1
|
Delvenne JF, Malloy E. Functional implications of age-related atrophy of the corpus callosum. Neurosci Biobehav Rev 2024; 169:105982. [PMID: 39701505 DOI: 10.1016/j.neubiorev.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The corpus callosum plays a critical role in inter-hemispheric communication by coordinating the transfer of sensory, motor, cognitive, and emotional information between the two hemispheres. However, as part of the normal aging process, the corpus callosum undergoes significant structural changes, including reductions in both its size and microstructural integrity. These age-related alterations can profoundly impact the brain's ability to coordinate functions across hemispheres, leading to a decline in various aspects of sensory processing, motor coordination, cognitive functioning, and emotional regulation. This review aims to synthesize current research on age-related changes in the corpus callosum, examining the regional differences in atrophy, its underlying causes, and its functional implications. By exploring these aspects, we seek to emphasize the clinical significance of corpus callosum degeneration and its impact on the quality of life in older adults, as well as the potential for early detection and targeted interventions to preserve brain health during aging. Finally, the review calls for further research into the mechanisms underlying corpus callosum atrophy and its broader implications for aging.
Collapse
Affiliation(s)
| | - Ella Malloy
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Kauv P, Chalah MA, Créange A, Lefaucheur JP, Hodel J, Ayache SS. The corticospinal tract in multiple sclerosis: correlation between cortical excitability and magnetic resonance imaging measures. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02849-0. [PMID: 39417879 DOI: 10.1007/s00702-024-02849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Multiple sclerosis (MS) is a central nervous system disease involving gray and white matters. Transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) could help identify potential markers of disease evolution, disability, and treatment response. This work evaluates the relationship between intracortical inhibition and facilitation, motor cortex lesions, and corticospinal tract (CST) integrity. Consecutive adult patients with progressive MS were included. Sociodemographic and clinical data were collected. MRI was acquired to assess primary motor cortex lesions (double inversion and phase-sensitive inversion recovery) and CST integrity (diffusion tensor imaging). TMS outcomes were obtained: motor evoked potentials (MEP) latency, resting motor threshold, short-interval intracortical facilitation (ICF) and inhibition. Correlation analysis was performed. Twenty-five patients completed the study (13 females, age: 55.60 ± 11.49 years, Expanded Disability Status Score: 6.00 ± 1.25). Inverse correlations were found between ICF mean and each of CST radial diffusivity (RD) (ρ =-0.56; p < 0.01), CST apparent diffusion coefficient (ADC) (ρ=-0.44; p = 0.03), and disease duration (ρ=-0.46; p = 0.02). MEP latencies were directly correlated with disability scores (ρ = 0.55; p < 0.01). High ADC/RD and low ICF have been previously reported in patients with MS. While the former could reflect structural damage of the CST, the latter could hint towards an aberrant synaptic transmission as well as a depletion of facilitatory compensatory mechanisms that helps overcoming functional decline. The findings suggest concomitant structural and functional abnormalities at later disease stages that would be accompanied with a heightened disability. The results should be interpreted with caution mainly because of the small sample size that precludes further comparisons (e.g., treated vs. untreated patients, primary vs. secondary progressive MS). The role of these outcomes as potential MS biomarkers merit to be further explored.
Collapse
Affiliation(s)
- Paul Kauv
- Service de Neuroradiologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), 51 avenue du Maréchal de Lattre de Tassigny, Créteil Cedex, 94010, France.
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France.
| | - Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Neurology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
- Institut de Neuromodulation, Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Alain Créange
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Service de Neurologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jérôme Hodel
- Service de Neuroradiologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), 51 avenue du Maréchal de Lattre de Tassigny, Créteil Cedex, 94010, France
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Radiology, Groupe Hospitalier Paris Saint-Joseph, Paris, France
- Centre d'Imagerie Médicale Léonard de Vinci, Paris, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Neurology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| |
Collapse
|
3
|
Hike D, Liu X, Xie Z, Zhang B, Choi S, Zhou XA, Liu A, Murstein A, Jiang Y, Devor A, Yu X. High-resolution awake mouse fMRI at 14 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570803. [PMID: 38106227 PMCID: PMC10723470 DOI: 10.1101/2023.12.08.570803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
High-resolution awake mouse fMRI remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radiofrequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion induced artifacts. Using a 14T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100×100×200μm resolution with a 2s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust BOLD responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 seconds prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous training of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.
Collapse
Affiliation(s)
- David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Zeping Xie
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Bei Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Andy Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Graduate program in Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Alyssa Murstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Graduate program in Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Department of Biomedical Engineering, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| |
Collapse
|
4
|
Holzapfel K, Bayas A, Naumann M, Ghosh T, Steuerwald V, Allweyer M, Kirschke JS, Behrens L. Mirror movements in multiple sclerosis -a clinical, electrophysiological, and imaging study. BMC Neurol 2024; 24:326. [PMID: 39242510 PMCID: PMC11378473 DOI: 10.1186/s12883-024-03828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Mirror movements (MM) are commonly caused by a defect of interhemispheric pathways also affected in multiple sclerosis (MS), particularly the corpus callosum. We investigated the prevalence of MM in MS in relation to functional and morphological callosal fiber integrity by transcranial magnetic stimulation (TMS), magnetic resonance imaging (MRI), as well as fatigue. METHODS In 21 patients with relapsing-remitting MS and 19 healthy controls, MM were assessed and graded (Woods and Teuber scale: MM 1-4) using a bedside test. Fatigue was evaluated using the Fatigue Scale for Motor and Cognitive Functions (FSMC) questionnaire. TMS measured ipsilateral silent period latency and duration. MRI assessed callosal atrophy by measuring the normalized corpus callosum area (nCCA), corpus callosum index (CCI), and lesion volume. RESULTS MS patients had significantly more often and pronounced MM compared to healthy controls (p = 0.0002) and nCCA was significantly lower (p = 0.045) in MRI studies. Patients with higher MM scores (MM > 1 vs. MM 0/1) showed significantly more fatigue (higher FSMC sum score, p = 0.04, motor score, p = 0.01). In TMS and MRI studies, no significant differences were found between patients with MM 0/1 and those with MM > 1 (ipsilateral silent period measurements, CCA, CCI and lesion volume). CONCLUSIONS MM are common in MS and can easily be detected through bedside testing. As MM are associated with fatigue, they might indicate fatigue in MS. It is possible that other cerebral structures, in addition to the corpus callosum, may contribute to the origin of MM in MS.
Collapse
Affiliation(s)
- Korbinian Holzapfel
- Department of Neurology and Clinical Neurophysiology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| | - Antonios Bayas
- Department of Neurology and Clinical Neurophysiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Markus Naumann
- Department of Neurology and Clinical Neurophysiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Tanupriya Ghosh
- Department of Neurology and Clinical Neurophysiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Verena Steuerwald
- Department of Neurology and Clinical Neurophysiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Martin Allweyer
- Department of Neurology and Clinical Neurophysiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Lars Behrens
- Department of Diagnostic and Interventional Neuroradiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
5
|
Bardel B, Créange A, Bonardet N, Bapst B, Zedet M, Wahab A, Ayache SS, Lefaucheur JP. Motor function in multiple sclerosis assessed by navigated transcranial magnetic stimulation mapping. J Neurol 2024; 271:4513-4528. [PMID: 38709305 DOI: 10.1007/s00415-024-12398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Impaired motor function is a major cause of disability in multiple sclerosis (MS), involving various neuroplasticity processes typically assessed by neuroimaging. This study aimed to determine whether navigated transcranial magnetic stimulation (nTMS) could also provide biomarkers of motor cortex plasticity in patients with MS (pwMS). METHODS nTMS motor mapping was performed for hand and leg muscles bilaterally. nTMS variables included the amplitude and latency of motor evoked potentials (MEPs), corticospinal excitability measures, and the size of cortical motor maps (CMMs). Clinical assessment included disability (Expanded Disability Status Scale, EDSS), strength (MRC scale, pinch and grip), and dexterity (9-hole Pegboard Test). RESULTS nTMS motor mapping was performed in 68 pwMS. PwMS with high disability (EDSS ≥ 3) had enlarged CMMs with less dense distribution of MEPs and various MEP parameter changes compared to pwMS with low disability (EDSS < 3). Patients with progressive MS had also various MEP parameter changes compared to pwMS with relapsing remitting form. MRC score correlated positively with MEP amplitude and negatively with MEP latency, pinch strength correlated negatively with CMM volume and dexterity with MEP latency. CONCLUSIONS This is the first study to perform 4-limb cortical motor mapping in pwMS using a dedicated nTMS procedure. By quantifying the cortical surface representation of a given muscle and the variability of MEP within this representation, nTMS can provide new biomarkers of motor function impairment in pwMS. Our study opens perspectives for the use of nTMS as an objective method for assessing pwMS disability in clinical practice.
Collapse
Affiliation(s)
- Benjamin Bardel
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France.
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France.
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France.
| | - Alain Créange
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Nathalie Bonardet
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
| | - Blanche Bapst
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neuroradiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Mickael Zedet
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Abir Wahab
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Samar S Ayache
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Jean-Pascal Lefaucheur
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France
| |
Collapse
|
6
|
Hagen AC, Acosta JS, Swanson CW, Fling BW. Interhemispheric inhibition and gait adaptation associations in people with multiple sclerosis. Exp Brain Res 2024; 242:1761-1772. [PMID: 38822825 DOI: 10.1007/s00221-024-06860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Multiple sclerosis is a neurodegenerative disease that damages the myelin sheath within the central nervous system. Axonal demyelination, particularly in the corpus callosum, impacts communication between the brain's hemispheres in persons with multiple sclerosis (PwMS). Changes in interhemispheric communication may impair gait coordination which is modulated by communication across the corpus callosum to excite and inhibit specific muscle groups. To further evaluate the functional role of interhemispheric communication in gait and mobility, this study assessed the ipsilateral silent period (iSP), an indirect marker of interhemispheric inhibition and how it relates to gait adaptation in PwMS. METHODS Using transcranial magnetic stimulation (TMS), we assessed interhemispheric inhibition differences between the more affected and less affected hemisphere in the primary motor cortices in 29 PwMS. In addition, these same PwMS underwent a split-belt treadmill walking paradigm, with the faster paced belt moving under their more affected limb. Step length asymmetry (SLA) was the primary outcome measure used to assess gait adaptability during split-belt treadmill walking. We hypothesized that PwMS would exhibit differences in iSP inhibitory metrics between the more affected and less affected hemispheres and that increased interhemispheric inhibition would be associated with greater gait adaptability in PwMS. RESULTS No statistically significant differences in interhemispheric inhibition or conduction time were found between the more affected and less affected hemisphere. Furthermore, SLA aftereffect was negatively correlated with both average percent depth of silent period (dSP%AVE) (r = -0.40, p = 0.07) and max percent depth of silent period (dSP%MAX) r = -0.40, p = 0.07), indicating that reduced interhemispheric inhibition was associated with greater gait adaptability in PwMS. CONCLUSION The lack of differences between the more affected and less affected hemisphere indicates that PwMS have similar interhemispheric inhibitory capacity irrespective of the more affected hemisphere. Additionally, we identified a moderate correlation between reduced interhemispheric inhibition and greater gait adaptability. These findings may indicate that interhemispheric inhibition may in part influence responsiveness to motor adaptation paradigms and the need for further research evaluating the neural mechanisms underlying the relationship between interhemispheric inhibition and motor adaptability.
Collapse
Affiliation(s)
- Andrew C Hagen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jordan S Acosta
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Clayton W Swanson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Brett W Fling
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.
- Molecular, Cellular, & Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
7
|
Bontempi P, Piccolantonio G, Busato A, Conti A, Angelini G, Lopez N, Bani A, Constantin G, Marzola P. Resting-state functional magnetic resonance imaging reveals functional connectivity alteration in the experimental autoimmune encephalomyelitis model of multiple sclerosis. NMR IN BIOMEDICINE 2024; 37:e5127. [PMID: 38450807 DOI: 10.1002/nbm.5127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune degenerative disease targeting white matter in the central nervous system. The most common animal model that mimics MS is experimental autoimmune encephalomyelitis (EAE) and it plays a crucial role in pharmacological research, from the identification of a therapeutic target to the in vivo validation of efficacy. Magnetic resonance imaging (MRI) is largely used to detect MS lesions, and resting-state functional MRI (rsfMRI) to investigate alterations in the brain functional connectivity (FC). MRI was mainly used in EAE studies to detect lesions in the spinal cord and brain. The current longitudinal MRI study aims to validate rsfMRI as a biomarker of the disease progression in the myelin oligodendrocyte glycoprotein 35-55 induced EAE animal model of MS. MR images were acquired 14, 25, and 50 days postimmunization. Seed-based analysis was used to investigate the whole-brain FC with some predefined areas, such as the thalamic regions, cerebellum, motor and somatosensory cortex. When compared with the control group, the EAE group exhibited a slightly altered FC and a decreasing trend in the total number of activated voxels along the disease progression. The most interesting result regards the whole-brain FC with the cerebellum. A hyperconnectivity behavior was found at an early phase and a significant reduced connectivity at a late phase. Moreover, we found a negative correlation between the total number of activated voxels during the late phase and the cumulative disease index. The results obtained provide a clinically relevant experimental platform that may be pivotal for the elucidation of the key mechanisms of accumulation of irreversible disability, as well as the development of innovative therapies for MS. Moreover, the negative correlation between the disease severity and the size of the activated area suggests a possible research pathway to follow for the resolution of the clinico-radiological paradox.
Collapse
Affiliation(s)
- Pietro Bontempi
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Giusi Piccolantonio
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Verona, Italy
- Evotec Company, Verona, Italy
| | - Anita Conti
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Nicola Lopez
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Pasquina Marzola
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Degraeve B, Sequeira H, Mecheri H, Lenne B. Corpus callosum damage to account for cognitive, affective, and social-cognitive dysfunctions in multiple sclerosis: A model of callosal disconnection syndrome? Mult Scler 2023; 29:160-168. [PMID: 35475386 DOI: 10.1177/13524585221091067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The corpus callosum (CC) is the major commissure interconnecting the two hemispheres and is particularly affected in multiple sclerosis (MS). In the present review, we aimed to investigate the role played by callosal damages in the pathogenesis of MS-related dysfunctions and examine whether a model of callosal disconnection syndrome is a valid model for MS. For this purpose, we will first review structural and functional evidence of callosal pathology in MS. Second, we will account for the potential role of CC abnormalities in MS-related dysfunctions. Finally, we will report data concurring with a "multiple disconnection hypothesis" that has been proposed to explain those dysfunctions, and we will examine evidence pointing toward MS as a "callosal disconnection syndrome." We will end by discussing the contribution of this interpretation to the understanding of MS and MS-related deficits.
Collapse
Affiliation(s)
| | - Henrique Sequeira
- UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Halima Mecheri
- ETHICS (EA7446), Lille Catholic University, FLSH, Lille, France
| | - Bruno Lenne
- ETHICS (EA7446), Lille Catholic University, FLSH, Lille, France; Neurology Department, Groupement des hôpitaux de l'institut catholique de Lille (GHICL), Lille, France
| |
Collapse
|
9
|
Royer N, Coates K, Aboodarda SJ, Camdessanché JP, Millet GY. How is neuromuscular fatigability affected by perceived fatigue and disability in people with multiple sclerosis? Front Neurol 2022; 13:983643. [DOI: 10.3389/fneur.2022.983643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Whereas fatigue is recognized to be the main complaint of patients with multiple sclerosis (PwMS), its etiology, and particularly the role of resistance to fatigability and its interplay with disability level, remains unclear. The purposes of this review were to (i) clarify the relationship between fatigue/disability and neuromuscular performance in PwMS and (ii) review the corticospinal and muscular mechanisms of voluntary muscle contraction that are altered by multiple sclerosis, and how they may be influenced by disability level or fatigue. Neuromuscular function at rest and during exercise are more susceptible to impairement, due to deficits in voluntary activation, when the disability is greater. Fatigue level is related to resistance to fatigability but not to neuromuscular function at rest. Neurophysiological parameters related to signal transmission such as central motor conduction time, motor evoked potentials amplitude and latency are affected by disability and fatigue levels but their relative role in the impaired production of torque remain unclear. Nonetheless, cortical reorganization represents the most likely explanation for the heightened fatigability during exercise for highly fatigued and/or disabled PwMS. Further research is needed to decipher how the fatigue and disability could influence fatigability for an ecological task, especially at the corticospinal level.
Collapse
|
10
|
Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 2022; 35:103076. [PMID: 35691253 PMCID: PMC9194954 DOI: 10.1016/j.nicl.2022.103076] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/12/2023]
Abstract
Functional MRI is able to detect adaptive and maladaptive abnormalities at different MS stages. Increased fMRI activity is a feature of early MS, while progressive exhaustion of adaptive mechanisms is detected later on in the disease. Collapse of long-range connections and impaired hub integration characterize MS network reorganization. Time-varying connectivity analysis provides useful and complementary pieces of information to static functional connectivity. New perspectives might be the use of multimodal MRI and artificial intelligence.
Multiple sclerosis (MS) is a neurological disorder affecting the central nervous system and features extensive functional brain changes that are poorly understood but relate strongly to clinical impairments. Functional magnetic resonance imaging (fMRI) is a non-invasive, powerful technique able to map activity of brain regions and to assess how such regions interact for an efficient brain network. FMRI has been widely applied to study functional brain changes in MS, allowing to investigate functional plasticity consequent to disease-related structural injury. The first studies in MS using active fMRI tasks mainly aimed to study such plastic changes by identifying abnormal activity in salient brain regions (or systems) involved by the task. In later studies the focus shifted towards resting state (RS) functional connectivity (FC) studies, which aimed to map large-scale functional networks of the brain and to establish how MS pathology impairs functional integration, eventually leading to the hypothesized network collapse as patients clinically progress. This review provides a summary of the main findings from studies using task-based and RS fMRI and illustrates how functional brain alterations relate to clinical disability and cognitive deficits in this condition. We also give an overview of longitudinal studies that used task-based and RS fMRI to monitor disease evolution and effects of motor and cognitive rehabilitation. In addition, we discuss the results of studies using newer technologies involving time-varying FC to investigate abnormal dynamism and flexibility of network configurations in MS. Finally, we show some preliminary results from two recent topics (i.e., multimodal MRI analysis and artificial intelligence) that are receiving increasing attention. Together, these functional studies could provide new (conceptual) insights into disease stage-specific mechanisms underlying progression in MS, with recommendations for future research.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Cordani C, Preziosa P, Valsasina P, Meani A, Pagani E, Morozumi T, Rocca MA, Filippi M. MRI of Transcallosal White Matter Helps to Predict Motor Impairment in Multiple Sclerosis. Radiology 2021; 302:639-649. [PMID: 34846201 DOI: 10.1148/radiol.2021210922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Altered callosal integrity has been associated with motor deficits in patients with multiple sclerosis (MS), but its contribution to disability has, to the knowledge of the authors, not been investigated by using multiparametric MRI approaches. Purpose To investigate structural and functional interhemispheric MRI substrates of global disability at different milestones and upper limb motor impairment in MS. Materials and Methods In this cross-sectional study, healthy control patients and patients with MS (between January 1, 2008, and December 31, 2016) were retrospectively selected from our hospital database. Clinical assessment included Expanded Disability Status Scale (EDSS), nine-hole peg test, and digital finger tapping test. By using structural and resting-state functional MRI sequences, probabilistic tractography of hand corticospinal tract fibers, and transcallosal fibers between hand-motor cortices (hereafter, referred to as hand-M1), supplementary motor areas (SMAs), premotor cortices (PMCs), and voxel-mirror homotopic connectivity (VMHC) were analyzed. Random forest analyses identified the MRI predictors of clinical disability at different milestones (EDSS scores of 3.0, 4.0, 6.0) and upper limb motor impairment (nine-hole peg test and finger tapping test z scores < healthy control patients 5th percentile). Results One-hundred thirty healthy control patients (median age, 39 years; interquartile range, 31-50 years; 70 women) and 340 patients with MS (median age, 43 years; interquartile range, 33-51 years; 213 women) were studied. EDSS 3.0 predictors (n = 159) were global measures of atrophy and lesions together with damage measures of corticospinal tracts and transcallosal fibers between PMCs and SMAs (accuracy, 86%; P = .001-.01). For EDSS 4.0 (n = 131), similar predictors were found in addition to damage in transcallosal fibers between hand-M1 (accuracy, 89%; P = .001-.049). No MRI predictors were found for EDSS 6.0 (n = 70). Nine-hole peg test (right, n = 161; left, n = 166) and finger tapping test (right, n = 117; left, n = 111) impairments were predicted by damage in transcallosal fibers between SMAs and PMCs (accuracy range, 69%-77%; P = .001-.049). VMHC abnormalities did not explain clinical outcomes. Conclusion Structural, not functional, abnormalities at MRI in transcallosal premotor and motor white matter fibers predicted severity of global disability and upper limb motor impairment in patients with multiple sclerosis. The informative role of such predictors appeared less evident at higher disability levels. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Barkhof and Pontillo in this issue.
Collapse
Affiliation(s)
- Claudio Cordani
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Paolo Preziosa
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Paola Valsasina
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Alessandro Meani
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Tetsu Morozumi
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Maria Assunta Rocca
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Division of Neuroscience (C.C., P.P., P.V., A.M., E.P., T.M., M.A.R., M.F.), Neurology Unit (P.P., M.A.R., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; and Vita-Salute San Raffaele University, Milan, Italy (M.A.R., M.F.)
| |
Collapse
|
12
|
Does Hemispheric Asymmetry Reduction in Older Adults in Motor Cortex Reflect Compensation? J Neurosci 2021; 41:9361-9373. [PMID: 34580164 PMCID: PMC8580140 DOI: 10.1523/jneurosci.1111-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
Older adults tend to display greater brain activation in the nondominant hemisphere during even basic sensorimotor responses. It is debated whether this hemispheric asymmetry reduction in older adults (HAROLD) reflects a compensatory mechanism. Across two independent fMRI experiments involving adult life span human samples (N = 586 and N = 81, approximately half female) who performed right-hand finger responses, we distinguished between these hypotheses using behavioral and multivariate Bayes (MVB) decoding approaches. Standard univariate analyses replicated a HAROLD pattern in motor cortex, but in and out of scanner behavioral results both demonstrated evidence against a compensatory relationship in that reaction time measures of task performance in older adults did not relate to ipsilateral motor activity. Likewise, MVB showed that this increased ipsilateral activity in older adults did not carry additional information, and if anything, combining ipsilateral with contralateral activity patterns reduced action decoding in older adults (at least in experiment 1). These results contradict the hypothesis that HAROLD is compensatory and instead suggest that the age-related ipsilateral hyperactivation is nonspecific, consistent with alternative hypotheses about age-related reductions in neural efficiency/differentiation or interhemispheric inhibition. SIGNIFICANCE STATEMENT A key goal in the cognitive neuroscience of aging is to provide a mechanistic explanation of how brain–behavior relationships change with age. One interpretation of the common finding that task-based hemispheric activity becomes more symmetrical in older adults is that this shift reflects a compensatory mechanism, with the nondominant hemisphere needing to help out with computations normally performed by the dominant hemisphere. Contrary to this view, our behavioral and brain data indicate that the additional activity in ipsilateral motor cortex in older adults is not reflective of better task performance nor better neural representations of finger actions.
Collapse
|
13
|
Prak RF, Marsman JBC, Renken R, Tepper M, Thomas CK, Zijdewind I. Increased Ipsilateral M1 Activation after Incomplete Spinal Cord Injury Facilitates Motor Performance. J Neurotrauma 2021; 38:2988-2998. [PMID: 34491111 DOI: 10.1089/neu.2021.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Incomplete spinal cord injury (SCI) may result in muscle weakness and difficulties with force gradation. Although these impairments arise from the injury and subsequent changes at spinal levels, changes have also been demonstrated in the brain. Blood-oxygen-level dependent (BOLD) imaging was used to investigate these changes in brain activation in the context of unimanual contractions with the first dorsal interosseous muscle. BOLD- and force data were obtained in 19 individuals with SCI (AISA Impairment Scale [AIS] C/D, level C4-C8) and 24 able-bodied controls during maximal voluntary contractions (MVCs). To assess force modulation, participants performed 12 submaximal contractions with each hand (at 10, 30, 50, and 70% MVC) by matching their force level to a visual target. MVCs were weaker in the SCI group (both hands p < 0.001), but BOLD activation did not differ between SCI and control groups. For the submaximal contractions, force (as %MVC) was similar across groups. However, SCI participants showed increased activity of the ipsilateral motor cortex and contralateral cerebellum across all contractions, with no differential effect of force level. Activity of ipsilateral M1 was best explained by force of the target hand (vs. the non-target hand). In conclusion, the data suggest that after incomplete cervical SCI, individuals remain capable of producing maximal supraspinal drive and are able to modulate this drive adequately. Activity of the ipsilateral motor network appears to be task related, although it remains uncertain how this activity contributes to task performance and whether this effect could potentially be harnessed to improve motor functioning.
Collapse
Affiliation(s)
- Roeland F Prak
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Bernard C Marsman
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco Renken
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marga Tepper
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physiology and Biophysics and University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Motor Cortical Activation Assessment in Progressive Multiple Sclerosis Patients Enrolled in Gait Rehabilitation: A Secondary Analysis of the RAGTIME Trial Assisted by Functional Near-Infrared Spectroscopy. Diagnostics (Basel) 2021; 11:diagnostics11061068. [PMID: 34207923 PMCID: PMC8227480 DOI: 10.3390/diagnostics11061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
This study aimed to determine cortical activation responses to two different rehabilitative programs, as measured through functional near-infrared spectroscopy (fNIRS). As a secondary analysis of the RAGTIME trial, we studied 24 patients with progressive multiple sclerosis (MS) and severe disability who were randomized to a regimen of robot-assisted gait training (RAGT) or overground walking (OW). Cortical activation during a treadmill walking task, assessed through fNIRS recordings from the motor and premotor cortexes (M1/PM), was calculated as the area under the curve (AUC) of oxyhemoglobin for each hemisphere and the total area (Tot-OxyAUC). Gait speed, endurance, and balance were also measured, along with five healthy control subjects. At baseline, Tot-OxyAUC during walking was significantly increased in MS patients compared to healthy people and was significantly higher for those with more severe disabilities; it was also inversely correlated with physical performance. After rehabilitation, significant opposite variations in Tot-OxyAUC were observed, with activity levels being increased after OW and decreased after RAGT (+242,080 ± 361,902 and −157,031 ± 172,496 arbitrary units, respectively; p = 0.002), particularly in patients who were trained at a lower speed. Greater reductions in the cortical activation of the more affected hemisphere were significantly related to improvements in gait speed (r = −0.42) and endurance (r = −0.44). Cortical activation, assessed through fNIRS, highlighted the brain activity in response to the type and intensity of rehabilitation.
Collapse
|
15
|
Alahmadi AAS, Pardini M, Samson RS, D’Angelo E, Friston KJ, Toosy AT, Gandini Wheeler-Kingshott CAM. Blood Oxygenation Level-Dependent Response to Multiple Grip Forces in Multiple Sclerosis: Going Beyond the Main Effect of Movement in Brodmann Area 4a and 4p. Front Cell Neurosci 2021; 15:616028. [PMID: 33981201 PMCID: PMC8109244 DOI: 10.3389/fncel.2021.616028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
This study highlights the importance of looking beyond the main effect of movement to study alterations in functional response in the presence of central nervous system pathologies such as multiple sclerosis (MS). Data show that MS selectively affects regional BOLD (blood oxygenation level dependent) responses to variable grip forces (GF). It is known that the anterior and posterior BA 4 areas (BA 4a and BA 4p) are anatomically and functionally distinct. It has also been shown in healthy volunteers that there are linear (first order, typical of BA 4a) and nonlinear (second to fourth order, typical of BA 4p) BOLD responses to different levels of GF applied during a dynamic motor paradigm. After modeling the BOLD response with a polynomial expansion of the applied GFs, the particular case of BA 4a and BA 4p were investigated in healthy volunteers (HV) and MS subjects. The main effect of movement (zeroth order) analysis showed that the BOLD signal is greater in MS compared with healthy volunteers within both BA 4 subregions. At higher order, BOLD-GF responses were similar in BA 4a but showed a marked alteration in BA 4p of MS subjects, with those with greatest disability showing the greatest deviations from the healthy response profile. Therefore, the different behaviors in HV and MS could only be uncovered through a polynomial analysis looking beyond the main effect of movement into the two BA 4 subregions. Future studies will investigate the source of this pathophysiology, combining the present fMRI paradigm with blood perfusion and nonlinear neuronal response analysis.
Collapse
Affiliation(s)
- Adnan A. S. Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Matteo Pardini
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rebecca S. Samson
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Egidio D’Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Karl J. Friston
- Wellcome Centre for Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ahmed T. Toosy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Casella C, Kleban E, Rosser AE, Coulthard E, Rickards H, Fasano F, Metzler-Baddeley C, Jones DK. Multi-compartment analysis of the complex gradient-echo signal quantifies myelin breakdown in premanifest Huntington's disease. Neuroimage Clin 2021; 30:102658. [PMID: 33865029 PMCID: PMC8079666 DOI: 10.1016/j.nicl.2021.102658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/04/2022]
Abstract
White matter (WM) alterations have been identified as a relevant pathological feature of Huntington's disease (HD). Increasing evidence suggests that WM changes in this disorder are due to alterations in myelin-associated biological processes. Multi-compartmental analysis of the complex gradient-echo MRI signal evolution in WM has been shown to quantify myelin in vivo, therefore pointing to the potential of this technique for the study of WM myelin changes in health and disease. This study first characterized the reproducibility of metrics derived from the complex multi-echo gradient-recalled echo (mGRE) signal across the corpus callosum in healthy participants, finding highest reproducibility in the posterior callosal segment. Subsequently, the same analysis pipeline was applied in this callosal region in a sample of premanifest HD patients (n = 19) and age, sex and education matched healthy controls (n = 21). In particular, we focused on two myelin-associated derivatives: i. the myelin water signal fraction (fm), a parameter dependent on myelin content; and ii. The difference in frequency between myelin and intra-axonal water pools (Δω), a parameter dependent on the ratio between the inner and the outer axonal radii. fm was found to be lower in HD patients (β = -0.13, p = 0.03), while Δω did not show a group effect. Performance in tests of working memory, executive function, social cognition and movement was also assessed, and a greater age-related decline in executive function was detected in HD patients (β = -0.06, p = 0.006), replicating previous evidence of executive dysfunction in HD. Finally, the correlation between fm, executive function, and proximity to disease onset was explored in patients, and a positive correlation between executive function and fm was detected (r = 0.542; p = 0.02). This study emphasises the potential of complex mGRE signal analysis for aiding understanding of HD pathogenesis and progression. Moreover, expanding on evidence from pathology and animal studies, it provides novel in vivo evidence supporting myelin breakdown as an early feature of HD.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| | - Anne E Rosser
- Department of Neurology and Psychological Medicine, Hayden Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation Trust, 50 Summer Hill Road, Birmingham B1 3RB, UK; Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberly, UK; Siemens Healthcare GmbH, Erlangen, Germany
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| |
Collapse
|
17
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
18
|
Hupfeld KE, Swanson CW, Fling BW, Seidler RD. TMS-induced silent periods: A review of methods and call for consistency. J Neurosci Methods 2020; 346:108950. [PMID: 32971133 PMCID: PMC8276277 DOI: 10.1016/j.jneumeth.2020.108950] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Transcranial magnetic stimulation (TMS)-induced silent periods provide an in vivo measure of human motor cortical inhibitory function. Cortical silent periods (cSP, also sometimes referred to as contralateral silent periods) and ipsilateral silent periods (iSP) may change with advancing age and disease and can provide insight into cortical control of the motor system. The majority of past silent period work has implemented largely varying methodology, sometimes including subjective analyses and incomplete methods descriptions. This limits reproducibility of silent period work and hampers comparisons of silent period measures across studies. Here, we discuss methodological differences in past silent period work, highlighting how these choices affect silent period outcome measures. We also outline challenges and possible solutions for measuring silent periods in the unique case of the lower limbs. Finally, we provide comprehensive recommendations for collection, analysis, and reporting of future silent period studies.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C W Swanson
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - B W Fling
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Stampanoni Bassi M, Buttari F, Gilio L, De Paolis N, Fresegna D, Centonze D, Iezzi E. Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Perspective. Front Neurol 2020; 11:566. [PMID: 32733354 PMCID: PMC7358546 DOI: 10.3389/fneur.2020.00566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been employed in multiple sclerosis (MS) to assess the integrity of the corticospinal tract and the corpus callosum and to explore some physiological properties of the motor cortex. Specific alterations of TMS measures have been strongly associated to different pathophysiological mechanisms, particularly to demyelination and neuronal loss. Moreover, TMS has contributed to investigate the neurophysiological basis of MS symptoms, particularly those not completely explained by conventional structural damage, such as fatigue. However, variability existing between studies suggests that alternative mechanisms should be involved. Knowledge of MS pathophysiology has been enriched by experimental studies in animal models (i.e., experimental autoimmune encephalomyelitis) demonstrating that inflammation alters synaptic transmission, promoting hyperexcitability and neuronal damage. Accordingly, TMS studies have demonstrated an imbalance between cortical excitation and inhibition in MS. In particular, cerebrospinal fluid concentrations of different proinflammatory and anti-inflammatory molecules have been associated to corticospinal hyperexcitability, highlighting that inflammatory synaptopathy may represent a key pathophysiological mechanism in MS. In this perspective article, we discuss whether corticospinal excitability alterations assessed with TMS in MS patients could be useful to explain the pathophysiological correlates and their relationships with specific MS clinical characteristics and symptoms. Furthermore, we discuss evidence indicating that, in MS patients, inflammatory synaptopathy could be present since the early phases, could specifically characterize relapses, and could progressively increase during the disease course.
Collapse
Affiliation(s)
| | - Fabio Buttari
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Luana Gilio
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Nicla De Paolis
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
20
|
Abstract
The corpus callosum is an important neural structure for controlling and coordinating bilateral movements of the upper limbs; however, there remains a substantial lack of knowledge regarding its association with lower limb control. We argue that transcallosal structure is an integral neural mechanism underlying control of the lower limbs and callosal degradation is a key contributor to mobility declines.
Collapse
Affiliation(s)
| | - Brett W Fling
- Department of Health and Exercise Science.,Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
21
|
Stampanoni Bassi M, Buttari F, Maffei P, De Paolis N, Sancesario A, Gilio L, Pavone L, Pasqua G, Simonelli I, Sica F, Fantozzi R, Bellantonio P, Centonze D, Iezzi E. Practice-dependent motor cortex plasticity is reduced in non-disabled multiple sclerosis patients. Clin Neurophysiol 2019; 131:566-573. [PMID: 31818686 DOI: 10.1016/j.clinph.2019.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/19/2019] [Accepted: 10/16/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Skill acquisition after motor training involves synaptic long-term potentiation (LTP) in primary motor cortex (M1). In multiple sclerosis (MS), LTP failure ensuing from neuroinflammation could contribute to worsen clinical recovery. We therefore addressed whether practice-dependent plasticity is altered in MS. METHODS Eighteen relapsing-remitting (RR)-MS patients and eighteen healthy controls performed 600 fast abductions of index finger in 30 blocks of 20 movements. Before and after practice, transcranial magnetic stimulation (TMS) was delivered over the hot spot of the trained first dorsal interosseous muscle. Movements kinematics, measures of cortical excitability, and the input/output curves of motor evoked potentials (MEPs) were assessed. RESULTS Kinematic variables of movement improved with practice in patients and controls to a similar extent, although patients showed lower MEPs amplitude increase after practice. Practice did not change the difference in resting motor threshold values observed between patients and controls, nor did modulate short-interval intracortical inhibition. Clinical/radiological characteristics were not associated to practice-dependent effects. CONCLUSIONS Practice-induced reorganization of M1 is altered in non-disabled RR-MS patients, as shown by impaired MEPs modulation after motor learning. SIGNIFICANCE These findings suggest that in RR-MS physiological mechanisms of practice-dependent plasticity are altered.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Pierpaolo Maffei
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Nicla De Paolis
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Andrea Sancesario
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Luigi Pavone
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Gabriele Pasqua
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Ilaria Simonelli
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Service of Medical Statistics & Information Technology, Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Lungotevere de' Cenci 5, 00186 Rome, Italy
| | - Francesco Sica
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Paolo Bellantonio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy.
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| |
Collapse
|
22
|
Snow NJ, Wadden KP, Chaves AR, Ploughman M. Transcranial Magnetic Stimulation as a Potential Biomarker in Multiple Sclerosis: A Systematic Review with Recommendations for Future Research. Neural Plast 2019; 2019:6430596. [PMID: 31636661 PMCID: PMC6766108 DOI: 10.1155/2019/6430596] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Disease progression is variable and unpredictable, warranting the development of biomarkers of disease status. Transcranial magnetic stimulation (TMS) is a noninvasive method used to study the human motor system, which has shown potential in MS research. However, few reviews have summarized the use of TMS combined with clinical measures of MS and no work has comprehensively assessed study quality. This review explored the viability of TMS as a biomarker in studies of MS examining disease severity, cognitive impairment, motor impairment, or fatigue. Methodological quality and risk of bias were evaluated in studies meeting selection criteria. After screening 1603 records, 30 were included for review. All studies showed high risk of bias, attributed largely to issues surrounding sample size justification, experimenter blinding, and failure to account for key potential confounding variables. Central motor conduction time and motor-evoked potentials were the most commonly used TMS techniques and showed relationships with disease severity, motor impairment, and fatigue. Short-latency afferent inhibition was the only outcome related to cognitive impairment. Although there is insufficient evidence for TMS in clinical assessments of MS, this review serves as a template to inform future research.
Collapse
Affiliation(s)
- Nicholas J. Snow
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katie P. Wadden
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Arthur R. Chaves
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
23
|
Bonzano L, Pedullà L, Tacchino A, Brichetto G, Battaglia MA, Mancardi GL, Bove M. Upper limb motor training based on task-oriented exercises induces functional brain reorganization in patients with multiple sclerosis. Neuroscience 2019; 410:150-159. [DOI: 10.1016/j.neuroscience.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
|
24
|
Barghi A, Allendorfer JB, Taub E, Womble B, Hicks JM, Uswatte G, Szaflarski JP, Mark VW. Phase II Randomized Controlled Trial of Constraint-Induced Movement Therapy in Multiple Sclerosis. Part 2: Effect on White Matter Integrity. Neurorehabil Neural Repair 2019; 32:233-241. [PMID: 29668401 DOI: 10.1177/1545968317753073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Constraint-induced movement therapy (CIMT) is a method of physical rehabilitation that has demonstrated clinical efficacy in patients with chronic stroke, cerebral palsy, and multiple sclerosis (MS). OBJECTIVE This pilot randomized controlled trial tested whether CIMT can also induce increases in white matter integrity in patients with MS. METHODS Twenty adults with chronic hemiparetic MS were randomized to receive either CIMT or complementary and alternative medicine (CAM) treatment (reported in the first article of this pair). Structural white matter change was assessed by tract-based spatial statistics (TBSS); measures included fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). RESULTS CIMT and CAM groups did not differ in pretreatment disability or expectancy to benefit. As noted in the companion paper, the motor activity log (MAL) improved more after CIMT than CAM ( P < .001); the within-group effect size for CIMT was 3.7 (large d' = 0.57), while for CAM it was just 0.7. Improvements in white matter integrity followed CIMT and were observed in the contralateral corpus callosum (FA, P < .05), ipsilateral superior occipital gyrus (AD, P < .05), ipsilateral superior temporal gyrus (FA, P < .05), and contralateral corticospinal tract (MD and RD, P < .05). CONCLUSION CIMT produced a very large improvement in real-world limb use and induced white matter changes in patients with hemiparetic MS when compared with CAM. The findings suggest in preliminary fashion that the adverse changes in white matter integrity induced by MS might be reversed by CIMT. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT01081275).
Collapse
Affiliation(s)
| | | | - Edward Taub
- 2 University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent Womble
- 2 University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod M Hicks
- 2 University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Victor W Mark
- 2 University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Maudrich T, Kenville R, Lepsien J, Villringer A, Ragert P. Structural Neural Correlates of Physiological Mirror Activity During Isometric Contractions of Non-Dominant Hand Muscles. Sci Rep 2018; 8:9178. [PMID: 29907835 PMCID: PMC6003937 DOI: 10.1038/s41598-018-27471-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Mirror Activity (MA) describes involuntarily occurring muscular activity in contralateral homologous limbs during unilateral movements. This phenomenon has not only been reported in patients with neurological disorders (i.e. Mirror Movements) but has also been observed in healthy adults referred to as physiological Mirror Activity (pMA). However, despite recent hypotheses, the underlying neural mechanisms and structural correlates of pMA still remain insufficiently described. We investigated the structural correlates of pMA during isometric contractions of hand muscles with increasing force demands on a whole-brain level by means of voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). We found significant negative correlations between individual tendencies to display pMA and grey matter volume (GMV) in the right anterior cingulate cortex (ACC) as well as fractional anisotropy (FA) of white matter (WM) tracts of left precuneus (PrC) during left (non-dominant) hand contractions. No significant structural associations for contractions of the right hand were found. Here we extend previously reported functional associations between ACC/PrC and the inhibtion of intrinsically favoured mirror-symmetrical movement tendencies to an underlying structural level. We provide novel evidence that the individual structural state of higher order motor/executive areas upstream of primary/secondary motor areas might contribute to the phenomen of pMA.
Collapse
Affiliation(s)
- Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Jöran Lepsien
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.,Clinic for Cognitive Neurology, University of Leipzig, Leipzig, 04103, Germany.,Berlin School of Mind and Brain, Mind and Brain Institute, Berlin, 10099, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.
| |
Collapse
|
26
|
Prunas C, Delvecchio G, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Diffusion imaging study of the Corpus Callosum in bipolar disorder. Psychiatry Res Neuroimaging 2018; 271:75-81. [PMID: 29129544 DOI: 10.1016/j.pscychresns.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/28/2023]
Abstract
Structural and diffusion imaging studies have provided some evidence of abnormal organization of Corpus Callosum (CC) in Bipolar Disorder (BD). Therefore, by using Diffusion Weighted Imaging (DWI), which allows to build subtle prediction models of fiber integrity for white matter (WM) tracts, this study aims to further explore the microstructure integrity of CC in BD patients compared to matched healthy controls. Twenty-four chronic patients with BD and 35 healthy controls were included in the study. Circular regions of interest were placed, on diffusion images, in the left and right side of callosal regions (i.e. rostrum/genu, anterior body, posterior body, splenium) and the Apparent Diffusion Coefficient (ADC) was then calculated. Significantly increased ADC values were found in right anterior body and in right splenium in BD patients compared to healthy controls (all p < 0.05, Bonferroni corrected). In this study, we found abnormally increased ADC callosal values in BD suggesting microstructural anomalies specifically in the right hemisphere. Interestingly, this finding further supports the presence of an altered inter-hemispheric communication between frontal and temporo-parietal association areas in patients with BD, which may ultimately result in clinical symptoms and cognitive deficits.
Collapse
Affiliation(s)
- Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy; InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy
| | - Marco Barillari
- Section of Neurology, Department of Neurological and Movement Sciences, University Hospital of Verona, Verona, Italy
| | | | - A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marcella Bellani
- InterUniversity Centre for Behavioural Neurosciences, University of Verona, Verona, Italy; Section of Psychiatry, AOUI Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA.
| |
Collapse
|
27
|
Tacchino A, Saiote C, Brichetto G, Bommarito G, Roccatagliata L, Cordano C, Battaglia MA, Mancardi GL, Inglese M. Motor Imagery as a Function of Disease Severity in Multiple Sclerosis: An fMRI Study. Front Hum Neurosci 2018; 11:628. [PMID: 29375340 PMCID: PMC5768615 DOI: 10.3389/fnhum.2017.00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/08/2017] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) is defined as mental execution without any actual movement. While healthy adults usually show temporal equivalence, i.e., isochrony, between the mental simulation of an action and its actual performance, neurological disorders are associated with anisochrony. Unlike in patients with stroke and Parkinson disease, only a few studies have investigated differences of MI ability in multiple sclerosis (MS). However, the relationship among disease severity, anisochrony and brain activation patterns during MI has not been investigated yet. Here, we propose to investigate MI in MS patients using fMRI during a behavioral task executed with dominant/non-dominant hand and to evaluate whether anisochrony is associated with disease severity. Thirty-seven right-handed MS patients, 17 with clinically isolated syndrome (CIS) suggestive of MS and 20 with relapsing-remitting MS (RR-MS) and 20 right-handed healthy controls (HC) underwent fMRI during a motor task consisting in the actual or imaged movement of squeezing a foam ball with the dominant and non-dominant hand. The same tasks were performed outside the MRI room to record the number of actual and imagined ball squeezes, and calculate an Index of performance (IP) based on the ratio between actual and imagined movements. IP showed that a progressive loss of ability in simulating actions (i.e., anisochrony) more pronounced for non-dominant hand, was found as function of the disease course. Moreover, anisochrony was associated with activation of occipito-parieto-frontal areas that were more extensive at the early stages of the disease, probably in order to counteract the changes due to MS. However, the neural engagement of compensatory brain areas becomes more difficult with more challenging tasks, i.e., dominant vs. non-dominant hand, with a consequent deficit in behavioral performance. These results show a strict association between MI performance and disease severity, suggesting that, at early stages of the disease, anisochrony in MI could be considered as surrogate behavioral marker of MS severity.
Collapse
Affiliation(s)
- Andrea Tacchino
- Scientific Research Area, Italian MS Foundation (FISM), Genoa, Italy
| | - Catarina Saiote
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), IRCCS San Martino University Hospital and IST, Genoa, Italy.,Neuroradiology Department, IRCCS San Martino University Hospital and IST, Genoa, Italy
| | - Christian Cordano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Gian L Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
28
|
McGregor KM, Crosson B, Mammino K, Omar J, García PS, Nocera JR. Influences of 12-Week Physical Activity Interventions on TMS Measures of Cortical Network Inhibition and Upper Extremity Motor Performance in Older Adults-A Feasibility Study. Front Aging Neurosci 2018; 9:422. [PMID: 29354049 PMCID: PMC5758495 DOI: 10.3389/fnagi.2017.00422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Objective: Data from previous cross-sectional studies have shown that an increased level of physical fitness is associated with improved motor dexterity across the lifespan. In addition, physical fitness is positively associated with increased laterality of cortical function during unimanual tasks; indicating that sedentary aging is associated with a loss of interhemispheric inhibition affecting motor performance. The present study employed exercise interventions in previously sedentary older adults to compare motor dexterity and measure of interhemispheric inhibition using transcranial magnetic stimulation (TMS) after the interventions. Methods: Twenty-one community-dwelling, reportedly sedentary older adults were recruited, randomized and enrolled to a 12-week aerobic exercise group or a 12-week non-aerobic exercise balance condition. The aerobic condition was comprised of an interval-based cycling "spin" activity, while the non-aerobic "balance" exercise condition involved balance and stretching activities. Participants completed upper extremity dexterity batteries and estimates of VO2max in addition to undergoing single (ipsilateral silent period-iSP) and paired-pulse interhemispheric inhibition (ppIHI) in separate assessment sessions before and after study interventions. After each intervention during which heart rate was continuously recorded to measure exertion level (load), participants crossed over into the alternate arm of the study for an additional 12-week intervention period in an AB/BA design with no washout period. Results: After the interventions, regardless of intervention order, participants in the aerobic spin condition showed higher estimated VO2max levels after the 12-week intervention as compared to estimated VO2max in the non-aerobic balance intervention. After controlling for carryover effects due to the study design, participants in the spin condition showed longer iSP duration than the balance condition. Heart rate load was more strongly correlated with silent period duration after the Spin condition than estimated VO2. Conclusions: Aging-related changes in cortical inhibition may be influenced by 12-week physical activity interventions when assessed with the iSP. Although inhibitory signaling is mediates both ppIHI and iSP measures each TMS modality likely employs distinct inhibitory networks, potentially differentially affected by aging. Changes in inhibitory function after physical activity interventions may be associated with improved dexterity and motor control at least as evidence from this feasibility study show.
Collapse
Affiliation(s)
- Keith M. McGregor
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bruce Crosson
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin Mammino
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Javier Omar
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Paul S. García
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joe R. Nocera
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
29
|
Stampanoni Bassi M, Gilio L, Buttari F, Maffei P, Marfia GA, Restivo DA, Centonze D, Iezzi E. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach. Front Neurosci 2017; 11:710. [PMID: 29321723 PMCID: PMC5733539 DOI: 10.3389/fnins.2017.00710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Luana Gilio
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Pierpaolo Maffei
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Diego Centonze
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
30
|
Peterson DS, Fling BW. How changes in brain activity and connectivity are associated with motor performance in people with MS. Neuroimage Clin 2017; 17:153-162. [PMID: 29071209 PMCID: PMC5651557 DOI: 10.1016/j.nicl.2017.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
People with multiple sclerosis (MS) exhibit pronounced changes in brain structure, activity, and connectivity. While considerable work has begun to elucidate how these neural changes contribute to behavior, the heterogeneity of symptoms and diagnoses makes interpretation of findings and application to clinical practice challenging. In particular, whether MS related changes in brain activity or brain connectivity protect against or contribute to worsening motor symptoms is unclear. With the recent emergence of neuromodulatory techniques that can alter neural activity in specific brain regions, it is critical to establish whether localized brain activation patterns are contributing to (i.e. maladaptive) or protecting against (i.e. adaptive) progression of motor symptoms. In this manuscript, we consolidate recent findings regarding changes in supraspinal structure and activity in people with MS and how these changes may contribute to motor performance. Furthermore, we discuss a hypothesis suggesting that increased neural activity during movement may be either adaptive or maladaptive depending on where in the brain this increase is observed. Specifically, we outline preliminary evidence suggesting sensorimotor cortex activity in the ipsilateral cortices may be maladaptive in people with MS. We also discuss future work that could supply data to support or refute this hypothesis, thus improving our understanding of this important topic.
Collapse
Affiliation(s)
- Daniel S Peterson
- Arizona State University, Tempe, AZ, USA; Veterans Affairs Phoenix Medical Center Phoenix, AZ, USA.
| | | |
Collapse
|
31
|
Wood ET, Ercan E, Sati P, Cortese ICM, Ronen I, Reich DS. Longitudinal MR spectroscopy of neurodegeneration in multiple sclerosis with diffusion of the intra-axonal constituent N-acetylaspartate. Neuroimage Clin 2017; 15:780-788. [PMID: 28702353 PMCID: PMC5496488 DOI: 10.1016/j.nicl.2017.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is a pathologically complex CNS disease: inflammation, demyelination, and neuroaxonal degeneration occur concurrently and may depend on one another. Current therapies are aimed at the immune-mediated, inflammatory destruction of myelin, whereas axonal degeneration is ongoing and not specifically targeted. Diffusion-weighted magnetic resonance spectroscopy can measure the diffusivity of metabolites in vivo, such as the axonal/neuronal constituent N-acetylaspartate, allowing compartment-specific assessment of disease-related changes. Previously, we found significantly lower N-acetylaspartate diffusivity in people with MS compared to healthy controls (Wood et al., 2012) suggesting that this technique can measure axonal degeneration and could be useful in developing neuroprotective agents. In this longitudinal study, we found that N-acetylaspartate diffusivity decreased by 8.3% (p < 0.05) over 6 months in participants who were experiencing clinical or MRI evidence of inflammatory activity (n = 13), whereas there was no significant change in N-acetylaspartate diffusivity in the context of clinical and radiological stability (n = 6). As N-acetylaspartate diffusivity measurements are thought to more specifically reflect the intra-axonal space, these data suggest that N-acetylaspartate diffusivity can report on axonal health on the background of multiple pathological processes in MS, both cross-sectionally and longitudinally.
Collapse
Key Words
- Axonopathy
- DW-MRS, diffusion-weighted magnetic resonance spectroscopy
- Diffusion-weighted magnetic resonance spectroscopy
- EDSS, Expanded Disability Scale Score
- HV, healthy volunteer
- ICV, intracranial volume
- MS, multiple sclerosis
- Multiple sclerosis
- NAA, N-acetylaspartate
- PASAT, Paced Auditory Symbol Addition Test
- T, Tesla
- VOI, volume of interest
- WM, white matter
- White matter
Collapse
Affiliation(s)
- Emily Turner Wood
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ece Ercan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Irene C M Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Itamar Ronen
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Zijdewind I, Prak RF, Wolkorte R. Fatigue and Fatigability in Persons With Multiple Sclerosis. Exerc Sport Sci Rev 2016; 44:123-8. [DOI: 10.1249/jes.0000000000000088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness. NEUROIMAGE-CLINICAL 2016; 12:312-9. [PMID: 27547728 PMCID: PMC4983150 DOI: 10.1016/j.nicl.2016.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
Near infrared spectroscopy (NIRS) is a non-invasive technique which measures changes in brain tissue oxygenation. NIRS has been used for continuous monitoring of brain oxygenation during medical procedures carrying high risk of iatrogenic brain ischemia and also has been adopted by cognitive neuroscience for studies on executive and cognitive functions. Until now, NIRS has not been used to detect residual cognitive functions in patients with prolonged disorders of consciousness (pDOC). In this study we aimed to evaluate the brain function of patients with pDOC by using a motor imagery task while recording NIRS. We also collected data from a group of age and gender matched healthy controls while they carried out both real and imagined motor movements to command. We studied 16 pDOC patients in total, split into two groups: five had a diagnosis of Vegetative state/Unresponsive Wakefulness State, and eleven had a diagnosis of Minimally Conscious State. In the control subjects we found a greater oxy-haemoglobin (oxyHb) response during real movement compared with imagined movement. For the between group comparison, we found a main effect of hemisphere, with greater depression of oxyHb signal in the right > left hemisphere compared with rest period for all three groups. A post-hoc analysis including only the two pDOC patient groups was also significant suggesting that this effect was not just being driven by the control subjects. This study demonstrates for the first time the feasibility of using NIRS for the assessment of brain function in pDOC patients using a motor imagery task.
Collapse
Key Words
- (Prolonged) disorders of consciousness
- Brain function assessment in disorders of consciousness
- Functional near infrared spectroscopy
- M1, primary motor cortex
- MCS, minimally conscious state
- MI, motor imagery
- MM, motor movement
- SMA, supplementary motor area
- SMART, Sensory Modality Assessment for Rehabilitation Technique
- UWS, unresponsive wakefulness state
- VS, vegetative state
- fNIRS, functional near infrared spectroscopy
- pDOC, prolonged disorders of consciousness
Collapse
|
34
|
Gueugneau N, Bove M, Ballay Y, Papaxanthis C. Interhemispheric inhibition is dynamically regulated during action observation. Cortex 2016; 78:138-149. [DOI: 10.1016/j.cortex.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
|
35
|
Cabib C, Llufriu S, Martinez-Heras E, Saiz A, Valls-Solé J. Enhanced mirror activity in ‘crossed’ reaction time tasks in multiple sclerosis. Clin Neurophysiol 2016; 127:2001-9. [DOI: 10.1016/j.clinph.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
36
|
Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity. Brain Imaging Behav 2016; 9:245-54. [PMID: 24788334 DOI: 10.1007/s11682-014-9302-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.
Collapse
|
37
|
Alterations in Functional and Structural Connectivity in Pediatric-Onset Multiple Sclerosis. PLoS One 2016; 11:e0145906. [PMID: 26731278 PMCID: PMC4701472 DOI: 10.1371/journal.pone.0145906] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background Reduced white matter (WM) integrity is a fundamental aspect of pediatric multiple sclerosis (MS), though relations to resting-state functional MRI (fMRI) connectivity remain unknown. The objective of this study was to relate diffusion-tensor imaging (DTI) measures of WM microstructural integrity to resting-state network (RSN) functional connectivity in pediatric-onset MS to test the hypothesis that abnormalities in RSN reflects changes in structural integrity. Methods This study enrolled 19 patients with pediatric-onset MS (mean age = 19, range 13–24 years, 14 female, mean disease duration = 65 months, mean age of disease onset = 13 years) and 16 age- and sex-matched healthy controls (HC). All subjects underwent 3.0T anatomical and functional MRI which included DTI and resting-state acquisitions. DTI processing was performed using Tract-Based Spatial Statistics (TBSS). RSNs were identified using Independent Components Analysis, and a dual regression technique was used to detect between-group differences in the functional connectivity of RSNs. Correlations were investigated between DTI measures and RSN connectivity. Results Lower fractional anisotropy (FA) was observed in the pediatric-onset MS group compared to HC group within the entire WM skeleton, and particularly the corpus callosum, posterior thalamic radiation, corona radiata and sagittal stratum (all p < .01, corrected). Relative to HCs, MS patients showed higher functional connectivity involving the anterior cingulate cortex and right precuneus of the default-mode network, as well as involving the anterior cingulate cortex and left middle frontal gyrus of the frontoparietal network (all p < .005 uncorrected, k≥30 voxels). Higher functional connectivity of the right precuneus within the default-mode network was associated with lower FA of the entire WM skeleton (r = -.525, p = .02), genu of the corpus callosum (r = -.553, p = .014), and left (r = -.467, p = .044) and right (r = -.615, p = .005) sagittal stratum. Conclusions Loss of WM microstructural integrity is associated with increased resting-state functional connectivity in pediatric MS, which may reflect a diffuse and potentially compensatory activation early in MS.
Collapse
|
38
|
Fan YT, Lin KC, Liu HL, Chen YL, Wu CY. Changes in structural integrity are correlated with motor and functional recovery after post-stroke rehabilitation. Restor Neurol Neurosci 2015; 33:835-44. [DOI: 10.3233/rnn-150523] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yang-teng Fan
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keh-chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Ho-ling Liu
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-liang Chen
- MRI Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
39
|
Pantano P, Petsas N, Tona F, Sbardella E. The Role of fMRI to Assess Plasticity of the Motor System in MS. Front Neurol 2015; 6:55. [PMID: 25852634 PMCID: PMC4360702 DOI: 10.3389/fneur.2015.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/27/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Patrizia Pantano
- Department of Neurology and Psychiatry, Sapienza University of Rome , Rome , Italy ; IRCCS Neuromed , Pozzilli , Italy
| | - Nikolaos Petsas
- Department of Neurology and Psychiatry, Sapienza University of Rome , Rome , Italy
| | - Francesca Tona
- Department of Neurology and Psychiatry, Sapienza University of Rome , Rome , Italy
| | - Emilia Sbardella
- Department of Neurology and Psychiatry, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
40
|
Brown KE, Neva JL, Ledwell NM, Boyd LA. Use of transcranial magnetic stimulation in the treatment of selected movement disorders. Degener Neurol Neuromuscul Dis 2014; 4:133-151. [PMID: 32669907 PMCID: PMC7337234 DOI: 10.2147/dnnd.s70079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the underlying neurophysiology associated with various neuropathologies, and is a unique tool for establishing potential neural mechanisms responsible for disease progression. Recently, repetitive TMS (rTMS) has been advanced as a potential therapeutic technique to treat selected neurologic disorders. In healthy individuals, rTMS can induce changes in cortical excitability. Therefore, targeting specific cortical areas affected by movement disorders theoretically may alter symptomology. This review discusses the evidence for the efficacy of rTMS in Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. It is hoped that gaining a more thorough understanding of the timing and parameters of rTMS in individuals with neurodegenerative disorders may advance both clinical care and research into the most effective uses of this technology.
Collapse
Affiliation(s)
| | - Jason L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Lara A Boyd
- Graduate Program in Rehabilitation Science.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Kwon HG, Son SM, Jang SH. Development of the transcallosal motor fiber from the corticospinal tract in the human brain: diffusion tensor imaging study. Front Hum Neurosci 2014; 8:153. [PMID: 24672465 PMCID: PMC3957222 DOI: 10.3389/fnhum.2014.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/28/2014] [Indexed: 12/05/2022] Open
Abstract
Transcallosal motor fiber (TCMF) plays a role in interhemispheric inhibition (IHI) between two primary motor cortices. IHI has been an important concept in development of the motor system of the brain. Many studies have focused on the research of the topography of TCMF, however, little is known about development of TCMF. In the current study, we attempted to investigate development of TCMF from the corticospinal tract (CST) in the human brain using diffusion tensor tractography. A total of 76 healthy subjects were recruited for this study. We reconstructed the TCMF, which was derived from the CST, by selection of two regions of interest below the corpus callosum (upper and middle pons). Termination criteria used for fiber tracking were fractional anisotropy <0.2 and three tract turning angles of <45, 60, and 75°. The subjects were classified into four groups according to age: group A (0–5 years), group B (6–10 years), group C (11–15 years), and group D (16–20 years). Significant differences in the incidence of TCMF were observed between group B and group C, and between group B and group D, with tract turning angles of 60 and 75° (p < 0.05). However, no significant differences in any tract turning angle were observed between group C and group D (p > 0.05). In addition, in terms of the incidence of TCMF, no significant differences were observed between the three tract turning angles (p > 0.05). We obtained visualized TCMF from the CST with development and found that the incidence of TCMF differed significantly around the approximate age of 10 years. As a result, we demonstrated structural evidence for development of TCMF in the human brain.
Collapse
Affiliation(s)
- Hyeok Gyu Kwon
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| | - Su Min Son
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| |
Collapse
|
42
|
Zito G, Luders E, Tomasevic L, Lupoi D, Toga AW, Thompson PM, Rossini PM, Filippi MM, Tecchio F. Inter-hemispheric functional connectivity changes with corpus callosum morphology in multiple sclerosis. Neuroscience 2014; 266:47-55. [PMID: 24486438 DOI: 10.1016/j.neuroscience.2014.01.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) affects myelin sheaths within the central nervous system, concurring to cause brain atrophy and neurodegeneration as well as gradual functional disconnections. To explore early signs of altered connectivity in MS from a structural and functional perspective, the morphology of corpus callosum (CC) was correlated with a dynamic inter-hemispheric connectivity index. Twenty mildly disabled patients affected by a relapsing-remitting (RR) form of MS (EDSS⩽3.5) and 15 healthy subjects underwent structural MRI to measure CC thickness over 100 sections and electroencephalography to assess a spectral coherence index between primary regions devoted to hand control, at rest and during an isometric handgrip. In patients, an overall CC atrophy was associated with increased lesion load. A less efficacious inter-hemispheric coherence (IHCoh) during movement was associated with CC atrophy in sections interconnecting homologous primary motor areas (anterior mid-body). In healthy controls, less efficacious IHCoh at rest was associated with a thinner CC splenium. Our data suggest that in mildly disabled RR-MS patients a covert impairment may be detected in the correlation between the structural (CC thickness) and functional (IHCoh) measures of homologous networks, whereas these two counterparts do not yet differ individually from controls.
Collapse
Affiliation(s)
- G Zito
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), ISTC, Consiglio Nazionale delle Ricerche, 'S. Giovanni Calibita' Fatebenefratelli Hospital, Rome I-00186, Italy; Department of Clinical Neuroscience, AFaR, 'San Giovanni Calibita' Fatebenefratelli Hospital, Rome I-00186, Italy.
| | - E Luders
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-7334, USA
| | - L Tomasevic
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), ISTC, Consiglio Nazionale delle Ricerche, 'S. Giovanni Calibita' Fatebenefratelli Hospital, Rome I-00186, Italy; Department of Clinical Neuroscience, AFaR, 'San Giovanni Calibita' Fatebenefratelli Hospital, Rome I-00186, Italy
| | - D Lupoi
- Department of Clinical Neuroscience, AFaR, 'San Giovanni Calibita' Fatebenefratelli Hospital, Rome I-00186, Italy
| | - A W Toga
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-7334, USA
| | - P M Thompson
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-7334, USA
| | - P M Rossini
- Department of Imaging, IRCCS San Raffale Pisana, Rome I-00163, Italy; Institute of Neurology, Università Cattolica del Sacro Cuore, Rome I-00168, Italy
| | - M M Filippi
- Department of Clinical Neuroscience, AFaR, 'San Giovanni Calibita' Fatebenefratelli Hospital, Rome I-00186, Italy
| | - F Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), ISTC, Consiglio Nazionale delle Ricerche, 'S. Giovanni Calibita' Fatebenefratelli Hospital, Rome I-00186, Italy; Department of Imaging, IRCCS San Raffale Pisana, Rome I-00163, Italy
| |
Collapse
|
43
|
Abstract
The availability of new treatments able to modify the natural course of multiple sclerosis (MS) has generated interest in paraclinical measures to monitor disease evolution. Among these, neurophysiologic measures, mainly evoked potentials (EPs), are used in the functional assessment of central sensorimotor and cognitive networks affected by MS. EP abnormalities may reveal subclinical lesions, objectivate the involvement of sensory and motor pathways in the presence of vague disturbances, and provide indications of the demyelinating nature of the disease process. However, their diagnostic value is much lower than that of magnetic resonance imaging, and is more sensitive to brain and cervical spinal cord lesions. The application of EPs in assessing disease severity and monitoring the evolution of nervous damage is more promising, thanks to their good correlation with disability in cross-sectional and longitudinal studies, and potential use as paraclinical endpoints in clinical trials. Recent evidence indicates that EPs performed early in the disease may help to predict a worse future progression in the long term. If confirmed, these data suggest the possible usefulness of EPs in the early identification of patients who are more likely to develop future disability, thus requiring more frequent monitoring or being potential candidates for more aggressive disease-modifying treatments.
Collapse
Affiliation(s)
- Letizia Leocani
- Department of Neurology, Clinical Neurophysiology and Neurorehabilitation, University Hospital San Raffaele, Milan, Italy.
| | - Giancarlo Comi
- Department of Neurology, Clinical Neurophysiology and Neurorehabilitation, University Hospital San Raffaele, Milan, Italy
| |
Collapse
|
44
|
Bonzano L, Tacchino A, Brichetto G, Roccatagliata L, Dessypris A, Feraco P, Lopes De Carvalho ML, Battaglia MA, Mancardi GL, Bove M. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. Neuroimage 2013; 90:107-16. [PMID: 24370819 DOI: 10.1016/j.neuroimage.2013.12.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/09/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022] Open
Abstract
Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 ± 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p=0.033 and p=0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p=0.004 and p=0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p=0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process. All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches.
Collapse
Affiliation(s)
- Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa, Genoa, Italy.
| | - Andrea Tacchino
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Luca Roccatagliata
- Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa, Genoa, Italy; Department of Health Sciences, Biostatistics Unit, University of Genoa, Genoa, Italy
| | - Adriano Dessypris
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Paola Feraco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Mario A Battaglia
- Department of Physiopathology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| | - Giovanni L Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Magnetic Resonance Research Centre on Nervous System Diseases, University of Genoa, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy.
| |
Collapse
|
45
|
McGregor KM, Nocera JR, Sudhyadhom A, Patten C, Manini TM, Kleim JA, Crosson B, Butler AJ. Effects of aerobic fitness on aging-related changes of interhemispheric inhibition and motor performance. Front Aging Neurosci 2013; 5:66. [PMID: 24198784 PMCID: PMC3812779 DOI: 10.3389/fnagi.2013.00066] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022] Open
Abstract
Physical fitness has been long associated with maintenance and improvement of motor performance as we age. In particular, measures of psychomotor speed and motor dexterity tend to be higher in physically fit aging adults as compared to their sedentary counterparts. Using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS), we explored the patterns of neural activity that may, in part, account for differences between individuals of varying physical fitness levels. In this study, we enrolled both sedentary and physically fit middle age (40–60) and younger (18–30) adults and measured upper extremity motor performance during behavioral testing. In a follow-up session, we employed TMS and fMRI to assess levels of interhemispheric communication during unimanual tasks. Results show that increased physical fitness is associated with better upper extremity motor performance on distal dexterity assessments and increased levels of interhemispheric inhibition in middle age adults. Further, the functional correlates of changes of ipsilateral activity appears to be restricted to the aging process as younger adults of varying fitness levels do not differ in hemispheric patterns of activity or motor performance. We conclude that sedentary aging confers a loss of interhemispheric inhibition that is deleterious to some aspects of motor function, as early as midlife, but these changes can be mediated by chronic engagement in aerobic exercise.
Collapse
Affiliation(s)
- Keith M McGregor
- Center for Visual and Neurocognitive Rehabilitation, U.S. Department of Veterans Affairs , Decatur, GA , USA ; Department of Neurology, Emory University , Atlanta, GA , USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci 2013; 7:397. [PMID: 23908616 PMCID: PMC3725409 DOI: 10.3389/fnhum.2013.00397] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/07/2013] [Indexed: 12/24/2022] Open
Abstract
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the “cross activation” variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, “bilateral access” models entail that motor engrams formed during unilateral practice, may subsequently be utilized bilaterally—that is, by the neural circuitry that constitutes the control centers for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesize and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context.
Collapse
Affiliation(s)
- Kathy L Ruddy
- School of Psychology, Queen's University Belfast Belfast, UK ; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland
| | | |
Collapse
|
47
|
Petsas N, Tinelli E, Lenzi D, Tomassini V, Sbardella E, Tona F, Raz E, Nucciarelli V, Pozzilli C, Pantano P. Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis. PLoS One 2013; 8:e65315. [PMID: 23799005 PMCID: PMC3682993 DOI: 10.1371/journal.pone.0065315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Examination of sensorimotor activation alone in multiple sclerosis (MS) patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation). Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients. METHODS 13 relapsing remitting-MS patients (RRMS), 18 secondary progressive-MS patients (SPMS) and 15 healthy controls (HC) underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV) from both T1- and T2-weighted images. RESULTS Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HC<RRMS<SPMS). Significant deactivation of the ipsilateral cortical sensorimotor areas was reduced in both patient groups with respect to HC. Deactivation of posterior cortical areas belonging to the default mode network (DMN), was increased in RRMS, but not in SPMS, with respect to HC. The amount of activation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV. CONCLUSION In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher level of disconnection.
Collapse
Affiliation(s)
- Nikolaos Petsas
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yusuf A, Koski L. A qualitative review of the neurophysiological underpinnings of fatigue in multiple sclerosis. J Neurol Sci 2013; 330:4-9. [PMID: 23651867 DOI: 10.1016/j.jns.2013.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022]
Abstract
Fatigue is debilitating in multiple sclerosis (MS) and may have multiple causes. Recent investigations into objectively measurable correlates of fatigue have used transcranial magnetic stimulation (TMS) to examine a range of neurophysiological measures of neural excitability that may be altered in patients with MS. This qualitative review was conducted to test the hypothesis that changes in neural excitability are a contributing factor in MS-related fatigue. A search of the English language literature led to the compilation and synthesis of original research papers in which various aspects of neural excitability and neural transmission were measured using TMS in patients with MS. The resulting papers were classified into three categories of study relevant to fatigue: abnormalities in excitability and their correlation with self-reported fatigue; effects of exercise-induced fatigue on neural excitability; and effects of fatigue medications on neural excitability. Evidence of an association between fatigue and intracortical inhibition is both limited and conflicting, and no evidence suggests associations of fatigue with corticomotor excitability or neuronal conduction. Pharmacologically-induced changes in fatigue were found to correlate with changes in intracortical excitability. No conclusions could be drawn regarding neural excitability and exercise-induced fatigue, due to variability in study populations, outcome measures, and exercise protocols across different studies. Suggestions for future studies in this area are proposed with a view to identifying potentially modifiable factors contributing to fatigue in MS.
Collapse
Affiliation(s)
- Afiqah Yusuf
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 1A1, Canada.
| | | |
Collapse
|
49
|
Investigating the role of the corpus callosum in regulating motor overflow in multiple sclerosis. J Neurol 2013; 260:1997-2004. [DOI: 10.1007/s00415-013-6914-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022]
|
50
|
DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications. Mult Scler Int 2013; 2013:671730. [PMID: 23606965 PMCID: PMC3628664 DOI: 10.1155/2013/671730] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/20/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
Diffusion tensor imaging (DTI) is an effective means of quantifying parameters of demyelination and axonal loss. The application of DTI in Multiple Sclerosis (MS) has yielded noteworthy results. DTI abnormalities, which are already detectable in patients with clinically isolated syndrome (CIS), become more pronounced as disease duration and neurological impairment increase. The assessment of the microstructural alterations of white and grey matter in MS may shed light on mechanisms responsible for irreversible disability accumulation. In this paper, we examine the DTI analysis methods, the results obtained in the various tissues of the central nervous system, and correlations with clinical features and other MRI parameters. The adoption of DTI metrics to assess the outcome of prognostic measures may represent an extremely important step forward in the MS research field.
Collapse
|