1
|
Dodel R, Berg D, Duning T, Kalbe E, Meyer PT, Ramirez A, Storch A, Aarsland D, Jessen F. [Dementia with Lewy bodies: old and new knowledge - Part 1: clinical aspects and diagnostics]. DER NERVENARZT 2024; 95:353-361. [PMID: 38092983 PMCID: PMC11014876 DOI: 10.1007/s00115-023-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 04/13/2024]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease. Patients with DLB often have a poor prognosis, with worse outcomes than patients with Alzheimer's disease in terms of important parameters, such as quality of life, caregiver burden, health-related costs, frequency of hospital and nursing home admissions, shorter time to severe dementia, and lower survival. The DLB is frequently misdiagnosed and often undertreated. Therefore, it is critical to diagnose DLB as early as possible to ensure optimal care and treatment. OBJECTIVE The aim of this review article is to summarize the main recent findings on diagnostic tools, epidemiology and genetics of DLB. RESULTS Precise clinical diagnostic criteria exist for DLB that enable an etiologic assignment. Imaging techniques are used as standard in DLB, especially also to exclude non-neurodegenerative causes. In particular, procedures in nuclear medicine have a high diagnostic value. DISCUSSION The diagnosis is primarily based on clinical symptoms, although the development of in vivo neuroimaging and biomarkers is changing the scope of clinical diagnosis as well as research into this devastating disease.
Collapse
Affiliation(s)
- Richard Dodel
- Lehrstuhl für Geriatrie, Universität Duisburg-Essen, Virchowstraße 171, 45147, Essen, Deutschland.
| | - Daniela Berg
- Neurologische Klinik, Universität Kiel, Kiel, Deutschland
| | - Thomas Duning
- Neurologische Klinik, Universität Münster, Münster, Deutschland
| | - Elke Kalbe
- Medizinische Psychologie, Neuropsychologie und Gender Studies & Centrum für Neuropsychologische Diagnostik und Intervention (CeNDI), Universität Köln, Köln, Deutschland
| | - Philipp T Meyer
- Klinik für Nuklearmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland
| | - Alfredo Ramirez
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Köln, Köln, Deutschland
| | - Alexander Storch
- Klinik für Neurologie, Universität Rostock, Rostock, Deutschland
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norwegen
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, Großbritannien
| | - Frank Jessen
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Köln, Köln, Deutschland
| |
Collapse
|
2
|
Bayram E, Reho P, Litvan I, Ding J, Gibbs JR, Dalgard CL, Traynor BJ, Scholz SW, Chia R. Genetic analysis of the X chromosome in people with Lewy body dementia nominates new risk loci. NPJ Parkinsons Dis 2024; 10:39. [PMID: 38378815 PMCID: PMC10879525 DOI: 10.1038/s41531-024-00649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Sex influences the prevalence and symptoms of Lewy body dementia (LBD). However, genome-wide association studies typically focus on autosomal variants and exclude sex-specific risk factors. We addressed this gap by performing an X chromosome-wide association study using whole-genome sequence data from 2591 LBD cases and 4391 controls. We identified a significant risk locus within intron 1 of MAP3K15 (rs141773145, odds ratio = 2.42, 95% confidence interval = 1.65-3.56, p-value = 7.0 × 10-6) in female LBD cases conditioned for APOE ε4 dosage. The locus includes an enhancer region that regulates MAP3K15 expression in ganglionic eminence cells derived from primary cultured neurospheres. Rare variant burden testing showed differential enrichment of missense mutations in TEX13A in female LBD cases, that did not reach significance (p-value = 1.34 × 10-4). These findings support the sex-specific effects of genetic factors and a potential role of Alzheimer's-related risk for females with LBD.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA
| | - Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Bryan J Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
- Therapeutics Development Laboratory, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA.
| |
Collapse
|
3
|
Carreras Mascaro A, Grochowska MM, Boumeester V, Dits NFJ, Bilgiҫ EN, Breedveld GJ, Vergouw L, de Jong FJ, van Royen ME, Bonifati V, Mandemakers W. LRP10 and α-synuclein transmission in Lewy body diseases. Cell Mol Life Sci 2024; 81:75. [PMID: 38315424 PMCID: PMC10844361 DOI: 10.1007/s00018-024-05135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.
Collapse
Affiliation(s)
- Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja F J Dits
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ece Naz Bilgiҫ
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonie Vergouw
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Liampas I, Kyriakoulopoulou P, Siokas V, Tsiamaki E, Stamati P, Kefalopoulou Z, Chroni E, Dardiotis E. Apolipoprotein E Gene in α-Synucleinopathies: A Narrative Review. Int J Mol Sci 2024; 25:1795. [PMID: 38339074 PMCID: PMC10855384 DOI: 10.3390/ijms25031795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this narrative review, we delved into the intricate interplay between Apolipoprotein E (APOE) alleles (typically associated with Alzheimer's disease-AD) and alpha-synucleinopathies (aS-pathies), involving Parkinson's disease (PD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple-system atrophy (MSA). First, in-vitro, animal, and human-based data on the exacerbating effect of APOE4 on LB pathology were summarized. We found robust evidence that APOE4 carriage constitutes a risk factor for PDD-APOE2, and APOE3 may not alter the risk of developing PDD. We confirmed that APOE4 copies confer an increased hazard towards DLB, as well. Again APOE2 and APOE3 appear unrelated to the risk of conversion. Of note, in individuals with DLB APOE4, carriage appears to be intermediately prevalent between AD and PDD-PD (AD > DLB > PDD > PD). Less consistency existed when it came to PD; APOE-PD associations tended to be markedly modified by ethnicity. Finally, we failed to establish an association between the APOE gene and MSA. Phenotypic associations (age of disease onset, survival, cognitive-neuropsychiatric- motor-, and sleep-related manifestations) between APOE alleles, and each of the aforementioned conditions were also outlined. Finally, a synopsis of literature gaps was provided followed by suggestions for future research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Panagiota Kyriakoulopoulou
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Eirini Tsiamaki
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| | - Zinovia Kefalopoulou
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Elisabeth Chroni
- Department of Neurology, University Hospital of Patras, School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (E.T.); (Z.K.); (E.C.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (V.S.); (P.S.); (E.D.)
| |
Collapse
|
5
|
Goddard TR, Brookes KJ, Sharma R, Moemeni A, Rajkumar AP. Dementia with Lewy Bodies: Genomics, Transcriptomics, and Its Future with Data Science. Cells 2024; 13:223. [PMID: 38334615 PMCID: PMC10854541 DOI: 10.3390/cells13030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a significant public health issue. It is the second most common neurodegenerative dementia and presents with severe neuropsychiatric symptoms. Genomic and transcriptomic analyses have provided some insight into disease pathology. Variants within SNCA, GBA, APOE, SNCB, and MAPT have been shown to be associated with DLB in repeated genomic studies. Transcriptomic analysis, conducted predominantly on candidate genes, has identified signatures of synuclein aggregation, protein degradation, amyloid deposition, neuroinflammation, mitochondrial dysfunction, and the upregulation of heat-shock proteins in DLB. Yet, the understanding of DLB molecular pathology is incomplete. This precipitates the current clinical position whereby there are no available disease-modifying treatments or blood-based diagnostic biomarkers. Data science methods have the potential to improve disease understanding, optimising therapeutic intervention and drug development, to reduce disease burden. Genomic prediction will facilitate the early identification of cases and the timely application of future disease-modifying treatments. Transcript-level analyses across the entire transcriptome and machine learning analysis of multi-omic data will uncover novel signatures that may provide clues to DLB pathology and improve drug development. This review will discuss the current genomic and transcriptomic understanding of DLB, highlight gaps in the literature, and describe data science methods that may advance the field.
Collapse
Affiliation(s)
- Thomas R. Goddard
- Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| | - Keeley J. Brookes
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Riddhi Sharma
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Armaghan Moemeni
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Anto P. Rajkumar
- Mental Health and Clinical Neurosciences Academic Unit, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| |
Collapse
|
6
|
Ashley-Koch AE, Kimbrel NA, Qin XJ, Lindquist JH, Garrett ME, Dennis MF, Hair LP, Huffman JE, Jacobson DA, Madduri RK, Coon H, Docherty AR, Kang J, Mullins N, Ruderfer DM, Harvey PD, McMahon BH, Oslin DW, Hauser ER, Hauser MA, Beckham JC. Genome-wide association study identifies four pan-ancestry loci for suicidal ideation in the Million Veteran Program. PLoS Genet 2023; 19:e1010623. [PMID: 36940203 PMCID: PMC10063168 DOI: 10.1371/journal.pgen.1010623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2023] [Accepted: 01/18/2023] [Indexed: 03/21/2023] Open
Abstract
Suicidal ideation (SI) often precedes and predicts suicide attempt and death, is the most common suicidal phenotype and is over-represented in veterans. The genetic architecture of SI in the absence of suicide attempt (SA) is unknown, yet believed to have distinct and overlapping risk with other suicidal behaviors. We performed the first GWAS of SI without SA in the Million Veteran Program (MVP), identifying 99,814 SI cases from electronic health records without a history of SA or suicide death (SD) and 512,567 controls without SI, SA or SD. GWAS was performed separately in the four largest ancestry groups, controlling for sex, age and genetic substructure. Ancestry-specific results were combined via meta-analysis to identify pan-ancestry loci. Four genome-wide significant (GWS) loci were identified in the pan-ancestry meta-analysis with loci on chromosomes 6 and 9 associated with suicide attempt in an independent sample. Pan-ancestry gene-based analysis identified GWS associations with DRD2, DCC, FBXL19, BCL7C, CTF1, ANNK1, and EXD3. Gene-set analysis implicated synaptic and startle response pathways (q's<0.05). European ancestry (EA) analysis identified GWS loci on chromosomes 6 and 9, as well as GWS gene associations in EXD3, DRD2, and DCC. No other ancestry-specific GWS results were identified, underscoring the need to increase representation of diverse individuals. The genetic correlation of SI and SA within MVP was high (rG = 0.87; p = 1.09e-50), as well as with post-traumatic stress disorder (PTSD; rG = 0.78; p = 1.98e-95) and major depressive disorder (MDD; rG = 0.78; p = 8.33e-83). Conditional analysis on PTSD and MDD attenuated most pan-ancestry and EA GWS signals for SI without SA to nominal significance, with the exception of EXD3 which remained GWS. Our novel findings support a polygenic and complex architecture for SI without SA which is largely shared with SA and overlaps with psychiatric conditions frequently comorbid with suicidal behaviors.
Collapse
Affiliation(s)
- Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Health System, Durham, North Carolina, United States of America
| | - Nathan A. Kimbrel
- Durham Veterans Affairs (VA) Health Care System, Durham, North Carolina, United States of America
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina, United States of America
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xue J. Qin
- Duke Molecular Physiology Institute, Durham, North Carolina, United States of America
- Durham Veterans Affairs (VA) Health Care System, Durham, North Carolina, United States of America
| | - Jennifer H. Lindquist
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, North Carolina, United States of America
| | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Durham, North Carolina, United States of America
| | - Michelle F. Dennis
- Durham Veterans Affairs (VA) Health Care System, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lauren P. Hair
- Durham Veterans Affairs (VA) Health Care System, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jennifer E. Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Daniel A. Jacobson
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
- Department of Psychology, NeuroNet Research Center, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Ravi K. Madduri
- Consortium for Advanced Science and Engineering, The University of Chicago, Chicago, Illinois, United States of America
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Hilary Coon
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Anna R. Docherty
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jooeun Kang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Niamh Mullins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Douglas M. Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | | | | - Philip D. Harvey
- Research Service Bruce W. Carter VA Medical Center, Miami, Florida, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Benjamin H. McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - David W. Oslin
- VISN 4 Mental Illness Research, Education, and Clinical Center, Center of Excellence, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Elizabeth R. Hauser
- Duke Molecular Physiology Institute, Durham, North Carolina, United States of America
- Durham Veterans Affairs (VA) Health Care System, Durham, North Carolina, United States of America
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Michael A. Hauser
- Duke Molecular Physiology Institute, Durham, North Carolina, United States of America
| | - Jean C. Beckham
- Durham Veterans Affairs (VA) Health Care System, Durham, North Carolina, United States of America
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
7
|
Ono R, Sakurai T, Sugimoto T, Uchida K, Nakagawa T, Noguchi T, Komatsu A, Arai H, Saito T. Mortality Risks and Causes of Death by Dementia Types in a Japanese Cohort with Dementia: NCGG-Stories. J Alzheimers Dis 2023; 92:487-498. [PMID: 36776074 PMCID: PMC10041427 DOI: 10.3233/jad-221290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Prognosis-related information regarding dementia needs to be updated, as changes in medical and long-term care environments for patients with dementia in recent decades may be improving the prognosis of the disease. OBJECTIVE We aimed to investigate the mortality, cause of death, and prognostic factors by types of dementia in a Japanese clinic-based cohort. METHODS The National Center for Geriatrics and Gerontology-Life Stories of People with Dementia consists of clinical records and prognostic data of patients who visited the Memory Clinic in Japan. Patients who attended the clinic between July 2010 and September 2018, or their close relatives, were asked about death information via a postal survey. A cohort of 3,229 patients (mean age, 76.9; female, 1,953) was classified into six groups: normal cognition (NC), mild cognitive impairment (MCI), Alzheimer's disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration. A Cox proportional hazards model was employed to compare the mortality of each type of dementia, MCI, and NC. RESULTS Patients with all types of dementia and MCI had higher mortality rates than those with NC (hazard risks: 2.61-5.20). The most common cause of death was pneumonia, followed by cancer. In the MCI, AD, and DLB groups, older age, male sex, and low cognitive function were common prognostic factors but not presence of apolipoprotein E ɛ4 allele. CONCLUSION Our findings suggest important differences in the mortality risk and cause of death among patients with dementia, which will be useful in advanced care planning and policymaking.
Collapse
Affiliation(s)
- Rei Ono
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan.,Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan.,Department of Public Health, Kobe University Graduate School of Health Sciences, Hyogo, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan.,Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan.,Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Taiki Sugimoto
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan.,Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kazuaki Uchida
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan.,Department of Public Health, Kobe University Graduate School of Health Sciences, Hyogo, Japan
| | - Takeshi Nakagawa
- Department of Social Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Taiji Noguchi
- Department of Social Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Ayane Komatsu
- Department of Social Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Tami Saito
- Department of Social Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
8
|
Gan J, Chen Z, Liu S, Shi Z, Liu Y, Wang XD, Liu C, Ji Y. The presence and co-incidence of geriatric syndromes in older patients with mild-moderate Lewy body dementia. BMC Neurol 2022; 22:355. [PMID: 36123648 PMCID: PMC9484208 DOI: 10.1186/s12883-022-02897-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Geriatric symptoms are common in dementia cases, while few studies have focused on these symptoms in Lewy body dementia (LBD). The purpose of this study is to investigate the distributions of Apolipoprotein E (APOE) ε4 and geriatric symptoms, and explore their associaitons in Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). METHODS A retrospective study with 185 mild-moderate probable DLB (n = 93) and PDD (n = 92) patients was assigned. Demographic and clinical characteristics, neuropsychological assessments, and APOE genotypes were recorded. Description, correlation and logistic regression models were used to analyze the presence of geriatric symptom complaints and their associations with APOE ε4. RESULTS DLB patients displayed more frequency of fluctuating cognition, visual hallucination, rapid eye movement sleep behavior disorder, delusion, depression, anxiety, apathy, and loss of appetite, whereas the PDD cases had constipation, fear of falling, and insomnia more frequently. The APOE ε4 allele was more common in DLB than PDD (29.9% vs. 7.0%, p < 0.001), and the patients with DLB + APOE ε4 (+) were presented more delusions (p = 0.005) and apathy (p = 0.007) than patients with PDD + APOE ε4 (+). We also found that the APOE ε4 allele was significantly associated with hyperhidrosis (OR = 3.472, 95%CI: 1.082-11.144, p = 0.036) and depression (OR = 3.002, 95%CI: 1.079-8.353, p = 0.035) in DLB patients, while there were no significant associations between APOE ε4 allele and the age at visit, the age at onset, scores of MDS-UPDRS III, H&Y stage, ADL, MMSE, MOCA and NPI, as well as the presences of fluctuating cognition, VH, parkinsonism and RBD in both groups. CONCLUSION The presence and co-incidence of geriatric symptoms are common in patients with mild-moderate LBD. The presence of APOE ε4 allele is associated with hyperhidrosis and depression, but not global cognition, activitives of daily life, motor function and other neuropsychitric symptoms in DLB. These findings improve the awareness of geriatric symptoms, and contribute to the healthcare management of mild-moderate DLB and PDD.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Zhichao Chen
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Yiming Liu
- Department of Neurology, Qilu hospital, Shandong University, Jinan, China
| | - Xiao-Dan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, 6 Jizhao Road, Jinnan District, Tianjin, 300350, China
| | - Chunyan Liu
- Department of Neurology, Aviation General Hospital, Beijing, China
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China. .,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, 6 Jizhao Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
9
|
Guo P, Gong W, Li Y, Liu L, Yan R, Wang Y, Zhang Y, Yuan Z. Pinpointing novel risk loci for Lewy body dementia and the shared genetic etiology with Alzheimer's disease and Parkinson's disease: a large-scale multi-trait association analysis. BMC Med 2022; 20:214. [PMID: 35729600 PMCID: PMC9214990 DOI: 10.1186/s12916-022-02404-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The current genome-wide association study (GWAS) of Lewy body dementia (LBD) suffers from low power due to a limited sample size. In addition, the genetic determinants underlying LBD and the shared genetic etiology with Alzheimer's disease (AD) and Parkinson's disease (PD) remain poorly understood. METHODS Using the largest GWAS summary statistics of LBD to date (2591 cases and 4027 controls), late-onset AD (86,531 cases and 676,386 controls), and PD (33,674 cases and 449,056 controls), we comprehensively investigated the genetic basis of LBD and shared genetic etiology among LBD, AD, and PD. We first conducted genetic correlation analysis using linkage disequilibrium score regression (LDSC), followed by multi-trait analysis of GWAS (MTAG) and association analysis based on SubSETs (ASSET) to identify the trait-specific SNPs. We then performed SNP-level functional annotation to identify significant genomic risk loci paired with Bayesian fine-mapping and colocalization analysis to identify potential causal variants. Parallel gene-level analysis including GCTA-fastBAT and transcriptome-wide association analysis (TWAS) was implemented to explore novel LBD-associated genes, followed by pathway enrichment analysis to understand underlying biological mechanisms. RESULTS Pairwise LDSC analysis found positive genome-wide genetic correlations between LBD and AD (rg = 0.6603, se = 0.2001; P = 0.0010), between LBD and PD (rg = 0.6352, se = 0.1880; P = 0.0007), and between AD and PD (rg = 0.2136, se = 0.0860; P = 0.0130). We identified 13 significant loci for LBD, including 5 previously reported loci (1q22, 2q14.3, 4p16.3, 4q22.1, and 19q13.32) and 8 novel biologically plausible genetic associations (5q12.1, 5q33.3, 6p21.1, 8p23.1, 8p21.1, 16p11.2, 17p12, and 17q21.31), among which APOC1 (19q13.32), SNCA (4q22.1), TMEM175 (4p16.3), CLU (8p21.1), MAPT (17q21.31), and FBXL19 (16p11.2) were also validated by gene-level analysis. Pathway enrichment analysis of 40 common genes identified by GCTA-fastBAT and TWAS implicated significant role of neurofibrillary tangle assembly (GO:1902988, adjusted P = 1.55 × 10-2). CONCLUSIONS Our findings provide novel insights into the genetic determinants of LBD and the shared genetic etiology and biological mechanisms of LBD, AD, and PD, which could benefit the understanding of the co-pathology as well as the potential treatment of these diseases simultaneously.
Collapse
Affiliation(s)
- Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuanming Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanjun Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanan Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
11
|
Rubin L, Ingram LA, Resciniti NV, Ashford-Carroll B, Leith KH, Rose A, Ureña S, McCollum Q, Friedman DB. Genetic Risk Factors for Alzheimer's Disease in Racial/Ethnic Minority Populations in the U.S.: A Scoping Review. Front Public Health 2021; 9:784958. [PMID: 35004586 PMCID: PMC8739784 DOI: 10.3389/fpubh.2021.784958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: As the United States (U.S.) population rapidly ages, the incidence of Alzheimer's Disease and Related Dementias (ADRDs) is rising, with racial/ethnic minorities affected at disproportionate rates. Much research has been undertaken to test, sequence, and analyze genetic risk factors for ADRDs in Caucasian populations, but comparatively little has been done with racial/ethnic minority populations. We conducted a scoping review to examine the nature and extent of the research that has been published about the genetic factors of ADRDs among racial/ethnic minorities in the U.S. Design: Using an established scoping review methodological framework, we searched electronic databases for articles describing peer-reviewed empirical studies or Genome-Wide Association Studies that had been published 2005-2018 and focused on ADRD-related genes or genetic factors among underrepresented racial/ethnic minority population in the U.S. Results: Sixty-six articles met the inclusion criteria for full text review. Well-established ADRD genetic risk factors for Caucasian populations including APOE, APP, PSEN1, and PSEN2 have not been studied to the same degree in minority U.S. populations. Compared to the amount of research that has been conducted with Caucasian populations in the U.S., racial/ethnic minority communities are underrepresented. Conclusion: Given the projected growth of the aging population and incidence of ADRDs, particularly among racial/ethnic minorities, increased focus on this important segment of the population is warranted. Our review can aid researchers in developing fundamental research questions to determine the role that ADRD risk genes play in the heavier burden of ADRDs in racial/ethnic minority populations.
Collapse
Affiliation(s)
- Lindsey Rubin
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Lucy A. Ingram
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Nicholas V. Resciniti
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States
| | - Brianna Ashford-Carroll
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Katherine Henrietta Leith
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Aubrey Rose
- School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Stephanie Ureña
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Quentin McCollum
- College of Social Work, University of South Carolina, Columbia, SC, United States
| | - Daniela B. Friedman
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
12
|
van der Spek SJF, Gonzalez-Lozano MA, Koopmans F, Miedema SSM, Paliukhovich I, Smit AB, Li KW. Age-Dependent Hippocampal Proteomics in the APP/PS1 Alzheimer Mouse Model: A Comparative Analysis with Classical SWATH/DIA and directDIA Approaches. Cells 2021; 10:cells10071588. [PMID: 34202490 PMCID: PMC8304546 DOI: 10.3390/cells10071588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the human population, for which there is currently no cure. The cause of AD is unknown; however, the toxic effects of amyloid-β (Aβ) are believed to play a role in its onset. To investigate this, we examined changes in global protein levels in a hippocampal synaptosome fraction of the Amyloid Precursor Protein swe/Presenelin 1 dE9 (APP/PS1) mouse model of AD at 6 and 12 months of age (moa). Data independent acquisition (DIA), or Sequential Window Acquisition of all THeoretical fragment-ion (SWATH), was used for a quantitative label-free proteomics analysis. We first assessed the usefulness of a recently improved directDIA workflow as an alternative to conventional DIA data analysis using a project-specific spectral library. Subsequently, we applied directDIA to the 6- and 12-moa APP/PS1 datasets and applied the Mass Spectrometry Downstream Analysis Pipeline (MS-DAP) for differential expression analysis and candidate discovery. We observed most regulation at 12-moa, in particular of proteins involved in Aβ homeostasis and microglial-dependent processes, like synaptic pruning and the immune response, such as APOE, CLU and C1QA-C. All proteomics data are available via ProteomeXchange with identifier PXD025777.
Collapse
|
13
|
Rajkumar AP, Hye A, Lange J, Manesh YR, Ballard C, Fladby T, Aarsland D. Next-Generation RNA-Sequencing of Serum Small Extracellular Vesicles Discovers Potential Diagnostic Biomarkers for Dementia With Lewy Bodies. Am J Geriatr Psychiatry 2021; 29:573-584. [PMID: 33160816 DOI: 10.1016/j.jagp.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE There is an urgent clinical need for identifying blood-based diagnostic biomarkers for Dementia with Lewy Bodies (DLB). Transcriptomic studies have reported unique RNA changes in postmortem DLB brains. Small extracellular vesicles (SEV) that transport RNA between brain and peripheral circulation enable identifying molecular changes in living human brain. Hence, we aimed to identify differentially expressed RNA in serum SEVs from people with DLB. METHODS We investigated serum SEV total RNA profiles in people with DLB (n = 10) and age and gender matched comparisons (n = 10) using next-generation RNA-sequencing. SEVs were separated by ultracentrifugation with density gradient and were characterized by nanoparticle analysis and western blotting. We verified the differential expression levels of identified differentially expressed genes (DEG) using high-throughput qPCR. Functional implications of identified DEG were evaluated using Ingenuity pathway analyses. RESULTS We identified 846 nominally significant DEG including 30 miRNAs in DLB serum SEVs. We identified significant downregulation of proinflammatory genes, IL1B, CXCL8, and IKBKB. Previously reported postmortem DLB brain DEGs were significantly enriched (χ2=4.99; df=1; p = 0.03) among the identified DEGs, and the differential expression of 40 postmortem DLB brain DEGs could be detected in serum SEVs of people living with DLB. Functional pathway and network analyses highlighted the importance of immunosenescence, ubiquitin proteasome system (UPS) dysfunction, DNA repair, and RNA post-transcriptional modification deficits in DLB pathology. CONCLUSION Identified DEGs, especially reduced expression levels of inflammation, and UPS-associated RNA, may aid diagnosing DLB, and their biomarker potential warrants further investigation in larger clinical cohorts. Our findings corroborate the absence of chronic neuroinflammation in DLB.
Collapse
Affiliation(s)
- Anto P Rajkumar
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK; Division of Psychiatry and Applied Psychology, University of Nottingham (APR), Nottingham, UK.
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK
| | - Johannes Lange
- Norwegian Centre for Movement Disorders, Stavanger University Hospital (JL), Stanvanger, Norway
| | - Yazmin Rashid Manesh
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK
| | - Clive Ballard
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK; Medical School, Exeter University (CB), Exeter, UK
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, University of Oslo (TF), Lørenskog, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (APR, AH, YRM, CB, DA), London, UK; NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS foundation trust (APR, DA), London, UK
| |
Collapse
|
14
|
Combi R, Salsone M, Villa C, Ferini-Strambi L. Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. Int J Mol Sci 2021; 22:3960. [PMID: 33921279 PMCID: PMC8069386 DOI: 10.3390/ijms22083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is one of the most common causes of dementia and belongs to the group of α-synucleinopathies. Due to its clinical overlap with other neurodegenerative disorders and its high clinical heterogeneity, the clinical differential diagnosis of DLB from other similar disorders is often difficult and it is frequently underdiagnosed. Moreover, its genetic etiology has been studied only recently due to the unavailability of large cohorts with a certain diagnosis and shows genetic heterogeneity with a rare contribution of pathogenic mutations and relatively common risk factors. The rapid increase in the reported cases of DLB highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods proposed by the International DLB consortium rely on a list of criteria that comprises both clinical observations and the use of biomarkers. Herein, we summarize the up-to-now reported knowledge on the genetic architecture of DLB and discuss the use of prodromal biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Maria Salsone
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20054 Segrate (MI), Italy;
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, “Vita-Salute” San Raffaele University, 20127 Milan, Italy
| |
Collapse
|
15
|
Roberts JS, Patterson AK, Uhlmann WR. Genetic testing for neurodegenerative diseases: Ethical and health communication challenges. Neurobiol Dis 2020; 141:104871. [PMID: 32302673 PMCID: PMC7311284 DOI: 10.1016/j.nbd.2020.104871] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 12/31/2022] Open
Abstract
Advances in genomic science are informing an expansion of genetic testing for neurodegenerative diseases, which can be used for diagnostic and predictive purposes and performed in both medical and consumer genomics settings. Such testing-which is often for severe and incurable conditions like Huntington's, Alzheimer's, and Parkinson's diseases-raises important ethical and health communication challenges. This review addresses such challenges in the contexts of clinical, research, and direct-to-consumer genetic testing; these include informed consent, risk estimation and communication, potential benefits and psychosocial harms of genetic information (e.g., genetic discrimination), access to services, education and workforce needs, and health policies. The review also highlights future areas of likely growth in the field, including polygenic risk scores, use of genetic testing in clinical trials, and return of individual research results.
Collapse
Affiliation(s)
- J Scott Roberts
- Department of Health Behavior & Health Education, University of Michigan School of Public Health, United States of America.
| | - Anne K Patterson
- University of Michigan School of Public Health, United States of America
| | - Wendy R Uhlmann
- Department of Internal Medicine, Division of Genetic Medicine, Department of Human Genetics, University of Michigan School of Medicine, United States of America
| |
Collapse
|