1
|
Aubert A, Mercier-Gouy P, Aguero S, Berthier L, Liot S, Prigent L, Alcaraz LB, Verrier B, Terreux R, Moali C, Lambert E, Valcourt U. Latent TGF-β Activation Is a Hallmark of the Tenascin Family. Front Immunol 2021; 12:613438. [PMID: 34054795 PMCID: PMC8155481 DOI: 10.3389/fimmu.2021.613438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β) isoforms are secreted as inactive complexes formed through non-covalent interactions between bioactive TGF-β entities and their N-terminal pro-domains called latency-associated peptides (LAP). Extracellular activation of latent TGF-β within this complex is a crucial step in the regulation of TGF-β activity for tissue homeostasis and immune cell function. We previously showed that the matrix glycoprotein Tenascin-X (TN-X) interacted with the small latent TGF-β complex and triggered the activation of the latent cytokine into a bioactive TGF-β. This activation most likely occurs through a conformational change within the latent TGF-β complex and requires the C-terminal fibrinogen-like (FBG) domain of the glycoprotein. As the FBG-like domain is highly conserved among the Tenascin family members, we hypothesized that Tenascin-C (TN-C), Tenascin-R (TN-R) and Tenascin-W (TN-W) might share with TN-X the ability to regulate TGF-β bioavailability through their C-terminal domain. Here, we demonstrate that purified recombinant full-length Tenascins associate with the small latent TGF-β complex through their FBG-like domains. This association promotes activation of the latent cytokine and subsequent TGF-β cell responses in mammary epithelial cells, such as cytostasis and epithelial-to-mesenchymal transition (EMT). Considering the pleiotropic role of TGF-β in numerous physiological and pathological contexts, our data indicate a novel common function for the Tenascin family in the regulation of tissue homeostasis under healthy and pathological conditions.
Collapse
Affiliation(s)
- Alexandre Aubert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Perrine Mercier-Gouy
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Stéphanie Aguero
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Laurent Berthier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Sophie Liot
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Laura Prigent
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Lindsay B Alcaraz
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Raphaël Terreux
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Catherine Moali
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Ulrich Valcourt
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
2
|
Abstract
Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an “oncofetal” protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease.
Collapse
Key Words
- AKT, v-akt murine thymoma viral oncogene homolog
- ALK, anaplastic lymphoma kinase
- AP-1, activator protein-1
- ATF, activating transcription factor
- BMP, bone morphogenetic protein
- CBP, CREB binding protein
- CREB, cAMP response element-binding protein
- CREB-RP, CREB-related protein
- CYP21A2, cytochrome P450 family 21 subfamily A polypeptide 2
- ChIP, chromatin immunoprecipitation
- EBS, Ets binding site
- ECM, extracellular matrix
- EGF, epidermal growth factor
- ERK1/2, extracellular signal-regulated kinase 1/2
- ETS, E26 transformation-specific
- EWS-ETS, Ewing sarcoma-Ets fusion protein
- Evx1, even skipped homeobox 1
- FGF, fibroblast growth factor
- HBS, homeodomain binding sequence
- IL, interleukin
- ILK, integrin-linked kinase
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- MHCIII, major histocompatibility complex class III
- MKL1, megakaryoblastic leukemia-1
- NFκB, nuclear factor kappa B
- NGF, nerve growth factor; NFAT, nuclear factor of activated T-cells
- OTX2, orthodenticle homolog 2
- PDGF, platelet-derived growth factor
- PI3K, phosphatidylinositol 3-kinase
- POU3F2, POU domain class 3 transcription factor 2
- PRRX1, paired-related homeobox 1
- RBPJk, recombining binding protein suppressor of hairless
- ROCK, Rho-associated, coiled-coil-containing protein kinase
- RhoA, ras homolog gene family member A
- SAP, SAF-A/B, Acinus, and PIAS
- SCX, scleraxix
- SEAP, secreted alkaline phosphatase
- SMAD, small body size - mothers against decapentaplegic
- SOX4, sex determining region Y-box 4
- SRE, serum response element
- SRF, serum response factor
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-β
- TNC, tenascin-C
- TNF-α, tumor necrosis factor-α
- TNR, tenascin-R
- TNW, tenascin-W
- TNX, tenascin-X
- TSS, transcription start site
- UTR, untranslated region
- WNT, wingless-related integration site
- cancer
- cytokine
- development
- extracellular matrix
- gene promoter
- gene regulation
- glucocorticoid
- growth factor
- homeobox gene
- matricellular
- mechanical stress
- miR, micro RNA
- p38 MAPK, p38 mitogen activated protein kinase
- tenascin
- transcription factor
Collapse
Affiliation(s)
- Francesca Chiovaro
- a Friedrich Miescher Institute for Biomedical Research ; Basel , Switzerland
| | | | | |
Collapse
|
3
|
Vo T, Carulli D, Ehlert EM, Kwok JC, Dick G, Mecollari V, Moloney EB, Neufeld G, de Winter F, Fawcett JW, Verhaagen J. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci 2013; 56:186-200. [DOI: 10.1016/j.mcn.2013.04.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/30/2013] [Indexed: 01/22/2023] Open
|
4
|
Genade T, Lang DM. Resveratrol extends lifespan and preserves glia but not neurons of the Nothobranchius guentheri optic tectum. Exp Gerontol 2012; 48:202-12. [PMID: 23220248 DOI: 10.1016/j.exger.2012.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/07/2012] [Accepted: 11/26/2012] [Indexed: 12/14/2022]
Abstract
Resveratrol is reported as having neuroprotective properties, however, much of this reputation has come from research using disease and injury models of neurodegeneration and not neurodegenerative-ageing. The results published here pertain to the affect resveratrol has on neurodegenerative-ageing. Resveratrol had previously been used to extend the lifespan of Nothobranchius furzeri wherein it preserved cognition and reduced ageing-associated neurodegeneration. No cell-type specific antibodies were then identified which could be used to investigate the nature of the neurodegeneration or resveratrols effect on CNS cells. Using wholemounts stained with SMI31 anti-phospho-neurolament, GA-5 and DAKO Z0334 anti-GFAP antibodies, E587 antiserum against NCAMs and anti-tenascin-R antibodies we determined what cellular changes occurred with age in the optic tectum of Nothobranchius guentheri. We show that resveratrol-treatment extended the lifespan of N. guentheri but did not preserve neuron density of the optic tectum stratum griseum superciale even though it did reduce the proportion of degenerate (SMI31 antigen accumulating) neurons in the optic tectum. Resveratrol-treatment did prevent the ageing-dependent loss of radial glia lining the optic tectum of N. guentheri. The ageing-related loss of NCAM expression and tenascin-R expressing perineuronal nets was also prevented by resveratrol-treatment. Glial and perineuronal density as well as NCAM expression appear to correlate well with age. These results suggest that the anti-ageing properties of resveratrol in vertebrates may be unrelated to the protection of neurons.
Collapse
Affiliation(s)
- T Genade
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, Observatory, 7935, South Africa.
| | | |
Collapse
|
5
|
Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, Theodore N. Chemical priming for spinal cord injury: a review of the literature. Part I-factors involved. Childs Nerv Syst 2011; 27:1297-306. [PMID: 21170536 DOI: 10.1007/s00381-010-1364-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 12/29/2022]
Abstract
INTRODUCTION There are significant differences between the propensity of neural regeneration between the central and peripheral nervous systems. MATERIALS AND METHODS Following a review of the literature, we describe the role of growth factors, guiding factors, and neurite outgrowth inhibitors in the physiology and development of the nervous system as well as the pathophysiology of the spinal cord. We also detail their therapeutic role as well as those of other chemical substances that have recently been found to modify regrowth following cord injury. CONCLUSIONS Multiple factors appear to have promising futures for the possibility of improving spinal cord injury following injury.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AR, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Eroglu C. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal 2009; 3:167-76. [PMID: 19904629 PMCID: PMC2778595 DOI: 10.1007/s12079-009-0078-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 10/01/2009] [Indexed: 11/28/2022] Open
Abstract
Matricellular proteins, such as thrombospondins (TSPs1-4), SPARC, SPARC-like1 (hevin) and tenascin C are expressed by astrocytes in the central nervous system (CNS) of rodents. The spatial and temporal expression patterns of these proteins suggest that they may be involved in important developmental processes such as cell proliferation and maturation, cell migration, axonal guidance and synapse formation. In addition, upon injury to the nervous system the expression of these proteins is upregulated, suggesting that they play a role in tissue remodeling and repair in the adult CNS. The genes encoding these proteins have been disrupted in mice. Interestingly, none of these proteins are required for survival, and furthermore, there are no evident abnormalities at the gross anatomical level in the CNS. However, detailed analyses of some of these mice in the recent years have revealed interesting CNS phenotypes. Here we will review the expression of these proteins in the CNS. We will discuss a newly described function for thrombospondins in synapse formation in the CNS in detail, and speculate whether other matricellular proteins could play similar roles in nervous system development and function.
Collapse
Affiliation(s)
- Cagla Eroglu
- Cell Biology, Duke University Medical Center, 333A Nanaline Duke Bldg., Box 3709, Durham, NC 27710 USA
| |
Collapse
|
7
|
Sorensen A, Moffat K, Thomson C, Barnett SC. Astrocytes, but not olfactory ensheathing cells or Schwann cells, promote myelination of CNS axonsin vitro. Glia 2008; 56:750-63. [DOI: 10.1002/glia.20650] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Bukalo O, Schachner M, Dityatev A. Hippocampal metaplasticity induced by deficiency in the extracellular matrix glycoprotein tenascin-R. J Neurosci 2007; 27:6019-28. [PMID: 17537973 PMCID: PMC6672247 DOI: 10.1523/jneurosci.1022-07.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Predisposition of synapses to undergo plastic changes can be dynamically adjusted according to the history of synaptic activity (i.e., synapses are metaplastic). In search of a molecular mechanism underlying metaplasticity, we investigated mice deficient in the glycoprotein tenascin-R (TNR), based on the observations that this mutant exhibits elevated basal excitatory synaptic transmission and reduced perisomatic GABAergic inhibition. TNR is a major extracellular matrix glycoprotein of the CNS and carries the HNK-1 carbohydrate (human natural killer cell glycan), which has been identified as the functional epitope mediating regulation of GABAergic transmission via GABA(B) receptors. Here, we used patch-clamp recordings in hippocampal slices to determine the critical levels of postsynaptic neuron depolarization necessary for induction of long-term potentiation (LTP) at CA3-CA1 synapses and found that deficiency in TNR leads to a metaplastic increase in the threshold for induction of LTP. Reconstitution of slices from TNR-deficient mice with an HNK-1 glycomimetic or pharmacological treatment with either a GABA(A) receptor agonist, a GABA(B) receptor antagonist, an L-type voltage-dependent Ca2+ channel blocker, or an inhibitor of protein serine/threonine phosphatases restored LTP to the levels seen in wild-type mice. We propose that a chain of events initiated by reduced GABAergic transmission and proceeding via Ca2+ entry into cells and elevated activity of phosphatases mediates homeostatic adjustment of hippocampal plasticity in the absence of TNR. These data uncover a novel mechanism by which an extracellular matrix molecule and its associated carbohydrate provide conditions beneficial for induction of LTP in the CA1 region of the hippocampus.
Collapse
Affiliation(s)
- Olena Bukalo
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, and
| | - Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
9
|
Abstract
Neural recognition molecules were discovered and characterized initially for their functional roles in cell adhesion as regulators of affinity between cells and the extracellular matrix in vitro. They were then recognized as mediators or co-receptors which trigger signal transduction mechanisms affecting cell adhesion and de-adhesion. Their involvement in contact attraction and repulsion relies on cell-intrinsic properties that are modulated by the spatial contexts of their expression at particular stages of ontogenetic development, in synaptic plasticity and during regeneration after injury. The functional roles of recognition molecules in cell proliferation and migration, determination of developmental fate, growth cone guidance, and synapse formation, stabilization and modulation have been well documented not only by in vitro, but also by in vivo studies that have been greatly aided by generation of genetically altered mice. More recently, the functions of recognition molecules have been investigated under conditions of neural repair and manipulated using a broad range of genetic and pharmacological approaches to achieve a beneficial outcome. The principal aim of most therapeutically oriented approaches has been to neutralize inhibitory factors. However, less attention has been paid to enhancing repair by stimulating the stimulatory factors. When considering potential therapeutic strategies, it is worth considering that a single recognition molecule can possess domains that are conducive or repellent and that the spatial distribution of recognition molecules can determine the overall function: Recognition molecules may be repellent for neurite outgrowth when presented as barriers or steep-concentration gradients and conducive when presented as uniform substrates. The focus of this review will be on the more recent attempts to study the conducive mechanisms with the expectation that they may be able to tip the balance from a regeneration inhospitable to a hospitable environment. It is likely that a combination of the two principles, as multifactorial as each principle may be in itself, will be of therapeutic value in humans.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | | |
Collapse
|
10
|
Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46:225-51. [PMID: 15048847 DOI: 10.1002/glia.10315] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.
Collapse
Affiliation(s)
- Axel Sandvig
- Laboratory of Regenerative Neurobiology, Institute for Experimental Medical Research, Ullevål University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
11
|
Putthoff P, Akyüz N, Kutsche M, Zardi L, Borgmeyer U, Schachner M. Structure of the murine tenascin-R gene and functional characterisation of the promoter. Biochem Biophys Res Commun 2003; 308:940-9. [PMID: 12927810 DOI: 10.1016/s0006-291x(03)01506-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The tenascin-R (TN-R) gene encodes a multidomain extracellular matrix glycoprotein belonging to the tenascin family. It is detectable mainly in oligodendrocytes and neuronal subpopulations of the central nervous system. In this report, we describe the structure of the 5'-region of the mouse TN-R gene and characterise the activity of its promoter. By in silico cloning and genome walking, we have deduced the organisation of the gene and identified the promoter sequence by 5'-RACE technology. TN-R transcripts in adult mouse brain contain non-coding exons 1 and 2 as demonstrated by the reverse transcriptase-polymerase chain reaction. The promoter displays its activity in cultured cells of neural origin, but not in a fibroblast-like cell line or an undifferentiated teratocarcimoma cell line. As for the human and rat genes, the elements required for the full and cell type-specific activity of the promoter are contained in exon 1 and 167 bp upstream of this exon. The mouse TN-R promoter sequence is similar to that of rat and human in that it displays similarly unusual features: it lacks any classical TATA-box or CAAT-box, GC-rich regions or initiator elements. The promoter contains consensus sequences for binding of a variety of transcription factors, notably p53/p73 and glucocorticoid receptors.
Collapse
MESH Headings
- Animals
- Base Sequence
- Brain/embryology
- Cell Differentiation
- Cloning, Molecular
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Exons
- Fibroblasts/metabolism
- Genes, Tumor Suppressor
- Genome
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Genetic
- Molecular Sequence Data
- Neurons/metabolism
- Nuclear Proteins/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Receptors, Glucocorticoid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Species Specificity
- Tenascin/genetics
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Tumor Protein p73
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Peggy Putthoff
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, Hamburg D-20246, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Pesheva P, Gloor S, Probstmeier R. Tenascin-R as a regulator of CNS glial cell function. PROGRESS IN BRAIN RESEARCH 2001; 132:103-14. [PMID: 11544980 DOI: 10.1016/s0079-6123(01)32069-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- P Pesheva
- Department of Nuclear Medicine, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany.
| | | | | |
Collapse
|
13
|
Kaplan MR, Cho MH, Ullian EM, Isom LL, Levinson SR, Barres BA. Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier. Neuron 2001; 30:105-19. [PMID: 11343648 DOI: 10.1016/s0896-6273(01)00266-5] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Na(v)1.6 is the main sodium channel isoform at adult nodes of Ranvier. Here, we show that Na(v)1.2 and its beta2 subunit, but not Na(v)1.6 or beta1, are clustered in developing central nervous system nodes and that clustering of Na(v)1.2 and Na(v)1.6 is differentially controlled. Oligodendrocyte-conditioned medium is sufficient to induce clustering of Na(v)1.2 alpha and beta2 subunits along central nervous system axons in vitro. This clustering is regulated by electrical activity and requires an intact actin cytoskeleton and synthesis of a non-sodium channel protein. Neither soluble- or contact-mediated glial signals induce clustering of Na(v)1.6 or beta1 in a nonmyelinating culture system. These data reveal that the sequential clustering of Na(v)1.2 and Na(v)1.6 channels is differentially controlled and suggest that myelination induces Na(v)1.6 clustering.
Collapse
Affiliation(s)
- M R Kaplan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
An important biological consequence of the initial interactions between the cell surface and its extracellular environment is the diversity of cellular responses ranging from overt repulsion or avoidance reaction to stable adhesion or final positioning. It is now evident that positive and negative guiding mechanisms are equally relevant to normal pattern formation during development and decisive for the outcome of a regenerative process. In this context, the present review summarizes the knowledge about the extracellular matrix glycoprotein tenascin-R, a member of the tenascin gene family. In contrast to all other known family members, tenascin-R is exclusively expressed in the central nervous system of vertebrates by oligodendrocytes and neuronal subsets at later developmental stages and in adulthood. We focus on the glycoprotein's structure, tissue distribution and functional implications in the molecular control of axon targeting, neural cell adhesion, migration and differentiation during nervous system morphogenesis and pathology.
Collapse
Affiliation(s)
- P Pesheva
- Department of Nuclear Medicine, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | | |
Collapse
|
15
|
Pesheva P, Probstmeier R. Association of tenascin-R with murine brain myelin membranes: involvement of divalent cations. Neurosci Lett 2000; 283:165-8. [PMID: 10754213 DOI: 10.1016/s0304-3940(00)00900-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the central nervous system (CNS), tenascin-R (TN-R) is mainly expressed by oligodendrocytes and in white matter tracts. Here, we have examined the molecular association of TN-R with CNS myelin by incubation of myelin membranes (MM) purified from adult mouse brain under different ionic conditions. By Western blot analysis, the 160 kDa isoform was the main TN-R component detectable in MM as a dimer which became degraded to monomers of 160 kDa and major fragments of 125 and 80 kDa in the absence of protease inhibitors. In the presence of chelating agents, TN-R was completely extracted from MM. Calcium ions promoted the dissociation of TN-R while zinc or copper blocked it. TN-R release from MM was sensitive to heat suggesting the involvement of calcium-dependent myelin protease(s) in this process. In addition, 1,10-phenanthroline (a metalloprotease blocker) partially inhibited TN-R release in the presence of calcium ions. We conclude that divalent metal ions stabilize the association of TN-R with CNS myelin and upon damage, the protein can be released and degraded by endogenous proteases, suggesting the implication of myelin-derived TN-R in axon growth inhibition and demyelinating diseases.
Collapse
Affiliation(s)
- P Pesheva
- Department of Nuclear Medicine, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | | |
Collapse
|
16
|
Probstmeier R, Stichel CC, Müller HW, Asou H, Pesheva P. Chondroitin sulfates expressed on oligodendrocyte-derived tenascin-R are involved in neural cell recognition. Functional implications during CNS development and regeneration. J Neurosci Res 2000; 60:21-36. [PMID: 10723065 DOI: 10.1002/(sici)1097-4547(20000401)60:1<21::aid-jnr3>3.0.co;2-h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tenascin-R (TN-R), an extracellular matrix constituent of the central nervous system (CNS), has been implicated in a variety of cell-matrix interactions underlying axon growth inhibition/guidance, myelination and neural cell migration during development and regeneration. Although most of the functional analyses have concentrated exclusively on the role of the core protein, the contribution of TN-R glycoconjugates present on many potential sites for N- and O-glycosylation is presently unknown. Here we provide first evidence that TN-R derived from whole rat brain or cultured oligodendrocytes expresses chondroitin sulfate (CS) glycosaminoglycans (GAGs), i.e., C-4S and C-6S, that are recognized by CS-56, a CS/dermatan sulfate-specific monoclonal antibody. Based on different in vitro approaches utilizing substrate-bound glycoprotein, we found that TN-R-linked CS GAGs (1) promote oligodendrocyte migration from white matter microexplants and increase the motility of oligodendrocyte lineage cells; (2) similar to soluble CS GAGs, induce the formation of glial scar-like structures by cultured cerebral astrocytes; and (3) contribute to the antiadhesive properties of TN-R for neuronal cell adhesion in an F3/F11-independent manner, but not to neurite outgrowth inhibition, by mechanism(s) sensitive to chondroitinase or CS-56 treatments. Furthermore, after transection of the postcommissural fornix in adult rat, CS-bearing TN-R was found to be stably upregulated at the lesion site. Our findings suggest the functional impact of TN-R-linked CS on neural cell adhesion and migration during brain morphogenesis and the contribution of TN-R to astroglial scar formation (CS-dependent) and axon growth inhibition (CS-independent), i.e., suppression of axon regeneration after CNS injury.
Collapse
Affiliation(s)
- R Probstmeier
- Department of Biochemistry, Institute of Animal Anatomy and Physiology, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
17
|
Becker T, Anliker B, Becker CG, Taylor J, Schachner M, Meyer RL, Bartsch U. Tenascin-R inhibits regrowth of optic fibers in vitro and persists in the optic nerve of mice after injury. Glia 2000; 29:330-46. [PMID: 10652443 DOI: 10.1002/(sici)1098-1136(20000215)29:4<330::aid-glia4>3.0.co;2-l] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tenascin-R, an extracellular matrix constituent expressed by oligodendrocytes and some neuronal cell types, may contribute to the inhibition of axonal regeneration in the adult central nervous system. Here we show that outgrowth of embryonic and adult retinal ganglion cell axons from mouse retinal explants is significantly reduced on homogeneous substrates of tenascin-R or a bacterially expressed tenascin-R fragment comprising the epidermal growth factor-like repeats (EGF-L). When both molecules are presented as a sharp substrate border, regrowing adult axons do not cross into the tenascin-R or EGF-L containing territory. All in vitro experiments were done in the presence of laminin, which strongly promotes growth of embryonic and adult retinal axons, suggesting that tenascin-R and EGF-L actively inhibit axonal growth. Contrary to the disappearance of tenascin-R from the regenerating optic nerve of salamanders (Becker et al., J Neurosci 19:813-827, 1999), the molecule remains present in the lesioned optic nerve of adult mice at levels similar to those in unlesioned control nerves for at least 63 days post-lesion (the latest time point investigated), as shown by immunoblot analysis and immunohistochemistry. In situ hybridization analysis revealed an increase in the number of cells expressing tenascin-R mRNA in the lesioned nerve. We conclude that, regardless of the developmental stage, growth of retinal ganglion cell axons is inhibited by tenascin-R and we suggest that the continued expression of the protein after an optic nerve crush may contribute to the failure of adult retinal ganglion cells to regenerate their axons in vivo.
Collapse
Affiliation(s)
- T Becker
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zamze S, Harvey DJ, Pesheva P, Mattu TS, Schachner M, Dwek RA, Wing DR. Glycosylation of a CNS-specific extracellular matrix glycoprotein, tenascin-R, is dominated by O-linked sialylated glycans and "brain-type" neutral N-glycans. Glycobiology 1999; 9:823-31. [PMID: 10406848 DOI: 10.1093/glycob/9.8.823] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As a member of the tenascin family of extracellular matrix glycoproteins, tenascin-R is located exclusively in the CNS. It is believed to play a role in myelination and axonal stabilization and, through repulsive properties, may contribute to the lack of regeneration of CNS axons following damage. The contrary functions of the tenascins have been localized to the different structural domains of the protein. However, little is known concerning the influence of the carbohydrate conjugated to the many potential sites for N - and O -glycosylation (10-20% by weight). As a first analytical requirement, we show that >80% of the N -glycans in tenascin-R are neutral and dominated by complex biantennary structures. These display the "brain-type" characteristics of outer-arm- and core-fucosylation, a bisecting N -acetylglucosamine and, significantly, an abundance of antennae truncation. In some structures, truncation resulted in only a single mannose residue remaining on the 3-arm, a particularly unusual consequence of the N -glycan processing pathway. In contrast to brain tissue, hybrid and oligomannosidic N -glycans were either absent or in low abundance. A high relative abundance of O -linked sialylated glycans was found. This was associated with a significant potential for O -linked glycosylation sites and multivalent display of the sialic acid residues. These O -glycans were dominated by the disialylated structure, NeuAcalpha2-3Galbeta1-3(NeuAcalpha2-6)GalNAc. The possibility that these O -glycans enable tenascin-R to interact in the CNS either with the myelin associated glycoprotein or with sialoadhesin on activated microglia is discussed.
Collapse
Affiliation(s)
- S Zamze
- Glycobiology Institute, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Probstmeier R, Michels M, Franz T, Chan BM, Pesheva P. Tenascin-R interferes with integrin-dependent oligodendrocyte precursor cell adhesion by a ganglioside-mediated signalling mechanism. Eur J Neurosci 1999; 11:2474-88. [PMID: 10383637 DOI: 10.1046/j.1460-9568.1999.00670.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oligodendrocyte (OL) lineage progression is characterized by the transient expression of the disialoganglioside GD3 by OL precursor (preOL) cells followed by the sequential expression of myelin-specific lipids and proteins. Whereas GD3+ preOLs are highly motile cells, the migratory capacity of OLs committed to terminal differentiation is strongly reduced, and we have recently shown that the extracellular matrix protein tenascin-R (TN-R) promotes the stable adhesion and differentiation of O4+ OLs by a sulphatide-mediated autocrine mechanism (O4 is a monoclonal antibody recognizing sulphatides/seminolipids expressed by OLs and in myelin). Using culture conditions that allow the isolation of mouse OLs at distinct lineage stages, here we demonstrate that TN-R is antiadhesive for GD3+ preOLs and inhibits their integrin-dependent adhesion to fibronectin (FN) by a disialoganglioside-mediated signalling mechanism affecting the tyrosine phosphorylation of the focal adhesion kinase. This responsive mechanism appears to be common to various cell types expressing disialogangliosides as: (i) disialogangliosides interfered with the inhibition of cell adhesion of different neural and non-neural cells on substrata containing TN-R and FN or RGD-containing FN fragments. TN-R interacted specifically with disialoganglioside-expressing cells or immobilized gangliosides, and ganglioside treatment of TN-R substrata resulted in a delayed preOL cell detachment as a function of time. We conclude that OL response to one and the same signal in the extracellular matrix critically depends on the molecular repertoire expressed by OLs at different lineage stages and could thus define their final positioning.
Collapse
Affiliation(s)
- R Probstmeier
- Department of Biochemistry, Institute of Animal Anatomy and Physiology, University of Bonn, 53115, Germany
| | | | | | | | | |
Collapse
|
20
|
Srinivasan J, Schachner M, Catterall WA. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc Natl Acad Sci U S A 1998; 95:15753-7. [PMID: 9861042 PMCID: PMC28116 DOI: 10.1073/pnas.95.26.15753] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type IIA rat brain sodium channel is composed of three subunits: a large pore-forming alpha subunit and two smaller auxiliary subunits, beta1 and beta2. The beta subunits are single membrane-spanning glycoproteins with one Ig-like motif in their extracellular domains. The Ig motif of the beta2 subunit has close structural similarity to one of the six Ig motifs in the extracellular domain of the cell adhesion molecule contactin (also called F3 or F11), which binds to the extracellular matrix molecules tenascin-C and tenascin-R. We investigated the binding of the purified sodium channel and the extracellular domain of the beta2 subunit to tenascin-C and tenascin-R in vitro. Incubation of purified sodium channels on microtiter plates coated with tenascin-C revealed saturable and specific binding with an apparent Kd of approximately 15 nM. Glutathione S-transferase-tagged fusion proteins containing various segments of tenascin-C and tenascin-R were purified, digested with thrombin to remove the epitope tag, immobilized on microtiter dishes, and tested for their ability to bind purified sodium channel or the epitope-tagged extracellular domain of beta2 subunits. Both purified sodium channels and the extracellular domain of the beta2 subunit bound specifically to fibronectin type III repeats 1-2, A, B, and 6-8 of tenascin-C and fibronectin type III repeats 1-2 and 6-8 of tenascin-R but not to the epidermal growth factor-like domain or the fibrinogen-like domain of these molecules. The binding of neuronal sodium channels to extracellular matrix molecules such as tenascin-C and tenascin-R may play a crucial role in localizing sodium channels in high density at axon initial segments and nodes of Ranvier or in regulating the activity of immobilized sodium channels in these locations.
Collapse
Affiliation(s)
- J Srinivasan
- Departments of Pharmacology and Neurological Surgery, University of Washington, Seattle, WA 98195-7280, USA
| | | | | |
Collapse
|
21
|
Tenascin-R is antiadhesive for activated microglia that induce downregulation of the protein after peripheral nerve injury: a new role in neuronal protection. J Neurosci 1998. [PMID: 9698315 DOI: 10.1523/jneurosci.18-16-06218.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglial activation in response to pathological stimuli is characterized by increased migratory activity and potential cytotoxic action on injured neurons during later stages of neurodegeneration. The initial molecular changes in the CNS favoring neuronofugal migration of microglia remain, however, largely unknown. We report that the extracellular matrix protein tenascin-R (TN-R) present in the intact CNS is antiadhesive for activated microglia, and its downregulation after facial nerve axotomy may account for the loss of motoneuron protection and subsequent neurodegeneration. Studies on the protein expression in the facial and hypoglossal nucleus in rats demonstrate that TN-R is a constituent of the perineuronal net of motoneurons and 7 d after peripheral nerve injury becomes downregulated in the corresponding motor nucleus. This downregulation is reversible under regenerative (nerve suture) conditions and irreversible under degenerative (nerve resection) conditions. In short-term adhesion assays, the unlesioned side of brainstem cryosections from unilaterally operated animals is nonpermissive for activated microglia, and this nonpermissiveness is almost abolished by a monoclonal antibody to TN-R. Microglia-conditioned media and tumor necrosis factor-alpha downregulate TN-R protein and mRNA synthesis by cultured oligodendrocytes, which are one of the sources for TN-R in the brainstem. Our findings suggest a new role for TN-R in neuronal protection against activated microglia and the participation of the latter in perineuronal net destruction, e.g., downregulation of TN-R.
Collapse
|
22
|
Tenascin-R is an intrinsic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a sulfatide-mediated mechanism. J Neurosci 1997. [PMID: 9169525 DOI: 10.1523/jneurosci.17-12-04642.1997] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
O4(+) oligodendrocyte (OL) progenitors in the mammalian CNS are committed fully to terminal differentiation into myelin-forming cells. In the absence of other cell types in vitro, OL differentiation reproduces the in vivo development with a correct timing, suggesting the existence of an intrinsic regulatory mechanism that presently is unknown. We have examined the effect of two isoforms of the extracellular matrix (ECM) molecule tenascin-R (TN-R), which is expressed by OLs during the process of myelination, on the adhesion and maturation of OLs in vitro. Here we show that the substrate-bound molecules supported the adhesion of O4(+) OLs independently of the CNS region or age from which they were derived. At the molecular level this process was mediated by protein binding to membrane surface sulfatides (Sulf), as indicated by the interference of O4 antibody and Sulf with the attachment of OLs or other Sulf+ cells, erythrocytes, to TN-R substrates and by direct protein-glycolipid binding studies. In the absence of platelet-derived growth factor (PDGF), exogenous TN-R induced myelin gene expression and the upregulation of its own synthesis by cultured cells, resulting in a rapid terminal differentiation of O4(+) progenitors. Our findings strongly suggest that TN-R represents an intrinsic regulatory molecule that controls the timed OL differentiation by an autocrine mechanism and imply the relevance of TN-R for CNS myelination and remyelination.
Collapse
|
23
|
Wintergerst ES, Bartsch U, Batini C, Schachner M. Changes in the expression of the extracellular matrix molecules tenascin-C and tenascin-R after 3-acetylpyridine-induced lesion of the olivocerebellar system of the adult rat. Eur J Neurosci 1997; 9:424-34. [PMID: 9104585 DOI: 10.1111/j.1460-9568.1997.tb01620.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the central nervous system of rodents, the extracellular matrix glycoproteins tenascin-C and tenascin-R are expressed predominantly by astrocytes and oligodendrocytes respectively. Both molecules support neurite outgrowth from several neuronal cell types when presented as uniform substrates. When offered as a sharp boundary with a permissive substrate, however, both molecules prevent neurite elongation. On the basis of these observations it has been suggested that tenascin-C and tenascin-R may be relevant in determining the cellular response after injury in the adult rodent central nervous system. To investigate whether tenascin-C and tenascin-R may play important functional roles in the lesioned central nervous system, we have analysed their expression in the olivocerebellar system of the adult rat after 3-acetylpyridine-induced degeneration of nerve cells in the inferior olivary nucleus. Tenascin-C mRNA was not detectable at any time in the unlesioned or lesioned inferior olivary nucleus by in situ hybridization. In the cerebellar cortex, tenascin-C mRNA in Golgi epithelial cells was down-regulated 3 days after the lesion and returned to control values 80 days after the lesion. Tenascin-R mRNA was expressed by distinct neural cell types in the unlesioned olivocerebellar system. After a lesion, the density of cells containing tenascin-R transcripts increased significantly in the inferior olivary nucleus and in the white matter of the cerebellar cortex. Immunohistochemical and immunochemical investigations confirmed these observations at the protein level. Our data thus suggest differential functions of tenascin-C and tenascin-R in the injured central nervous system.
Collapse
Affiliation(s)
- E S Wintergerst
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Compston A, Zajicek J, Sussman J, Webb A, Hall G, Muir D, Shaw C, Wood A, Scolding N. Glial lineages and myelination in the central nervous system. J Anat 1997; 190 ( Pt 2):161-200. [PMID: 9061442 PMCID: PMC1467598 DOI: 10.1046/j.1469-7580.1997.19020161.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease.
Collapse
Affiliation(s)
- A Compston
- University of Cambridge Neurology Unit, Addenbrooke's Hospital, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Burkhardt-Holm P, Kafitz KW, Güttinger HR, Schachner M. Testosterone elevates expression of tenascin-R and oligomannosidic carbohydrates in developing male zebra finches. J Neurosci Res 1996; 46:385-92. [PMID: 8933378 DOI: 10.1002/(sici)1097-4547(19961101)46:3<385::aid-jnr12>3.0.co;2-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The song system of zebra finches is a model for studying the influence of steroids on neural connectivity and behavior during development. To investigate the molecular mechanisms underlying the song-related and gonadal hormone-regulated development of neural activity, we have chosen to investigate the expression of recognition molecules in the brain nuclei associated with motor control of song production. Here we show that testosterone accelerates expression of the predominantly oligodendroglia-, but also neuron-associated extracellular matrix glycoprotein tenascin-R and the oligomannosidic carbohydrate L3 during the third and seventh posthatching week in the higher vocal center (HVC) and robust nucleus of the archistriatum (RA), but not in other brain regions. The results suggest that recognition molecules and associated carbohydrate structures can be regulated by testosterone and that an increased expression of these molecules correlates with testosterone-induced modifications of song behavior.
Collapse
Affiliation(s)
- P Burkhardt-Holm
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
26
|
Nörenberg U, Hubert M, Rathjen FG. Structural and functional characterization of tenascin-R (restrictin), an extracellular matrix glycoprotein of glial cells and neurons. Int J Dev Neurosci 1996; 14:217-31. [PMID: 8842800 DOI: 10.1016/0736-5748(96)00009-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tenascin-R (TN-R) is an extracellular matrix protein associated with the surface of neurons and glial cells. Immunohistological studies reveal that TN-R shows a restricted expression pattern in the developing nervous system. TN-R is the smallest member of the tenascin family and is composed of four structural motifs: a cysteine-rich segment at the N-terminus is followed by 4.5 EGF-like repeats. This region is followed by 9 consecutive fibronectin type III (FNIII)-like domains and at the C-terminus TN-R is related to the beta- and gamma- chains of fibrinogen. TN-R forms oligomeric structures as revealed by rotary shadowing electron microscopy of immunoaffinity-purified TN-R. TN-R interacts with the axon-associated F11 protein which results in an enhancement of F11 mediated neurite extension in in vitro assays. In short-term adhesion assays it was found that neural but not fibroblastic cells attach effectively on immobilized TN-R. The cell attachment site within TN-R was allocated to FNIII domain 8 while the site interacting with the F11 protein could be mapped to FNIII domain 2-3.
Collapse
Affiliation(s)
- U Nörenberg
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | |
Collapse
|
27
|
Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 1995; 83:433-42. [PMID: 8521473 DOI: 10.1016/0092-8674(95)90121-3] [Citation(s) in RCA: 362] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Voltage-gated sodium channels in brain neurons are complexes of a pore-forming alpha subunit with smaller beta 1 and beta 2 subunits. cDNA cloning and sequencing showed that the beta 2 subunit is a 186 residue glycoprotein with an extracellular NH2-terminal domain containing an immunoglobulin-like fold with similarity to the neural cell adhesion molecule (CAM) contactin, a single transmembrane segment, and a small intracellular domain. Coexpression of beta 2 with alpha subunits in Xenopus oocytes increases functional expression, modulates gating, and causes up to a 4-fold increase in the capacitance of the oocyte, which results from an increase in the surface area of the plasma membrane microvilli. beta 2 subunits are unique among the auxiliary subunits of ion channels in combining channel modulation with a CAM motif and the ability to expand the cell membrane surface area. They may be important regulators of sodium channel expression and localization in neurons.
Collapse
Affiliation(s)
- L L Isom
- Department of Pharmacology, University of Washington Seattle 98195-7280, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Nörenberg U, Hubert M, Brümmendorf T, Tárnok A, Rathjen FG. Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R. J Cell Biol 1995; 130:473-84. [PMID: 7615642 PMCID: PMC2199939 DOI: 10.1083/jcb.130.2.473] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The extracellular matrix glycoprotein tenascin-R (TN-R) is a multidomain protein implicated in neural cell adhesion. To analyze the structure-function relationship of the different domains of TN-R, several recombinant TN-R fragments were expressed in bacterial cells. Two distinct binding regions were localized on the TN-R polypeptide: a region binding the axon-associated immunoglobulin (Ig)-like F11 protein and a cell attachment site. The binding region of the glycosylphosphatidylinositol (GPI)-anchored F11 was allocated to the second and third fibronectin type III (FNIII)-like domain within TN-R. By using a mutant polypeptide of F11 containing only Ig-like domains, a direct interaction between the Ig-like domains of F11 and FNIII-like domains 2-3 of TN-R was demonstrated. The interaction of TN-R with F11 in in vitro cultures enhanced F11-mediated neurite outgrowth, suggesting that the combined action of F11 and TN-R might be of regulatory influence on axon extension. A cell attachment region was identified in the FNIII-like domain eight of TN-R by domain-specific antibodies and fusion constructs. This site is distinct from the F11 binding site within TN-R.
Collapse
Affiliation(s)
- U Nörenberg
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Faissner A, Götz B, Joester A, Scholze A. The tenascin gene family—versatile glycoproteins implicated in neural pattern formation and regeneration. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1044-5781(06)80023-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|