowth. The signals that initiate the formation of the glial scar are unknown. Both canonical and noncanonical signaling Wnts are increased after spinal cord injury (SCI). Because Wnts are important regulators of OPC and oligodendrocyte development, we examined the role of canonical Wnt signaling in the glial reactions to CNS injury. In adult female mice carrying an OPC-specific conditionally deleted β-catenin gene, there is reduced proliferation of OPCs after SCI, reduced accumulation of activated microglia/macrophages, and reduced astrocyte hypertrophy. Using an infraorbital optic nerve crush injury, we show that reducing β-catenin-dependent signaling in OPCs creates an environment that is permissive to axonal regeneration. Viral-induced expression of Wnt3a in the normal adult mouse spinal cord induces an injury-like response in glia. Thus canonical Wnt signaling is both necessary and sufficient to induce injury responses among glial cells. These data suggest that targeting Wnt expression after SCI may have therapeutic potential in promoting axon regeneration.
Collapse
|
32
|
Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 2014; 269:343-66. [PMID: 24721734 DOI: 10.1016/j.neuroscience.2014.03.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Oligodendrocyte precursor cells (OPC) are glial cells that metamorphose into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. In this review, we summarize the interwoven factors and cascades that promote the activation, recruitment and differentiation of OPCs into myelinating oligodendrocytes in the adult brain based mostly on results found in the study of demyelinating diseases. The goal of the review was to draw a complete picture of the transformation of OPCs into mature oligodendrocytes to facilitate the study of this transformation in both the normal and diseased adult brain.
Collapse
Affiliation(s)
| | - C Messier
- School of Psychology, University of Ottawa, Canada.
| |
Collapse
|
33
|
The (real) neurogenic/gliogenic potential of the postnatal and adult brain parenchyma. ISRN NEUROSCIENCE 2013; 2013:354136. [PMID: 24967310 PMCID: PMC4045543 DOI: 10.1155/2013/354136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/08/2013] [Indexed: 11/17/2022]
Abstract
During the last two decades basic research in neuroscience has remarkably expanded due to the discovery of neural stem cells (NSCs) and adult neurogenesis in the mammalian central nervous system (CNS). The existence of such unexpected plasticity triggered hopes for alternative approaches to brain repair, yet deeper investigation showed that constitutive mammalian neurogenesis is restricted to two small "neurogenic sites" hosting NSCs as remnants of embryonic germinal layers and subserving homeostatic roles in specific neural systems. The fact that in other classes of vertebrates adult neurogenesis is widespread in the CNS and useful for brain repair sometimes creates misunderstandings about the real reparative potential in mammals. Nevertheless, in the mammalian CNS parenchyma, which is commonly considered as "nonneurogenic," some processes of gliogenesis and, to a lesser extent, neurogenesis also occur. This "parenchymal" cell genesis is highly heterogeneous as to the position, identity, and fate of the progenitors. In addition, even the regional outcomes are different. In this paper the heterogeneity of mammalian parenchymal neurogliogenesis will be addressed, also discussing the most common pitfalls and misunderstandings of this growing and promising research field.
Collapse
|
34
|
Sherstnev VV, Golubeva ON, Gruden MA, Storozheva ZI, Guseva EV. Neurogenesis and neuroapoptosis in different brain structures of adult Wistar rats. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Ju PJ, Liu R, Yang HJ, Xia YY, Feng ZW. Clonal analysis for elucidating the lineage potential of embryonic NG2+ cells. Cytotherapy 2012; 14:608-20. [DOI: 10.3109/14653249.2011.651528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Dusart I, Flamant F. Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis? Front Neuroanat 2012; 6:11. [PMID: 22514522 PMCID: PMC3324107 DOI: 10.3389/fnana.2012.00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/23/2012] [Indexed: 01/19/2023] Open
Abstract
Between the first and the second postnatal week, the development of rodent Purkinje cells is characterized by several profound transitions. Purkinje cells acquire their typical dendritic "espalier" tree morphology and form distal spines. During the first postnatal week, they are multi-innervated by climbing fibers and numerous collateral branches sprout from their axons, whereas from the second postnatal week, the regression of climbing fiber multi-innervation begins, and Purkinje cells become innervated by parallel fibers and inhibitory molecular layer interneurons. Furthermore, their periods of developmental cell death and ability to regenerate their axon stop and their axons become myelinated. Thus a Purkinje cell during the first postnatal week looks and functions differently from a Purkinje cell during the second postnatal week. These fundamental changes occur in parallel with a peak of circulating thyroid hormone in the mouse. All these features suggest to some extent an interesting analogy with amphibian metamorphosis.
Collapse
Affiliation(s)
- Isabelle Dusart
- Equipe Différenciation Neuronale et Gliale, Université Pierre et Marie CurieParis, France
- Centre National de la Recherche Scientifique, Neurobiologie des Processus AdaptatifsParis, France
| | - Frederic Flamant
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle de LyonLyon, France
| |
Collapse
|
37
|
Neural stem cells for spinal cord repair. Cell Tissue Res 2012; 349:349-62. [DOI: 10.1007/s00441-012-1363-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
|
38
|
Matsumoto Y, Tsunekawa Y, Nomura T, Suto F, Matsumata M, Tsuchiya S, Osumi N. Differential proliferation rhythm of neural progenitor and oligodendrocyte precursor cells in the young adult hippocampus. PLoS One 2011; 6:e27628. [PMID: 22110700 PMCID: PMC3215740 DOI: 10.1371/journal.pone.0027628] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/20/2011] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a unique type of glial cells that function as oligodendrocyte progenitors while constantly proliferating in the normal condition from rodents to humans. However, the functional roles they play in the adult brain are largely unknown. In this study, we focus on the manner of OPC proliferation in the hippocampus of the young adult mice. Here we report that there are oscillatory dynamics in OPC proliferation that differ from neurogenesis in the subgranular zone (SGZ); the former showed S-phase and M-phase peaks in the resting and active periods, respectively, while the latter only exhibited M-phase peak in the active period. There is coincidence between different modes of proliferation and expression of cyclin proteins that are crucial for cell cycle; cyclin D1 is expressed in OPCs, while cyclin D2 is observed in neural stem cells. Similar to neurogenesis, the proliferation of hippocampal OPCs was enhanced by voluntary exercise that leads to an increase in neuronal activity in the hippocampus. These data suggest an intriguing control of OPC proliferation in the hippocampus.
Collapse
Affiliation(s)
- Yoko Matsumoto
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Yuji Tsunekawa
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumikazu Suto
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Matsumata
- Department of Developmental Gene Regulation, Brain Science of Institute, RIKEN, Wako, Japan
| | - Shigeru Tsuchiya
- Department of Pediatrics, Tohoku University Hospital, Sendai, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
39
|
Boda E, Viganò F, Rosa P, Fumagalli M, Labat-Gest V, Tempia F, Abbracchio MP, Dimou L, Buffo A. The GPR17 receptor in NG2 expressing cells: focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia 2011; 59:1958-73. [PMID: 21956849 DOI: 10.1002/glia.21237] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 08/02/2011] [Indexed: 12/31/2022]
Abstract
NG2-expressing cells comprise a population of cycling precursors that can exit the cell cycle and differentiate into mature oligodendrocytes. As a whole, they display heterogeneous properties and behaviors that remain unresolved at the molecular level, although partly interpretable as distinct maturation stages. To address this issue, we analyzed the expression of the GPR17 receptor, recently shown to decorate NG2-expressing cells and to operate as an early sensor of brain damage, in immature and adult oligodendrocyte progenitors in the intact brain and after injury. In both the early postnatal and adult cerebral cortex, distinct GPR17 protein localizations and expression levels define different stages of oligodendroglial maturation, ranging from the precursor phase to the premyelinating phenotype. As soon as cells exit mitosis, a fraction of NG2-expressing cells displays accumulation of GPR17 protein in the Golgi apparatus. GPR17 expression is subsequently upregulated and distributed to processes of cells that stop dividing, progressively lose NG2 positivity and assume premyelinating features. Absence of colabeling with mature markers or myelin proteins indicates that GPR17 is downregulated when cells complete their final maturation. BrdU-based fate-mapping demonstrated that a significant fraction of newly generated oligodendrocyte progenitors transiently upregulates GPR17 during maturation. Importantly, we also found that GPR17 does not participate to the early reaction of NG2-expressing cells to damage, while it is induced at postacute stages after injury. These findings identify GPR17 as a marker for progenitor progression within the oligodendroglial lineage and highlight its participation to postacute reactivity of NG2 cells in different injury paradigms.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fröhlich N, Nagy B, Hovhannisyan A, Kukley M. Fate of neuron-glia synapses during proliferation and differentiation of NG2 cells. J Anat 2011; 219:18-32. [PMID: 21592101 PMCID: PMC3130157 DOI: 10.1111/j.1469-7580.2011.01392.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2011] [Indexed: 11/30/2022] Open
Abstract
Progenitor cells expressing proteoglycan NG2 (also known as oligodendrocyte precursor cells or polydendrocytes) are widespread in the grey and white matter of the CNS; they comprise 8-9% of the total cell population in adult white matter, and 2-3% of total cells in adult grey matter. NG2 cells have a complex stellate morphology, with highly branched processes that may extend more than 100 μm around the cell body. NG2 cells express a complex set of voltage-gated channels, AMPA/kainate and/or γ-aminobutyric acid (GABA)(A) receptors, and receive glutamatergic and/or GABAergic synaptic input from neurons. In every region of the brain NG2 cells are found as proliferative cells, and the fraction of actively cycling NG2 cells is quite high in young as well as in adult animals. During development NG2 cells either differentiate into myelinating oligodendrocytes (and possibly also few astrocytes and neurons) or persist in the brain parenchyma as NG2 cells. This review highlights new findings related to the morphological and electrophysiological changes of NG2 cells, and the fate of synaptic input between neurons and NG2 cells during proliferation and differentiation of these cells in the neonatal and adult nervous system of rodents.
Collapse
Affiliation(s)
- Nicole Fröhlich
- Group of Neuron–Glia Interactions, Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Bálint Nagy
- Group of Neuron–Glia Interactions, Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Anahit Hovhannisyan
- Group of Neuron–Glia Interactions, Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
- Group of Retinal Circuits and Optogenetics, Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Maria Kukley
- Group of Neuron–Glia Interactions, Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| |
Collapse
|
41
|
Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis. Neurobiol Dis 2011; 43:678-89. [PMID: 21679768 DOI: 10.1016/j.nbd.2011.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/28/2011] [Indexed: 11/20/2022] Open
Abstract
Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the cerebral cortex is affected by the process of demyelination and how the corollary response of the oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performing a detailed in situ analysis of expression of myelin and oligodendrocyte markers we have identified areas of subpial demyelination in the cerebral cortex of animals with conventionally induced EAE conditions. On EAE-affected cerebral cortices, the distribution and relative abundance of cells of the oligodendrocyte lineage were assessed and compared with control mouse brains. The analysis demonstrated that A2B5(+) glial restricted progenitors (GRPs) and NG2(+)/PDGFR-α(+) oligodendrocyte precursor cells (OPCs) were increased in number during "early" disease, 20 days post MOG immunization, whereas in the "late" disease, 39 days post-immunization, they were strongly diminished, and there was an accompanying reduction in NG2(+)/O4(+) pre-oligodendrocytes and GST-π mature oligodendrocytes. These results, together with the observed steady-state amount of NG2(-)/O4(+) pre-myelinating oligodendrocytes, suggested that oligodendroglial precursors attempted to compensate for the progressive loss of myelin, although these cells appeared to fail to complete the last step of their differentiation program. Our findings confirm that this chronic model of EAE reproduces the features of neocortex pathology in progressive MS and suggest that, despite the proliferative response of the oligodendroglial precursors, the failure to accomplish final differentiation may be a key contributing factor to the impaired remyelination that characterizes these demyelinating conditions.
Collapse
|
42
|
Simon C, Götz M, Dimou L. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 2011; 59:869-81. [PMID: 21446038 DOI: 10.1002/glia.21156] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/19/2011] [Indexed: 02/06/2023]
Abstract
The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation.
Collapse
Affiliation(s)
- Christiane Simon
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Germany
| | | | | |
Collapse
|
43
|
Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 2011; 68:668-81. [PMID: 21092857 DOI: 10.1016/j.neuron.2010.09.009] [Citation(s) in RCA: 585] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2010] [Indexed: 01/19/2023]
Abstract
The mammalian CNS contains a ubiquitous population of glial progenitors known as NG2+ cells that have the ability to develop into oligodendrocytes and undergo dramatic changes in response to injury and demyelination. Although it has been reported that NG2+ cells are multipotent, their fate in health and disease remains controversial. Here, we generated PDGFαR-CreER transgenic mice and followed their fate in vivo in the developing and adult CNS. These studies revealed that NG2+ cells in the postnatal CNS generate myelinating oligodendrocytes, but not astrocytes or neurons. In regions of neurodegeneration in the spinal cord of ALS mice, NG2+ cells exhibited enhanced proliferation and accelerated differentiation into oligodendrocytes but remained committed to the oligodendrocyte lineage. These results indicate that NG2+ cells in the normal CNS are oligodendrocyte precursors with restricted lineage potential and that cell loss and gliosis are not sufficient to alter the lineage potential of these progenitors.
Collapse
Affiliation(s)
- Shin H Kang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
44
|
Adult NG2+ cells are permissive to neurite outgrowth and stabilize sensory axons during macrophage-induced axonal dieback after spinal cord injury. J Neurosci 2010; 30:255-65. [PMID: 20053907 DOI: 10.1523/jneurosci.3705-09.2010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously demonstrated that activated ED1+ macrophages induce extensive axonal dieback of dystrophic sensory axons in vivo and in vitro. Interestingly, after spinal cord injury, the regenerating front of axons is typically found in areas rich in ED1+ cells, but devoid of reactive astrocyte processes. These observations suggested that another cell type must be present in these areas to counteract deleterious effects of macrophages. Cells expressing the purportedly inhibitory chondroitin sulfate proteoglycan NG2 proliferate in the lesion and intermingle with macrophages, but their influence on regeneration is highly controversial. Our in vivo analysis of dorsal column crush lesions confirms the close association between NG2+ cells and injured axons. We hypothesized that NG2+ cells were growth promoting and thereby served to increase axonal stability following spinal cord injury. We observed that the interactions between dystrophic adult sensory neurons and primary NG2+ cells derived from the adult spinal cord can indeed stabilize the dystrophic growth cone during macrophage attack. NG2+ cells expressed high levels of laminin and fibronectin, which promote neurite outgrowth on the surface of these cells. Our data also demonstrate that NG2+ cells, but not astrocytes, use matrix metalloproteases to extend across a region of inhibitory proteoglycan, and provide a permissive bridge for adult sensory axons. These data support the hypothesis that NG2+ cells are not inhibitory to regenerating sensory axons and, in fact, they may provide a favorable substrate that can stabilize the regenerating front of dystrophic axons in the inhibitory environment of the glial scar.
Collapse
|
45
|
Zhu L, Lu J, Tay SSW, Jiang H, He BP. Induced NG2 expressing microglia in the facial motor nucleus after facial nerve axotomy. Neuroscience 2010; 166:842-51. [PMID: 20060036 DOI: 10.1016/j.neuroscience.2009.12.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 11/26/2022]
Abstract
Chondroitin sulfate proteoglycan (NG2) expressing cells, ubiquitously distributed in the CNS respond to injured or diseased neurons; however, their behaviors toward injured neurons have remained to be fully explored. In the present study, along with astrocytic and microglial responses, NG2 expressing cells reacted swiftly and robustly in the facial motor nucleus (FMN) subjected to axotomy. With time, hypertrophic NG2 expressing cells gradually adhered to and enwrapped the axotomized motoneurons. Tight encapsulations around axotomized motoneurons were eventually formed at 7, 14, and 28 days after axotomy. NG2 positive processes appeared to interpose between synapsin-1 immunoreactive nerve terminals and surfaces of axotomized motoneurons. Double labeling results showed that NG2 expressing cells encapsulating axotomized facial motoneurons were mainly microglia marked by OX42 and lectin; only a few of them were positive to platelet-derived growth factor-alpha receptor and none of them positive to ED-1. No Rhodamine particle was detected in the FMN ipsilateral to axotomy after venous injection of the particles. The results suggest that activated microglia in lesioned FMN were induced to express NG2 molecules. It is concluded that axotomized FMN showed two types of NG2 expressing cells namely constitutive NG2 cells and induced-NG2 expressing microglia.
Collapse
Affiliation(s)
- L Zhu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore; Department of Plastic Surgery, Chang Zheng Hospital, Shanghai 200003, PR China
| | | | | | | | | |
Collapse
|
46
|
He Y, Cai W, Wang L, Chen P. A developmental study on the expression of PDGFαR immunoreactive cells in the brain of postnatal rats. Neurosci Res 2009; 65:272-9. [DOI: 10.1016/j.neures.2009.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
|
47
|
Abstract
Glutamate released from synaptic vesicles mediates excitatory neurotransmission by stimulating glutamate receptors. Glutamate transporters maintain low synaptic glutamate levels critical for this process, a role primarily attributed to astrocytes. Recently, vesicular release of glutamate from unmyelinated axons in the rat corpus callosum has been shown to elicit AMPA receptor-mediated currents in glial progenitor cells. Glutamate transporters are the only mechanism of glutamate clearance, yet very little is known about the role of glutamate transporters in normal development of oligodendrocytes (OLs) or in excitotoxic injury to OLs. We found that OLs in culture are capable of sodium-dependent glutamate uptake with a K(m) of 10 +/- 2 microm and a V(max) of 2.6, 5.0, and 3.8 nmol x min(-1) x mg(-1) for preoligodendrocytes, immature, and mature OLs, respectively. Surprisingly, EAAC1, thought to be exclusively a neuronal transporter, contributes more to [(3)H]l-glutamate uptake in OLs than GLT1 or GLAST. These data suggest that glutamate transporters on oligodendrocytes may serve a critical role in maintaining glutamate homeostasis at a time when unmyelinated callosal axons are engaging in glutamatergic signaling with glial progenitors. Furthermore, GLT1 was significantly increased in cultured mature OLs contrary to in vivo data in which we have shown that, although GLT1 is present on developing OLs when unmyelinated axons are prevalent in the developing rat corpus callosum, after myelination, GLT1 is not expressed on mature OLs. The absence of GLT1 in mature OLs in the rat corpus callosum and its presence in mature rat cultured OLs may indicate that a signaling process in vivo is not activated in vitro.
Collapse
|
48
|
Haber M, Vautrin S, Fry EJ, Murai KK. Subtype-specific oligodendrocyte dynamics in organotypic culture. Glia 2009; 57:1000-13. [DOI: 10.1002/glia.20824] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, Chneiweiss H, Daumas-Duport C, Varlet P. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 2009; 20:399-411. [PMID: 19486010 DOI: 10.1111/j.1750-3639.2009.00295.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A persistent cycling cell population in the normal adult human brain is well established. Neural stem cells or neural progenitors have been identified in the subventricular zone and the dentate gyrus subgranular layer (SGL), two areas of persistent neurogenesis. Cycling cells in other human normal brain areas, however, remains to be established. Here, we determined the distribution and identity of these cells in the cortex, the white matter and the hippocampal formation of adult patients with and without chronic temporal lobe epilepsy using immunohistochemistry for the cell cycle markers Ki-67 (Mib-1) and minichromosome maintenance protein 2. Rare proliferative neuronal precursors expressing the neuronal antigen neuronal nuclei were restricted to the SGL. In contrast, the oligodendrocyte progenitor cell markers Olig2 and the surface antigen NG2 were expressed by the vast majority of cycling cells scattered throughout the cortex and white matter of both control and epileptic patients. Most of these cycling cells were in early G1 phase, and were significantly more numerous in epileptic than in non-epileptic patients. These results provide evidence for a persistent gliogenesis in the human cortex and white matter that is enhanced in an epileptic environment.
Collapse
Affiliation(s)
- Sameh Geha
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Finckbone V, Oomman SK, Strahlendorf HK, Strahlendorf JC. Regional differences in the temporal expression of non-apoptotic caspase-3-positive bergmann glial cells in the developing rat cerebellum. Front Neuroanat 2009; 3:3. [PMID: 19503747 PMCID: PMC2691149 DOI: 10.3389/neuro.05.003.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/04/2009] [Indexed: 01/22/2023] Open
Abstract
Although caspases have been intimately linked to apoptotic events, some of the pro-apoptotic caspases also may regulate differentiation. We previously demonstrated that active caspase-3 is expressed and has an apparent non-apoptotic function during the development of cerebellar Bergmann glia. The current study seeks to further correlate active/cleaved caspase-3 expression with the developmental phenotype of Bergmann glia by examining regional differences in the temporal pattern of expression of cleaved caspase-3 immunoreactivity in lobules of the cerebellar vermis. In general, we found that the expression pattern of cleaved caspase-3 corresponds to the reported developmental temporal profile of the lobes and that its levels peak at 15 days and declines thereafter. Compared to intermediate or late maturing lobules, early maturing lobules had higher levels of active caspase-3 at earlier postnatal times. This period of postnatal development is precisely the time during which Bergmann glia initiate differentiation.
Collapse
Affiliation(s)
- Velvetlee Finckbone
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | | | | | | |
Collapse
|