1
|
Gimbel BA, Wozniak JR, Mueller BA, Tuominen KA, Ernst AM, Anthony ME, de Water E, Roediger DJ. Regional hippocampal thinning and gyrification abnormalities and associated cognition in children with prenatal alcohol exposure. J Neurodev Disord 2025; 17:5. [PMID: 39910445 DOI: 10.1186/s11689-025-09595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) impacts hippocampal structure and function, contributing to deficits in memory and decision-making in affected individuals. Here, we evaluate hippocampal anomalies in children with PAE and an unexposed comparison group using advanced MRI methods that characterize hippocampal curvature and thickness. METHODS Participants, ages 8 to 16 years, included children with PAE (n = 48) and an unexposed comparison group (n = 46) who underwent a dysmorphology exam, neuropsychological assessment, and an MRI scan. Height, weight, head circumference, and dysmorphic facial features were evaluated. Of those with PAE, 4.2% had fetal alcohol syndrome (FAS), 22.9% had partial FAS, and 72.9% had alcohol-related neurodevelopmental disorder. Neuropsychological testing included measures of intelligence and memory functioning. T1-weighted anatomical data were processed with the Hippunfold pipeline, which "unfolds" the complex hippocampal structure onto a template surface and provides measures of thickness and gyrification/curvature at each vertex. Permutation Analysis of Linear Models (PALM) was used to test for group differences (PAE vs. comparison) in hippocampal thickness and gyrification at each vertex and also to assess correlations with cognitive functioning. RESULTS There were significant regional differences in thickness and gyrification across bilateral hippocampi, with the PAE group showing substantially thinner tissue and less curvature than the comparison group, especially in CA1 and subiculum regions. For those with PAE, thinner subicular tissue (bilateral) was associated with lower IQ. Also in the PAE group, lower episodic memory performance was associated with thinness in the right hippocampus, especially in the subiculum region. There were no significant regional hippocampal patterns that were associated with cognitive functioning for individuals in the unexposed comparison group. CONCLUSIONS We used a novel MRI method to evaluate hippocampal structure in children with PAE and an unexposed comparison group. The data suggest that PAE disrupts hippocampal development, impacting both the early-stage folding of the structure and its ultimate thickness. The data also demonstrate that these developmental anomalies have functional consequences in terms of core memory functions as well as global intellectual functioning in children with PAE.
Collapse
Affiliation(s)
- Blake A Gimbel
- Nationwide Children's Hospital, Columbus, USA
- The Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Gimbel BA, Roediger DJ, Anthony ME, Ernst AM, Tuominen KA, Mueller BA, de Water E, Rockhold MN, Wozniak JR. Normative modeling of brain MRI data identifies small subcortical volumes and associations with cognitive function in youth with fetal alcohol spectrum disorder (FASD). Neuroimage Clin 2024; 45:103722. [PMID: 39652996 PMCID: PMC11681830 DOI: 10.1016/j.nicl.2024.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
AIM To quantify regional subcortical brain volume anomalies in youth with fetal alcohol spectrum disorder (FASD), assess the relative sensitivity and specificity of abnormal volumes in FASD vs. a comparison group, and examine associations with cognitive function. METHOD Participants: 47 children with FASD and 39 typically-developing comparison participants, ages 8-17 years, who completed physical evaluations, cognitive and behavioral testing, and an MRI brain scan. A large normative MRI dataset that controlled for sex, age, and intracranial volume was used to quantify the developmental status of 7 bilateral subcortical regional volumes. Z-scores were calculated based on volumetric differences from the normative sample. T-tests compared subcortical volumes across groups. Percentages of atypical volumes are reported as are sensitivity and specificity in discriminating groups. Lastly, Pearson correlations examined the relationships between subcortical volumes and neurocognitive performance. RESULTS Participants with FASD demonstrated lower mean volumes across a majority of subcortical regions relative to the comparison group with prominent group differences in the bilateral hippocampi and bilateral caudate. More individuals with FASD (89%) had one or more abnormally small volume compared to 72% of the comparison group. The bilateral hippocampi, bilateral putamen, and right pallidum were most sensitive in discriminating those with FASD from the comparison group. Exploratory analyses revealed associations between subcortical volumes and cognitive functioning that differed across groups. CONCLUSION In this sample, youth with FASD had a greater number of atypically small subcortical volumes than individuals without FASD. Findings suggest MRI may have utility in identifying individuals with structural brain anomalies resulting from PAE.
Collapse
Affiliation(s)
- Blake A Gimbel
- The Ohio State University and Nationwide Children's Hospital, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Akison LK, Hayes N, Vanderpeet C, Logan J, Munn Z, Middleton P, Moritz KM, Reid N. Prenatal alcohol exposure and associations with physical size, dysmorphology and neurodevelopment: a systematic review and meta-analysis. BMC Med 2024; 22:467. [PMID: 39407296 PMCID: PMC11477020 DOI: 10.1186/s12916-024-03656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is a significant public health concern, yet there is no internationally agreed set of diagnostic criteria or summary of underlying evidence to inform diagnostic decision-making. This systematic review assesses associations of prenatal alcohol exposure (PAE) and outcomes of diagnostic assessments, providing an evidence base for the improvement of FASD diagnostic criteria. METHODS Six databases were searched (inception-February 2023). Case-controls or cohort studies examining associations between participants with/without PAE or a FASD diagnosis and the domains of physical size, dysmorphology, functional neurodevelopment and/or brain structure/neurology were included. Excluded studies were non-empirical, sample size < 10, PAE determined via biological markers only, or no suitable comparison group. Summary data were extracted and associations between outcomes and standardised levels of PAE or FASD diagnosis determined using random-effects meta-analyses. Certainty of the evidence was assessed using GRADE. RESULTS Of the 306 included studies, 106 reported physical size, 43 dysmorphology, 195 functional neurodevelopment and 110 structural/neurological outcomes, with 292 different outcomes examined. There was a dose-response relationship between PAE and head circumference, as well as measures of physical size, particularly at birth. There was also an association between higher PAE levels and characteristic sentinel facial dysmorphology, as well as many of the current functional neurodevelopmental outcomes considered during diagnosis. However, data were often lacking across the full range of exposures. There was a lack of evidence from studies examining PAE to support inclusion of non-sentinel dysmorphic features, social cognition, speech-sound impairments, neurological conditions, seizures, sensory processing or structural brain abnormalities (via clinical MRI) in diagnostic criteria. GRADE ratings ranged from very low to moderate certainty of evidence. CONCLUSIONS This comprehensive review provides guidance on which components are most useful to consider in the diagnostic criteria for FASD. It also highlights numerous gaps in the available evidence. Future well-designed pregnancy cohort studies should specifically focus on dose-response relationships between PAE and dysmorphology, neurodevelopment and brain structure/neurological outcomes. SYSTEMATIC REVIEW REGISTRATION PROSPERO: CRD42021230522.
Collapse
Affiliation(s)
- Lisa K Akison
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Nicole Hayes
- School of Early Childhood and Inclusive Education, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chelsea Vanderpeet
- Child Health Research Centre, The University of Queensland, South Brisbane, Brisbane, QLD, 4121, Australia
| | - Jayden Logan
- Child Health Research Centre, The University of Queensland, South Brisbane, Brisbane, QLD, 4121, Australia
| | - Zachary Munn
- Health Evidence Synthesis, Recommendations, and Impact (HESRI), School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Philippa Middleton
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natasha Reid
- Child Health Research Centre, The University of Queensland, South Brisbane, Brisbane, QLD, 4121, Australia.
| |
Collapse
|
4
|
Bischoff-Grethe A, Stoner SA, Riley EP, Moore EM. Subcortical volume in middle-aged adults with fetal alcohol spectrum disorders. Brain Commun 2024; 6:fcae273. [PMID: 39229493 PMCID: PMC11369821 DOI: 10.1093/braincomms/fcae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Studies of youth and young adults with prenatal alcohol exposure (PAE) have most consistently reported reduced volumes of the corpus callosum, cerebellum and subcortical structures. However, it is unknown whether this continues into middle adulthood or if individuals with PAE may experience premature volumetric decline with aging. Forty-eight individuals with fetal alcohol spectrum disorders (FASD) and 28 healthy comparison participants aged 30 to 65 participated in a 3T MRI session that resulted in usable T1-weighted and T2-weighted structural images. Primary analyses included volumetric measurements of the caudate, putamen, pallidum, cerebellum and corpus callosum using FreeSurfer software. Analyses were conducted examining both raw volumetric measurements and subcortical volumes adjusted for overall intracranial volume (ICV). Models tested for main effects of age, sex and group, as well as interactions of group with age and group with sex. We found the main effects for group; all regions were significantly smaller in participants with FASD for models using raw volumes (P's < 0.001) as well as for models using volumes adjusted for ICV (P's < 0.046). Although there were no significant interactions of group with age, females with FASD had smaller corpus callosum volumes relative to both healthy comparison females and males with FASD (P's < 0.001). As seen in children and adolescents, adults aged 30 to 65 with FASD showed reduced volumes of subcortical structures relative to healthy comparison adults, suggesting persistent impact of PAE. Moreover, the observed volumetric reduction of the corpus callosum in females with FASD could suggest more rapid degeneration, which may have implications for cognition as these individuals continue to age.
Collapse
Affiliation(s)
| | - Susan A Stoner
- Department of Psychiatry and Behavioral Sciences, Fetal Alcohol and Drug Unit, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | - Edward P Riley
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| | - Eileen M Moore
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| |
Collapse
|
5
|
Li H, Liu M, Zhang J, Liu S, Fang Z, Pan M, Sui X, Rang W, Xiao H, Jiang Y, Zheng Y, Ge X. The effect of preterm birth on thalamic development based on shape and structural covariance analysis. Neuroimage 2024; 297:120708. [PMID: 38950664 DOI: 10.1016/j.neuroimage.2024.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Acting as a central hub in regulating brain functions, the thalamus plays a pivotal role in controlling high-order brain functions. Considering the impact of preterm birth on infant brain development, traditional studies focused on the overall development of thalamus other than its subregions. In this study, we compared the volumetric growth and shape development of the thalamic hemispheres between the infants born preterm and full-term (Left volume: P = 0.027, Left normalized volume: P < 0.0001; Right volume: P = 0.070, Right normalized volume: P < 0.0001). The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus exhibit higher vulnerability to alterations induced by preterm birth. The structural covariance (SC) between the thickness of thalamus and insula in preterm infants (Left: corrected P = 0.0091, Right: corrected P = 0.0119) showed significant increase as compared to full-term controls. Current findings suggest that preterm birth affects the development of the thalamus and has differential effects on its subregions. The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus are more susceptible to the impacts of preterm birth.
Collapse
Affiliation(s)
- Hongzhuang Li
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Mengting Liu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
| | - Jianfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Shujuan Liu
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Zhicong Fang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Minmin Pan
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Xiaodan Sui
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Wei Rang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Hang Xiao
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yanyun Jiang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| |
Collapse
|
6
|
Yang Q, Chen G, Yang Z, Raviv TR, Gao Y. Fine hippocampal morphology analysis with a multi-dataset cross-sectional study on 2911 subjects. Neuroimage Clin 2024; 43:103620. [PMID: 38823250 PMCID: PMC11168486 DOI: 10.1016/j.nicl.2024.103620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
CA1 subfield and subiculum of the hippocampus contain a series of dentate bulges, which are also called hippocampus dentation (HD). There have been several studies demonstrating an association between HD and brain disorders. Such as the number of hippocampal dentation correlates with temporal lobe epilepsy. And epileptic hippocampus have a lower number of dentation compared to contralateral hippocampus. However, most studies rely on subjective assessment by manual searching and counting in HD areas, which is time-consuming and labor-intensive to process large amounts of samples. And to date, only one objective method for quantifying HD has been proposed. Therefore, to fill this gap, we developed an automated and objective method to quantify HD and explore its relationship with neurodegenerative diseases. In this work, we performed a fine-scale morphological characterization of HD in 2911 subjects from four different cohorts of ADNI, PPMI, HCP, and IXI to quantify and explore differences between them in MR T1w images. The results showed that the degree of right hippocampal dentation are lower in patients with Alzheimer's disease than samples in mild cognitive impairment or cognitively normal, whereas this change is not significant in Parkinson's disease progression. The innovation of this paper that we propose a quantitative, robust, and fully automated method. These methodological innovation and corresponding results delineated above constitute the significance and novelty of our study. What's more, the proposed method breaks through the limitations of manual labeling and is the first to quantitatively measure and compare HD in four different brain populations including thousands of subjects. These findings revealed new morphological patterns in the hippocampal dentation, which can help with subsequent fine-scale hippocampal morphology research.
Collapse
Affiliation(s)
- Qinzhu Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Guojing Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Zhi Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tammy Riklin Raviv
- The School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yi Gao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Boateng T, Beauchamp K, Torres F, Ruffaner-Hanson CD, Pinner JFL, Vakamudi K, Cerros C, Hill DE, Stephen JM. Brain structural differences in children with fetal alcohol spectrum disorder and its subtypes. Front Neurosci 2023; 17:1152038. [PMID: 37621716 PMCID: PMC10445146 DOI: 10.3389/fnins.2023.1152038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction The teratogenic effects of prenatal alcohol exposure (PAE) have been examined in animal models and humans. The current study extends the prior literature by quantifying differences in brain structure for individuals with a fetal alcohol spectrum disorder (FASD) compared to typically developing controls, as well as examining FASD subtypes. We hypothesized the FASD group would reveal smaller brain volume, reduced cortical thickness, and reduced surface area compared to controls, with the partial fetal alcohol syndrome (pFAS)/fetal alcohol syndrome (FAS) subtypes showing the largest effects and the PAE/alcohol-related neurodevelopmental disorder (ARND) subtype revealing intermediate effects. Methods The sample consisted of 123 children and adolescents recruited from a single site including children with a diagnosis of FASD/PAE (26 males, 29 females) and controls (34 males, 34 females). Structural T1-weighted MRI scans were obtained on a 3T Trio TIM scanner and FreeSurfer v7.2 was used to quantify brain volume, cortical thickness, and surface area. Analyses examined effects by subgroup: pFAS/FAS (N = 32, Mage = 10.7 years, SEage = 0.79), PAE/ARND (N = 23, Mage = 10.8, SEage = 0.94), and controls (N = 68, Mage = 11.1, SEage = 0.54). Results Total brain volume in children with an FASD was smaller relative to controls, but subtype analysis revealed only the pFAS/FAS group differed significantly from controls. Regional analyses similarly revealed reduced brain volume in frontal and temporal regions for children with pFAS/FAS, yet children diagnosed with PAE/ARND generally had similar volumes as controls. Notable differences to this pattern occurred in the cerebellum, caudate, and pallidum where children with pFAS/FAS and PAE/ARND revealed lower volume relative to controls. In the subset of participants who had neuropsychological testing, correlations between volume and IQ scores were observed. Goodness-of-Fit analysis by age revealed differences in developmental patterns (linear vs. quadratic) between groups in some cases. Discussion This study confirmed prior results indicating decreased brain volume in children with an FASD and extended the results by demonstrating differential effects by structure for FASD subtypes. It provides further evidence for a complex role of PAE in structural brain development that is likely related to the cognitive and behavioral effects experienced by children with an FASD.
Collapse
Affiliation(s)
- Theresah Boateng
- Department of Special Education, The University of New Mexico, Albuquerque, NM, United States
| | - Kathryn Beauchamp
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Faerl Torres
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Chaselyn D. Ruffaner-Hanson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - John F. L. Pinner
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Kishore Vakamudi
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Dina E. Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Julia M. Stephen
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| |
Collapse
|
8
|
Boots A, Wiegersma AM, Vali Y, van den Hof M, Langendam MW, Limpens J, Backhouse EV, Shenkin SD, Wardlaw JM, Roseboom TJ, de Rooij SR. Shaping the risk for late-life neurodegenerative disease: A systematic review on prenatal risk factors for Alzheimer's disease-related volumetric brain biomarkers. Neurosci Biobehav Rev 2023; 146:105019. [PMID: 36608918 DOI: 10.1016/j.neubiorev.2022.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Environmental exposures including toxins and nutrition may hamper the developing brain in utero, limiting the brain's reserve capacity and increasing the risk for Alzheimer's disease (AD). The purpose of this systematic review is to summarize all currently available evidence for the association between prenatal exposures and AD-related volumetric brain biomarkers. We systematically searched MEDLINE and Embase for studies in humans reporting on associations between prenatal exposure(s) and AD-related volumetric brain biomarkers, including whole brain volume (WBV), hippocampal volume (HV) and/or temporal lobe volume (TLV) measured with structural magnetic resonance imaging (PROSPERO; CRD42020169317). Risk of bias was assessed using the Newcastle Ottawa Scale. We identified 79 eligible studies (search date: August 30th, 2020; Ntotal=24,784; median age 10.7 years) reporting on WBV (N = 38), HV (N = 63) and/or TLV (N = 5) in exposure categories alcohol (N = 30), smoking (N = 7), illicit drugs (N = 14), mental health problems (N = 7), diet (N = 8), disease, treatment and physiology (N = 10), infections (N = 6) and environmental exposures (N = 3). Overall risk of bias was low. Prenatal exposure to alcohol, opioids, cocaine, nutrient shortage, placental dysfunction and maternal anemia was associated with smaller brain volumes. We conclude that the prenatal environment is important in shaping the risk for late-life neurodegenerative disease.
Collapse
Affiliation(s)
- A Boots
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands.
| | - A M Wiegersma
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - Y Vali
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Methodology, Amsterdam Public Health, Amsterdam, the Netherlands
| | - M van den Hof
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - M W Langendam
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Methodology, Amsterdam Public Health, Amsterdam, the Netherlands
| | - J Limpens
- Amsterdam UMC location University of Amsterdam, Medical Library, Meibergdreef 9, the Netherlands
| | - E V Backhouse
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - S D Shenkin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Ageing and Health Research Group and Advanced Care Research Centre, Usher Institute, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute Centre at the University of Edinburgh, UK
| | - T J Roseboom
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Obstetrics and Gynecology, Meibergdreef 9, Amsterdam, the Netherlands
| | - S R de Rooij
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, the Netherlands; Aging and later life, Amsterdam Public Health, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Marshall AT, Bodison SC, Uban KA, Adise S, Jonker D, Charles W, Donald KA, Kan E, Ipser JC, Butler-Kruger L, Steigelmann B, Narr KL, Joshi SH, Brink LT, Odendaal HJ, Scheffler F, Stein DJ, Sowell ER. The impact of prenatal alcohol and/or tobacco exposure on brain structure in a large sample of children from a South African birth cohort. Alcohol Clin Exp Res 2022; 46:1980-1992. [PMID: 36117382 PMCID: PMC11334753 DOI: 10.1111/acer.14945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Neuroimaging studies have emphasized the impact of prenatal alcohol exposure (PAE) on brain development, traditionally in heavily exposed participants. However, less is known about how naturally occurring community patterns of PAE (including light to moderate exposure) affect brain development, particularly in consideration of commonly occurring concurrent impacts of prenatal tobacco exposure (PTE). METHODS Three hundred thirty-two children (ages 8 to 12) living in South Africa's Cape Flats townships underwent structural magnetic resonance imaging. During pregnancy, their mothers reported alcohol and tobacco use, which was used to evaluate PAE and PTE effects on their children's brain structure. Analyses involved the main effects of PAE and PTE (and their interaction) and the effects of PAE and PTE quantity on cortical thickness, surface area, and volume. RESULTS After false-discovery rate (FDR) correction, PAE was associated with thinner left parahippocampal cortices, while PTE was associated with smaller cortical surface area in the bilateral pericalcarine, left lateral orbitofrontal, right posterior cingulate, right rostral anterior cingulate, left caudal middle frontal, and right caudal anterior cingulate gyri. There were no PAE × PTE interactions nor any associations of PAE and PTE exposure on volumetrics that survived FDR correction. CONCLUSION PAE was associated with reduction in the structure of the medial temporal lobe, a brain region critical for learning and memory. PTE had stronger and broader associations, including with regions associated with executive function, reward processing, and emotional regulation, potentially reflecting continued postnatal exposure to tobacco (i.e., second-hand smoke exposure). These differential effects are discussed with respect to reduced PAE quantity in our exposed group versus prior studies within this geographical location, the deep poverty in which participants live, and the consequences of apartheid and racially and economically driven payment practices that contributed to heavy drinking in the region. Longer-term follow-up is needed to determine potential environmental and other moderators of the brain findings here and assess the extent to which they endure over time.
Collapse
Affiliation(s)
- Andrew T. Marshall
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Stefanie C. Bodison
- Department of Occupational Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Kristina A. Uban
- Department of Public Health, University of California, Irvine, CA, United States
| | - Shana Adise
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Deborah Jonker
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Weslin Charles
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Eric Kan
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Jonathan C. Ipser
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Letitia Butler-Kruger
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | | | - Katherine L. Narr
- UCLA Brain Mapping Center, Department of Neurology, Geffen School of Medicine, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Shantanu H. Joshi
- UCLA Brain Mapping Center, Department of Neurology, Geffen School of Medicine, University of California, Los Angeles
- Department of Bioengineering, University of California, Los Angeles
| | - Lucy T. Brink
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Hein J. Odendaal
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town, South Africa
| | - Freda Scheffler
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Elizabeth R. Sowell
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Solar KG, Treit S, Beaulieu C. High-resolution diffusion tensor imaging identifies hippocampal volume loss without diffusion changes in individuals with prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:1204-1219. [PMID: 35567310 DOI: 10.1111/acer.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies of prenatal alcohol exposure (PAE) commonly report reduced hippocampal volumes, which animal models suggest may result from microstructural changes that include cell loss and altered myelination. Diffusion tensor imaging (DTI) is sensitive to microstructural changes but has not yet been used to study the hippocampus in PAE. METHODS Thirty-six healthy controls (19 females; 8 to 24 years) and 19 participants with PAE (8 females; 8 to 23 years) underwent high-resolution (1 mm isotropic) DTI, anatomical T1-weighted imaging, and cognitive testing. Whole-hippocampus, head, body, and tail subregions were manually segmented to yield DTI metrics (mean, axial, and radial diffusivities-MD, AD, and RD; fractional anisotropy-FA), volumes, and qualitative assessments of hippocampal morphology and digitations. Automated segmentation of T1-weighted images was used to corroborate manual whole-hippocampus volumes. RESULTS Gross morphology and digitation counts were similar in both groups. Whole-hippocampus volumes were 18% smaller in the PAE than the control group on manually traced diffusion images, but automated T1-weighted image segmentations were not significantly different. Subregion segmentation on DTI revealed reduced volumes of the body and tail, but not the head. There were no significant differences in diffusion metrics between groups for any hippocampal region. Correlations between age and volume were not significant in either group, whereas negative correlations between age and whole-hippocampus MD/AD/RD, and head/body (but not tail) MD/AD/RD were significant in both groups. There were no significant effects of sex, group by age, or group by sex for any hippocampal metric. In controls, seven positive linear correlations were found between hippocampal volume and cognition; five of these were left lateralized and included episodic and working memory, and two were right lateralized and included working memory and processing speed. In PAE, left tail MD positively correlated with executive functioning, and right head MD negatively correlated with episodic memory. CONCLUSIONS Reductions of hippocampal volumes and altered relationships with memory suggest disrupted hippocampal development in PAE.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Brown J, Jonason A, Asp E, McGinn V, Carter MN, Spiller V, Jozan A. Fetal alcohol spectrum disorder and confabulation in psycholegal settings: A beginner's guide for criminal justice, forensic mental health, and legal interviewers. BEHAVIORAL SCIENCES & THE LAW 2022; 40:46-86. [PMID: 34689366 DOI: 10.1002/bsl.2540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are neurodevelopmental/neurobehavioral conditions caused by prenatal alcohol exposure (PAE). Impairments caused by PAE contribute to the over-representation of individuals with FASD in the United States juvenile and adult criminal justice systems. These same impairments can equally impact on individuals with FASD who are witnesses to or victims of crime who also have to navigate the complexities of the criminal justice system. Difficulties include increased susceptibility to confabulation throughout the legal process that, in turn, can contribute to increased rates of poor outcomes including false confessions and wrongful convictions. Individuals with FASD are particularity at risk of confabulation when they are subjected to tactics, such as stressful and anxiety-provoking situations, threats, and leading, suggestive, or coercive questioning. Many professionals in the forensic context are unfamiliar with FASD or related confabulation risk and may unintentionally utilize tactics that intensify impacts of pre-existing impairment. This article serves as a beginner's guide for professionals working in criminal justice settings by (a) providing research-based overviews of FASD and confabulation, (b) describing how FASD may lead to confabulation, and (c) suggesting ways that professionals can modify protocols when interacting with individuals with FASD. Suggestions in this article hold the potential to decrease the risk of confabulation in the criminal justice system and decrease problematic outcomes, such as false confessions and wrongful convictions among individuals with FASD.
Collapse
Affiliation(s)
- Jerrod Brown
- Pathways Counseling Center, Inc., St. Paul, Minnesota, USA
- Concordia University, St. Paul, Minnesota, USA
- American Institute for the Advancement of Forensic Studies, St. Paul, Minnesota, USA
| | - Alec Jonason
- Department of Psychology, Hamline University, St. Paul, Minnesota, USA
- Wesley & Lorene Artz Cognitive Neuroscience Research Center, Hamline University, St. Paul, Minnesota, USA
| | - Erik Asp
- Department of Psychology, Hamline University, St. Paul, Minnesota, USA
- Wesley & Lorene Artz Cognitive Neuroscience Research Center, Hamline University, St. Paul, Minnesota, USA
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Valerie McGinn
- The FASD Centre, Auckland, New Zealand
- School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Megan N Carter
- University of Washington, Seattle, Washington, USA
- Department of Social and Health Services, Special Commitment Center, Steilacoom, Washington, USA
| | | | - Amy Jozan
- American Institute for the Advancement of Forensic Studies, St. Paul, Minnesota, USA
| |
Collapse
|
12
|
Ge X, Zheng Y, Qiao Y, Pan N, Simon JP, Lee M, Jiang W, Kim H, Shi Y, Liu M. Hippocampal Asymmetry of Regional Development and Structural Covariance in Preterm Neonates. Cereb Cortex 2021; 32:4271-4283. [PMID: 34969086 DOI: 10.1093/cercor/bhab481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Premature birth is associated with a high prevalence of neurodevelopmental impairments in surviving infants. The hippocampus is known to be critical for learning and memory, yet the putative effects of hippocampal dysfunction remain poorly understood in preterm neonates. In particular, while asymmetry of the hippocampus has been well noted both structurally and functionally, how preterm birth impairs hippocampal development and to what extent the hippocampus is asymmetrically impaired by preterm birth have not been well delineated. In this study, we compared volumetric growth and shape development in the hippocampal hemispheres and structural covariance (SC) between hippocampal vertices and cortical thickness in cerebral cortex regions between two groups. We found that premature infants had smaller volumes of the right hippocampi only. Lower thickness was observed in the hippocampal head in both hemispheres for preterm neonates compared with full-term peers, though preterm neonates exhibited an accelerated age-related change of hippocampal thickness in the left hippocampi. The SC between the left hippocampi and the limbic lobe of the premature infants was severely impaired compared with the term-born neonates. These findings suggested that the development of the hippocampus during the third trimester may be altered following early extrauterine exposure with a high degree of asymmetry.
Collapse
Affiliation(s)
- Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China.,Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,School of Medical Imaging, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China
| | - Yuchuan Qiao
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ningning Pan
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China
| | - Julia Pia Simon
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mitchell Lee
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Hosung Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yonggang Shi
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Kane CJ, Drew PD. Ethanol effects on cerebellar myelination in a postnatal mouse model of fetal alcohol spectrum disorders. Alcohol 2021; 96:43-53. [PMID: 34358666 DOI: 10.1016/j.alcohol.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there are no effective treatments for these disorders. Cerebellar neuropathology is common in FASD and can cause impaired cognitive and motor function. The current study evaluates the effects of ethanol on oligodendrocyte-lineage cells, as well as molecules that modulate oligodendrocyte differentiation and function in the cerebellum in a postnatal mouse model of FASD. Neonatal mice were treated with ethanol from P4-P9 (postnatal day), the cerebellum was isolated at P10, and mRNAs encoding oligodendrocyte-associated molecules were quantitated by qRT-PCR. Our studies demonstrated that ethanol significantly reduced the expression of markers for multiple stages of oligodendrocyte maturation, including oligodendrocyte precursor cells, pre-myelinating oligodendrocytes, and mature myelinating oligodendrocytes. Additionally, we determined that ethanol significantly decreased the expression of molecules that play critical roles in oligodendrocyte differentiation. Interestingly, we also observed that ethanol significantly reduced the expression of myelin-associated inhibitors, which may act as a compensatory mechanism to ethanol toxicity. Furthermore, we demonstrate that ethanol alters the expression of a variety of molecules important in oligodendrocyte function and myelination. Collectively, our studies increase our understanding of specific mechanisms by which ethanol modulates myelination in the developing cerebellum, and potentially identify novel targets for FASD therapy.
Collapse
|
14
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
15
|
Kane CJ, Douglas JC, Rafferty T, Johnson JW, Niedzwiedz-Massey VM, Phelan KD, Majewska AK, Drew PD. Ethanol modulation of cerebellar neuroinflammation in a postnatal mouse model of fetal alcohol spectrum disorders. J Neurosci Res 2021; 99:1986-2007. [PMID: 33533128 PMCID: PMC8326304 DOI: 10.1002/jnr.24797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there is no effective treatment for these disorders. Cerebellar neuropathology is common in FASD and causes aberrant cognitive and motor function. Ethanol-induced neuroinflammation is believed to contribute to neuropathological sequelae of FASD, and was previously demonstrated in the cerebellum in animal models of FASD. We now demonstrate neuroinflammation persists in the cerebellum several days following cessation of ethanol treatment in an early postnatal mouse model, with meaningful implications for timing of therapeutic intervention in FASD. We also demonstrate by Sholl analysis that ethanol decreases ramification of microglia cell processes in cells located near the Purkinje cell layer but not those near the external granule cell layer. Ethanol did not alter the expression of anti-inflammatory molecules or molecules that constitute NLRP1 and NLRP3 inflammasomes. Interestingly, ethanol decreased the expression of IL-23a (P19) and IL-12Rβ1 suggesting that ethanol may suppress IL-12 and IL-23 signaling. Fractalkine-fractalkine receptor (CX3CL1-CX3CR1) signaling is believed to suppress microglial activation and our demonstration that ethanol decreases CX3CL1 expression suggests that ethanol modulation of CX3CL1-CX3CR1 signaling may contribute to cerebellar neuroinflammation and neuropathology. We demonstrate ethanol alters the expression of specific molecules in the cerebellum understudied in FASD, but crucial for immune responses. Ethanol increases the expression of NOX-2 and NGP and decreases the expression of RAG1, NOS1, CD59a, S1PR5, PTPN22, GPR37, and Serpinb1b. These molecules represent a new horizon as potential targets for development of FASD therapy.
Collapse
Affiliation(s)
- Cynthia J.M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer W. Johnson
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Victoria M. Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin D. Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ania K. Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
16
|
Wang Y, Wen W, Li H, Clementino M, Xu H, Xu M, Ma M, Frank J, Luo J. MANF is neuroprotective against ethanol-induced neurodegeneration through ameliorating ER stress. Neurobiol Dis 2021; 148:105216. [PMID: 33296727 PMCID: PMC7856049 DOI: 10.1016/j.nbd.2020.105216] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a spectrum of developmental disorders caused by prenatal alcohol exposure. Neuronal loss or neurodegeneration in the central nervous system (CNS) is one of the most devastating features in FASD. It is imperative to delineate the underlying mechanisms to facilitate the treatment of FASD. Endoplasmic reticulum (ER) stress is a hallmark and an underlying mechanism of many neurodegenerative diseases, including ethanol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) responds to ER stress and has been identified as a protein upregulated in response to ethanol exposure during the brain development. To investigate the role of MANF in ethanol-induced neurodegeneration and its association with ER stress regulation, we established a CNS-specific Manf knockout mouse model and examined the effects of MANF deficiency on ethanol-induced neuronal apoptosis and ER stress using a third-trimester equivalent mouse model. We found MANF deficiency exacerbated ethanol-induced neuronal apoptosis and ER stress and that blocking ER stress abrogated the harmful effects of MANF deficiency on ethanol-induced neuronal apoptosis. Moreover, using an animal model of ER-stress-induced neurodegeneration, we demonstrated that MANF deficiency potentiated tunicamycin (TM)-induced ER stress and neurodegeneration. A whole transcriptome RNA sequencing also supported the functionality of MANF in ER stress modulation and revealed targets that may mediate the ER stress-buffering capacity of MANF. Collectively, these results suggest that MANF is a neurotrophic factor that can protect neurons against ethanol-induced neurodegeneration by ameliorating ER stress.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States of America
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Marco Clementino
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jacqueline Frank
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America; Iowa City VA Health Care System, Iowa City, IA 52246, United States of America.
| |
Collapse
|
17
|
Kane CJM, Drew PD. Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders. J Neurosci Res 2020; 99:1973-1985. [PMID: 32959429 DOI: 10.1002/jnr.24735] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
Ethanol exposure to the fetus during pregnancy can result in fetal alcohol spectrum disorders (FASD). These disorders vary in severity, can affect multiple organ systems, and can lead to lifelong disabilities. Damage to the central nervous system (CNS) is common in FASD, and can result in altered behavior and cognition. The incidence of FASD is alarmingly high, resulting in significant personal and societal costs. There are no cures for FASD. Alcohol can directly alter the function of neurons in the developing CNS. In addition, ethanol can alter the function of CNS glial cells including microglia and astrocytes which normally maintain homeostasis in the CNS. These glial cells can function as resident immune cells in the CNS to protect against pathogens and other insults. However, activation of glia can also damage CNS cells and lead to aberrant CNS function. Ethanol exposure to the developing brain can result in the activation of glia and neuroinflammation, which may contribute to the pathology associated with FASD. This suggests that anti-inflammatory agents may be effective in the treatment of FASD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
18
|
Nucleus reuniens of the midline thalamus of a rat is specifically damaged after early postnatal alcohol exposure. Neuroreport 2020; 30:748-752. [PMID: 31095109 DOI: 10.1097/wnr.0000000000001270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Individuals diagnosed with fetal alcohol spectrum disorders often show behavioral impairments in executive functioning. Mechanistic studies have implicated coordination between the prefrontal cortex and the hippocampus (through thalamic nucleus reuniens) as essential for such executive functions. This study is the first to report the long-term neuroanatomical alterations to the ventral midline thalamus after alcohol exposure on postnatal days 4-9 (a rodent model of binge drinking during the third-trimester of human pregnancy). Alcohol added to a milk formula was administered to female Long-Evans rat pups on postnatal days 4-9 (5.25 g/kg/day of ethanol, intragastric intubation). Control animals were intubated without the administration of liquid. In adulthood, brains were immunohistochemically labeled for a neuronal marker (NeuN) conjugated with Cy3 fluorophore and stained with Hoechst33342 to visualize nuclei. Total non-neuronal cell number (NeuN/Hoechst) and neuron number (NeuN/Hoechst), and total volume were estimated using unbiased stereology in two neighboring midline thalamic nuclei: reuniens and rhomboid. Estimates were analyzed using linear mixed modeling to account for animal and litter as clustering variables. A 21% reduction in the total neuron number (resulting in altered neuron-to-non-neuron ratio) and an 18% reduction in total volume were found exclusively in thalamic nucleus reuniens in rats exposed to ethanol. Non-neuronal cell number was not changed in reuniens. No ethanol-induced changes on any measures were observed in rhomboid nucleus. These specific neuroanatomical alterations provide a necessary foundation for further examination of circuit-level alterations that occur in fetal alcohol spectrum disorder.
Collapse
|
19
|
Uban KA, Kan E, Wozniak JR, Mattson SN, Coles CD, Sowell ER. The Relationship Between Socioeconomic Status and Brain Volume in Children and Adolescents With Prenatal Alcohol Exposure. Front Hum Neurosci 2020; 14:85. [PMID: 32322193 PMCID: PMC7156853 DOI: 10.3389/fnhum.2020.00085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 01/07/2023] Open
Abstract
The positive relationship between socioeconomic status (SES) and cognitive performance is mediated, in part, by differences in brain structure in typically developing youth. Associations between brain regions that relate to SES overlap with brain regions known to be sensitive to prenatal alcohol exposure (PAE). Animal models demonstrate that PAE attenuates neural and cognitive benefits of early life enrichment. However, whether or not environmental factors related to SES are associated with brain development in youth affected by PAE remains unknown in humans.
Collapse
Affiliation(s)
- Kristina A Uban
- Public Health, University of California, Irvine, Irvine, CA, United States.,Department of Pediatrics, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Eric Kan
- Department of Pediatrics, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Jeffrey R Wozniak
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Sarah N Mattson
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Claire D Coles
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Elizabeth R Sowell
- Department of Pediatrics, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
20
|
Dodge NC, Thomas KGF, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW. Reduced Hippocampal Volumes Partially Mediate Effects of Prenatal Alcohol Exposure on Spatial Navigation on a Virtual Water Maze Task in Children. Alcohol Clin Exp Res 2020; 44:844-855. [PMID: 32196695 DOI: 10.1111/acer.14310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) has been linked to poorer performance on the Morris water maze (MWM), a test of spatial navigation in rodents that is dependent on hippocampal functioning. We recently confirmed these findings in children with PAE on a human analog of the MWM, the virtual water maze (VWM). Previous studies have shown that the hippocampus is particularly sensitive to PAE. Our aim was to determine whether hippocampal volume mediates the relation between PAE and virtual navigation. METHODS VWM and MRI hippocampal data were collected from 50 right-handed 10-year-old children in a heavily exposed Cape Town, South African sample. PAE data had been collected from their mothers during pregnancy, and the children were examined by expert fetal alcohol spectrum disorder (FASD) dysmorphologists. In the VWM, the participant attempts to learn the location of a hidden platform in a virtual pool of water across a series of learning trials using only distal room cues. Hippocampal volumes were derived using FreeSurfer from MRI scans administered within 1 week of completing the VWM task. RESULTS Both the fetal alcohol syndrome (FAS)/partial FAS and nonsyndromal heavy-exposed (HE) groups had smaller hippocampal volumes than controls. PAE was associated with reduced right hippocampal volumes even after control for total intracranial volume (ICV). Hippocampal volume was also positively associated with VWM performance. The relation between PAE and VWM performance was partially mediated by right hippocampal volume but not by total ICV. CONCLUSIONS These data confirm previous reports linking PAE to poorer spatial navigation on the VWM and are the first to provide direct evidence that volume reductions in this region partially mediate the relation of FASD diagnosis to place learning, suggesting that PAE specifically impairs the ability to encode the spatial information necessary for successful location of the hidden platform on a navigation task.
Collapse
Affiliation(s)
- Neil C Dodge
- From the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kevin G F Thomas
- ACSENT Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joseph L Jacobson
- From the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandra W Jacobson
- From the Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Inkelis SM, Moore EM, Bischoff-Grethe A, Riley EP. Neurodevelopment in adolescents and adults with fetal alcohol spectrum disorders (FASD): A magnetic resonance region of interest analysis. Brain Res 2020; 1732:146654. [PMID: 31930998 DOI: 10.1016/j.brainres.2020.146654] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The neurodevelopmental trajectory in individuals with fetal alcohol spectrum disorders (FASD) has not been well characterized. We examined age-related differences in the volume of the corpus callosum, basal ganglia, and cerebellum across adolescence and young adulthood, due to the sensitivity of these regions to prenatal alcohol exposure. T1-weighted anatomical magnetic resonance images (MRI) were acquired from a cross-sectional sample of subjects 13-30 years old who had received an alcohol-related diagnosis (FASD, n = 107) and typically developing controls (CON, n = 56). FreeSurfer v5.3 was used to obtain volumetric data for the corpus callosum, caudate, putamen, pallidum, and cerebellum. Analysis of variance (ANOVA) was used to examine the effects of group (FASD, CON), sex, and age on region volume. Data were analyzed with and without correction for intracranial volume (ICV). All subregions were significantly smaller in the FASD group compared to controls, and these findings persisted even after ICV correction. Furthermore, the FASD and control groups differed in their relationship between age and total volume of the corpus callosum, caudate, and cerebellum. Specifically, older FASD individuals had smaller total volume in these regions; this relationship was not seen in the control group. Control males demonstrated larger volumes than control females in all regions prior to ICV correction; however, sex differences were attenuated in the FASD group in both the pallidum and cerebellum. Sex differences remained after ICV correction in the pallidum and cerebellum. These cross-sectional findings suggest that at least some brain regions may become smaller at an earlier than expected age in individuals with FASD, and that sex is an important factor to consider when examining neural structures in FASD. Further evaluation is necessary using longitudinal methods and including older ages.
Collapse
Affiliation(s)
- Sarah M Inkelis
- Center for Behavioral Teratology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA.
| | - Eileen M Moore
- Center for Behavioral Teratology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA.
| | | | - Edward P Riley
- Center for Behavioral Teratology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA 92120, USA.
| |
Collapse
|
22
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
23
|
Dodge NC, Thomas KGF, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW. Spatial Navigation in Children and Young Adults with Fetal Alcohol Spectrum Disorders. Alcohol Clin Exp Res 2019; 43:2536-2546. [PMID: 31593324 DOI: 10.1111/acer.14210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Rodent studies have consistently shown that prenatal alcohol exposure (PAE) impairs performance on the Morris water maze (MWM), a test of spatial navigation. A previous study comparing boys with fetal alcohol syndrome (FAS) to controls found poorer performance on the virtual water maze (VWM), a human analogue of the MWM. We examined PAE effects on virtual navigation in both sexes using the VWM in a moderately exposed Detroit cohort (N = 104; mean = 19.4 year) and a heavily exposed Cape Town, South African cohort (N = 62; mean = 10.4 year). METHODS The task requires the participant to learn the location of a hidden platform in a virtual pool of water. The set of acquisition trials requires the participant to learn the location of the hidden platform and to return to that location repeatedly. The single-probe trial requires the participant to return to that location without knowing that the platform has been removed. RESULTS No effects of FASD diagnostic group or PAE were detected on virtual navigation in the Detroit moderately exposed cohort. By contrast, in the more heavily exposed Cape Town cohort, the FAS/partial FAS (PFAS) group took longer to locate the hidden platform during acquisition than nonsyndromal heavily exposed (HE) and control groups, an effect that persisted even after controlling for IQ. Among boys, both the FAS/PFAS and HE groups performed more poorly than controls during acquisition, and both boys and girls born to women who binge drank performed more poorly than those born to abstainers/light drinkers. Both amount and frequency of PAE were related to poorer performance during the probe trial at 10 years of age. CONCLUSIONS These data demonstrate deficits in spatial navigation among heavily exposed syndromal boys and girls and in nonsyndromal exposed boys.
Collapse
Affiliation(s)
- Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Kevin G F Thomas
- ACSENT Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.,Division of Biomedical Engineering, Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.,Division of Biomedical Engineering, Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| |
Collapse
|
24
|
Joo EY. Chronic insomnia disorder: perspectives from structural neuroimaging. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Gross LA, Moore EM, Wozniak JR, Coles CD, Kable JA, Sowell ER, Jones KL, Riley EP, Mattson SN. Neural correlates of verbal memory in youth with heavy prenatal alcohol exposure. Brain Imaging Behav 2019; 12:806-822. [PMID: 28656347 DOI: 10.1007/s11682-017-9739-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prenatal alcohol exposure can impact both brain development and neurobehavioral function, including verbal learning and recall, although the relation between verbal recall and brain structure in this population has not been examined fully. We aimed to determine the structural neural correlates of verbal learning and recall in youth with histories of heavy prenatal alcohol exposure using a region of interest (ROI) approach. As part of an ongoing multisite project, subjects (age 10-16 years) with prenatal alcohol exposure (AE, n = 81) and controls (CON, n = 81) were tested using the CVLT-C and measures of cortical volume, surface area, and thickness as well as hippocampal volume were derived from MRI. Group differences in brain and memory indices were tested with ANOVA. Multiple regression analyses tested whether brain ROIs significantly predicted memory performance. The AE group had lower scores than the CON group on all CVLT-C variables (ps ≤ .001) and volume and surface area (ps < .025), although results varied by ROI. No group differences in cortical thickness were found. The relations between cortical structure and memory performance differed between group among some ROIs, particularly those in the frontal cortex, generally with smaller surface area and/or thinner cortex predicting better performance in CON but worse performance in AE. Cortical surface area appears to be the most sensitive index to the effects of prenatal alcohol exposure, while cortical thickness appears to be the least sensitive. These findings also indicate that the neural correlates of verbal memory are altered in youth with heavy prenatal alcohol exposure compared to controls.
Collapse
Affiliation(s)
- Lauren A Gross
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Jeffrey R Wozniak
- Department of Psychiatry, University of Minnesota, F282/2A West, 2450 Riverside Ave, Minneapolis, MN, 55454, USA
| | - Claire D Coles
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA.,Department of Pediatrics, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA
| | - Julie A Kable
- Department of Pediatrics, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd., Mailstop #130, Los Angeles, CA, 90027, USA
| | - Kenneth L Jones
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0828, USA
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA.
| | | |
Collapse
|
26
|
Affiliation(s)
- Adrian Raine
- Departments of Criminology; Psychiatry, and Psychology; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
27
|
Suttie M, Wozniak JR, Parnell SE, Wetherill L, Mattson SN, Sowell ER, Kan E, Riley EP, Jones KL, Coles C, Foroud T, Hammond P. Combined Face-Brain Morphology and Associated Neurocognitive Correlates in Fetal Alcohol Spectrum Disorders. Alcohol Clin Exp Res 2018; 42:1769-1782. [PMID: 29935097 PMCID: PMC6120799 DOI: 10.1111/acer.13820] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Since the 1970s, a range of facial, neurostructural, and neurocognitive adverse effects have been shown to be associated with prenatal alcohol exposure. Typically, these effects are studied individually and not in combination. Our objective is to improve the understanding of the teratogenic effects of prenatal alcohol exposure by simultaneously considering face-brain morphology and neurocognitive measures. METHODS Participants were categorized as control (n = 47), fetal alcohol syndrome (FAS, n = 22), or heavily exposed (HE) prenatally, but not eligible for a FAS diagnosis (HE, n = 50). Structural brain MRI images and high-resolution 3D facial images were analyzed using dense surface models of features of the face and surface shape of the corpus callosum (CC) and caudate nucleus (CN). Asymmetry of the CN was evaluated for correlations with neurocognitive measures. RESULTS (i) Facial growth delineations for FAS, HE, and controls are replicated for the CN and the CC. (ii) Concordance of clinical diagnosis and face-based control-FAS discrimination improves when the latter is combined with specific brain regions. In particular, midline facial regions discriminate better when combined with a midsagittal profile of the CC. (iii) A subset of HE individuals was identified with FAS-like CN dysmorphism. The average of this HE subset was FAS-like in its facial dysmorphism. (iv) Right-left asymmetry found in the CNs of controls is not apparent for FAS, is diminished for HE, and correlates with neurocognitive measures in the combined FAS and HE population. CONCLUSIONS Shape analysis which combines facial regions with the CN, and with the CC, better identify those with FAS. CN asymmetry was reduced for FAS compared to controls and is strongly associated with general cognitive ability, verbal learning, and recall in those with prenatal alcohol exposure. This study further extends the brain-behavior relationships known to be vulnerable to alcohol teratogenesis.
Collapse
Affiliation(s)
- Michael Suttie
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, UK
- Big Data Institute, University of Oxford, UK
| | | | - Scott E. Parnell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Sarah N. Mattson
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Elizabeth R. Sowell
- Department of Pediatrics, University of Southern California and Children’s Hospital Los Angeles, USA
| | - Eric Kan
- Department of Pediatrics, University of Southern California and Children’s Hospital Los Angeles, USA
| | - Edward P. Riley
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Kenneth L. Jones
- Department of Pediatrics, School of Medicine, UCSD, San Diego, USA
| | - Claire Coles
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Peter Hammond
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, UK
- Big Data Institute, University of Oxford, UK
| | - CIFASD
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, UK
- Big Data Institute, University of Oxford, UK
| |
Collapse
|
28
|
Affiliation(s)
- Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Nguyen VT, Chong S, Tieng QM, Mardon K, Galloway GJ, Kurniawan ND. Radiological studies of fetal alcohol spectrum disorders in humans and animal models: An updated comprehensive review. Magn Reson Imaging 2017. [PMID: 28645698 DOI: 10.1016/j.mri.2017.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fetal Alcohol Spectrum Disorders encompass a wide range of birth defects in children born to mothers who consumed alcohol during pregnancy. Typical mental impairments in FASD include difficulties in life adaptation and learning and memory, deficits in attention, visuospatial skills, language and speech disabilities, mood disorders and motor disabilities. Multimodal imaging methods have enabled in vivo studies of the teratogenic effects of alcohol on the central nervous system, giving more insight into the FASD phenotype. This paper offers an up-to-date comprehensive review of radiological findings in the central nervous system in studies of prenatal alcohol exposure in both humans and translational animal models, including Magnetic Resonance Imaging, Computed Tomography, Positron Emission Tomography, Single Photon Emission Tomography and Ultrasonography.
Collapse
Affiliation(s)
- Van T Nguyen
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; Hanoi University of Science and Technology, Hanoi, Vietnam.
| | - Suyinn Chong
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Quang M Tieng
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Graham J Galloway
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
30
|
Drew PD, Kane CJ. Peroxisome Proliferator-Activated Receptor-γ Agonists: Potential Therapeutics for Neuropathology Associated with Fetal Alcohol Spectrum Disorders. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:469. [PMID: 28203487 PMCID: PMC5305275 DOI: 10.4172/2155-9899.1000469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) result from fetal exposure to alcohol during pregnancy. These disorders present a variety of sequelae including involvement of the central nervous system (CNS) with lasting impact on cognitive function and behavior. FASD occur at an alarming rate and have significant personal and societal impact. There are currently no effective treatments for FASD. Recent studies demonstrate that ethanol induces potent neuroinflammation in many regions of the developing brain. Furthermore, anti-inflammatory agents such as peroxisome proliferator-activated receptor (PPAR)-γ agonists suppress ethanol-induced neuroinflammation and neurodegeneration. This suggests that anti-inflammatory agents may be effective in treatment of FASD. Future studies designed to determine the specific mechanisms by which alcohol induces neuroinflammation in the developing CNS may lead to targeted therapies for FASD.
Collapse
Affiliation(s)
- Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J.M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
31
|
Chalavi S, Adab HZ, Pauwels L, Beets IAM, van Ruitenbeek P, Boisgontier MP, Monteiro TS, Maes C, Sunaert S, Swinnen SP. Anatomy of Subcortical Structures Predicts Age-Related Differences in Skill Acquisition. Cereb Cortex 2016; 28:459-473. [DOI: 10.1093/cercor/bhw382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sima Chalavi
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Hamed Zivari Adab
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Lisa Pauwels
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Iseult A M Beets
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- BrainCTR, Lilid bvba, 3290 Diest, Belgium
| | - Peter van Ruitenbeek
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- Faculty of Psychology and Neuroscience, Department of Clinical Psychological Science, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthieu P Boisgontier
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Thiago Santos Monteiro
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Celine Maes
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, Biomedical Sciences Group, Translational MRI Unit, KU Leuven, 3000 Leuven, Belgium
| | - Stephan P Swinnen
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- Leuven Research Institute for Neuroscience & Disease (LIND), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
32
|
Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys. Brain Sci 2016; 6:brainsci6040052. [PMID: 27801790 PMCID: PMC5187566 DOI: 10.3390/brainsci6040052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/18/2023] Open
Abstract
Fetal alcohol exposure (FAE) alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.
Collapse
|
33
|
Swart PC, Currin CB, Russell VA, Dimatelis JJ. Early ethanol exposure and vinpocetine treatment alter learning- and memory-related proteins in the rat hippocampus and prefrontal cortex. J Neurosci Res 2016; 95:1204-1215. [DOI: 10.1002/jnr.23894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Patricia C. Swart
- Department of Human Biology; Faculty of Health Sciences, University of Cape Town; Observatory Cape Town 7925 South Africa
| | - Christopher B. Currin
- Department of Human Biology; Faculty of Health Sciences, University of Cape Town; Observatory Cape Town 7925 South Africa
| | - Vivienne A. Russell
- Department of Human Biology; Faculty of Health Sciences, University of Cape Town; Observatory Cape Town 7925 South Africa
| | - Jacqueline J. Dimatelis
- Department of Human Biology; Faculty of Health Sciences, University of Cape Town; Observatory Cape Town 7925 South Africa
| |
Collapse
|
34
|
Correlation between morphological MRI findings and specific diagnostic categories in fetal alcohol spectrum disorders. Eur J Med Genet 2016; 60:65-71. [PMID: 27620364 DOI: 10.1016/j.ejmg.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) include physical and neurodevelopmental abnormalities related to prenatal alcohol exposure. Some neuroimaging findings have been clearly related to FASD, including corpus callosum and cerebellar anomalies. However, detailed studies correlating with specific FASD categories, that is, the fetal alcohol syndrome (FAS), partial FAS (pFAS) and alcohol related neurodevelopmental disorders (ARND), are lacking. We prospectively performed clinical assessment and brain MR imaging to 72 patients with suspected FASD, and diagnosis was confirmed in 62. The most frequent findings were hypoplasia of the corpus callosum and/or of the cerebellar vermis. Additional findings were vascular anomalies, gliosis, prominent perivascular spaces, occipito-cervical junction and cervical vertebral anomalies, pituitary hypoplasia, arachnoid cysts, and cavum septum pellucidum.
Collapse
|
35
|
Liu M, Zhang D, Adeli-Mosabbeb E, Shen D. Inherent Structure-Based Multiview Learning With Multitemplate Feature Representation for Alzheimer's Disease Diagnosis. IEEE Trans Biomed Eng 2016; 63:1473-82. [PMID: 26540666 PMCID: PMC4851920 DOI: 10.1109/tbme.2015.2496233] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multitemplate-based brain morphometric pattern analysis using magnetic resonance imaging has been recently proposed for automatic diagnosis of Alzheimer's disease (AD) and its prodromal stage (i.e., mild cognitive impairment or MCI). In such methods, multiview morphological patterns generated from multiple templates are used as feature representation for brain images. However, existing multitemplate-based methods often simply assume that each class is represented by a specific type of data distribution (i.e., a single cluster), while in reality, the underlying data distribution is actually not preknown. In this paper, we propose an inherent structure-based multiview leaning method using multiple templates for AD/MCI classification. Specifically, we first extract multiview feature representations for subjects using multiple selected templates and then cluster subjects within a specific class into several subclasses (i.e., clusters) in each view space. Then, we encode those subclasses with unique codes by considering both their original class information and their own distribution information, followed by a multitask feature selection model. Finally, we learn an ensemble of view-specific support vector machine classifiers based on their, respectively, selected features in each view and fuse their results to draw the final decision. Experimental results on the Alzheimer's Disease Neuroimaging Initiative database demonstrate that our method achieves promising results for AD/MCI classification, compared to the state-of-the-art multitemplate-based methods.
Collapse
Affiliation(s)
- Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daoqiang Zhang
- School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ehsan Adeli-Mosabbeb
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, and also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
36
|
Schambra UB, Nunley K, Harrison TA, Lewis CN. Consequences of low or moderate prenatal ethanol exposures during gastrulation or neurulation for open field activity and emotionality in mice. Neurotoxicol Teratol 2016; 57:39-53. [PMID: 27296969 DOI: 10.1016/j.ntt.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
In a previous study we used a mouse model for ethanol exposure during gastrulation or neurulation to investigate the effects of modest and occasional human drinking during the 3rd or 4th week of pregnancy (Schambra et al., 2015). Pregnant C57Bl/6J mice were treated by gavage during gastrulation on gestational day (GD) 7 or neurulation on GD8 with 2 doses 4h apart of either 2.4 or 2.9g ethanol/kg body weight, resulting in peak blood ethanol concentrations (BECs) of 104 and 177mg/dl, respectively. We found that mice exposed to the low dose on either day were significantly delayed in their neonatal sensorimotor development. In the present study, we tested the same cohort of mice in an open field as juveniles on postnatal day (PD) 23-25 and as young adults on PD65-67 for prenatal ethanol effects on exploration and emotionality with measures of activity, rearing, grooming and defecation. We evaluated the effects of dose, sex, day of treatment and day of birth by multiple regression analyses. We found that, compared to the respective gavage controls, juvenile mice that had been prenatally exposed to the low BEC on either GD7 or GD8 were significantly hypoactive on the first 2 test days, reared significantly more on the last 2 test days, and groomed and defecated significantly more on all 3 test days. Only mice that had been treated on GD7 remained hypoactive as adults. Juvenile mice prenatally exposed to the moderate BEC on GD7 groomed significantly more, while those exposed on GD8 reared and defecated significantly more. Sex differences were highly significant in adult control mice, with control males less active and more emotional than females. Similar, but smaller, sex differences were also evident in adults exposed to ethanol prenatally. Persistence into later life of a deleterious effect of premature birth (i.e., birth on GD19 rather than GD20) on weight and behavior was not consistently supported by these data. Importantly, mice shown previously to be delayed in sensorimotor development as neonates, in the present study demonstrated hypoactivity and increased emotionality in open field behaviors as juveniles, and those mice exposed during gastrulation remained hypoactive as adults. Thus, we propose that the delayed motor development, hypoactivity and emotionality we observed in mice exposed to a low BEC during gastrulation or neurulation may relate to an attention deficit-activity disorder in humans, possibly the inattentive subtype, or Sluggish Cognitive Tempo (SCT). We further discuss concerns about occasional light or moderate alcohol consumption during the 3rd or 4th week of human pregnancy.
Collapse
Affiliation(s)
- Uta B Schambra
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Kevin Nunley
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Theresa A Harrison
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - C Nicole Lewis
- Department of Mathematics & Statistics, College of Arts and Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
37
|
Liu M, Zhang D, Shen D. Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1463-74. [PMID: 26742127 PMCID: PMC5572669 DOI: 10.1109/tmi.2016.2515021] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As shown in the literature, methods based on multiple templates usually achieve better performance, compared with those using only a single template for processing medical images. However, most existing multi-template based methods simply average or concatenate multiple sets of features extracted from different templates, which potentially ignores important structural information contained in the multi-template data. Accordingly, in this paper, we propose a novel relationship induced multi-template learning method for automatic diagnosis of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI), by explicitly modeling structural information in the multi-template data. Specifically, we first nonlinearly register each brain's magnetic resonance (MR) image separately onto multiple pre-selected templates, and then extract multiple sets of features for this MR image. Next, we develop a novel feature selection algorithm by introducing two regularization terms to model the relationships among templates and among individual subjects. Using these selected features corresponding to multiple templates, we then construct multiple support vector machine (SVM) classifiers. Finally, an ensemble classification is used to combine outputs of all SVM classifiers, for achieving the final result. We evaluate our proposed method on 459 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 97 AD patients, 128 normal controls (NC), 117 progressive MCI (pMCI) patients, and 117 stable MCI (sMCI) patients. The experimental results demonstrate promising classification performance, compared with several state-of-the-art methods for multi-template based AD/MCI classification.
Collapse
|
38
|
Wilhelm CJ, Guizzetti M. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective. Front Integr Neurosci 2016; 9:65. [PMID: 26793073 PMCID: PMC4707276 DOI: 10.3389/fnint.2015.00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Psychiatry, Oregon Health and Science UniversityPortland, OR, USA
| | - Marina Guizzetti
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
39
|
|
40
|
Neuroimaging effects of prenatal alcohol exposure on the developing human brain: a magnetic resonance imaging review. Acta Neuropsychiatr 2015; 27:251-69. [PMID: 25780875 DOI: 10.1017/neu.2015.12] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE This paper reviews the magnetic resonance imaging (MRI) literature on the effects of prenatal alcohol exposure on the developing human brain. METHOD A literature search was conducted through the following databases: PubMed, PsycINFO and Google Scholar. Combinations of the following search terms and keywords were used to identify relevant studies: 'alcohol', 'fetal alcohol spectrum disorders', 'fetal alcohol syndrome', 'FAS', 'FASD', 'MRI', 'DTI', 'MRS', 'neuroimaging', 'children' and 'infants'. RESULTS A total of 64 relevant articles were identified across all modalities. Overall, studies reported smaller total brain volume as well as smaller volume of both the white and grey matter in specific cortical regions. The most consistently reported structural MRI findings were alterations in the shape and volume of the corpus callosum, as well as smaller volume in the basal ganglia and hippocampi. The most consistent finding from diffusion tensor imaging studies was lower fractional anisotropy in the corpus callosum. Proton magnetic resonance spectroscopy studies are few to date, but showed altered neurometabolic profiles in the frontal and parietal cortex, thalamus and dentate nuclei. Resting-state functional MRI studies reported reduced functional connectivity between cortical and deep grey matter structures. Discussion There is a critical gap in the literature of MRI studies in alcohol-exposed children under 5 years of age across all MRI modalities. The dynamic nature of brain maturation and appreciation of the effects of alcohol exposure on the developing trajectory of the structural and functional network argue for the prioritisation of studies that include a longitudinal approach to understanding this spectrum of effects and potential therapeutic time points.
Collapse
|
41
|
Development of the human fetal hippocampal formation during early second trimester. Neuroimage 2015; 119:33-43. [PMID: 26123377 DOI: 10.1016/j.neuroimage.2015.06.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 06/01/2015] [Accepted: 06/18/2015] [Indexed: 12/27/2022] Open
Abstract
Development of the fetal hippocampal formation has been difficult to fully describe because of rapid changes in its shape during the fetal period. The aims of this study were to: (1) segment the fetal hippocampal formation using 7.0 T MR images from 41 specimens with gestational ages ranging from 14 to 22 weeks and (2) reveal the developmental course of the fetal hippocampal formation using volume and shape analyses. Differences in hemispheric volume were observed, with the right hippocampi being larger than the left. Absolute volume changes showed a linear increase, while relative volume changes demonstrated an inverted-U shape trend during this period. Together these exhibited a variable developmental rate among different regions of the fetal brain. Different sub-regional growth of the fetal hippocampal formation was specifically observed using shape analysis. The fetal hippocampal formation possessed a prominent medial-lateral bidirectional shape growth pattern during its rotation process. Our results provide additional insight into 3D hippocampal morphology in the assessment of fetal brain development and can be used as a reference for future hippocampal studies.
Collapse
|
42
|
Burke MW, Ptito M, Ervin FR, Palmour RM. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure. Dev Psychobiol 2015; 57:470-85. [PMID: 25913787 PMCID: PMC4437182 DOI: 10.1002/dev.21311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/11/2015] [Indexed: 12/16/2022]
Abstract
Prenatal exposure to beverage alcohol is a major cause of mild mental retardation and developmental delay. In nonendangered alcohol-preferring vervet monkeys, we modeled the most common nondysmorphic form of fetal alcohol syndrome disorder with voluntary drinking during the third trimester of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally and persist through infancy (5 months) and juvenile (2 years) stages. Although the volumes of hippocampal subdivisions in FAE animals are not atypical at birth, by age 2, they are only 65-70% of those estimated in age-matched controls. These data suggest that moderate, naturalistic alcohol consumption during late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume.
Collapse
Affiliation(s)
- Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington DC; Behavioural Science Foundation, St Kitts
| | | | | | | |
Collapse
|
43
|
Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJM. Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2015; 39:445-54. [PMID: 25703036 DOI: 10.1111/acer.12639] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) result from fetal exposure to alcohol and are the leading cause of mental retardation in the United States. There is currently no effective treatment that targets the causes of these disorders. Thus, novel therapies are critically needed to limit the neurodevelopmental and neurodegenerative pathologies associated with FASD. METHODS A neonatal mouse FASD model was used to examine the role of the neuroimmune system in ethanol (EtOH)-induced neuropathology. Neonatal C57BL/6 mice were treated with EtOH, with or without pioglitazone, on postnatal days 4 through 9, and tissue was harvested 1 day post treatment. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR)-γ agonist that exhibits anti-inflammatory activity and is neuroprotective. We compared the effects of EtOH with or without pioglitazone on cytokine and chemokine expression and microglial morphology in the hippocampus, cerebellum, and cerebral cortex. RESULTS In EtOH-treated animals compared with controls, cytokines interleukin-1β and tumor necrosis factor-α mRNA levels were increased significantly in the hippocampus, cerebellum, and cerebral cortex. Chemokine CCL2 mRNA was increased significantly in the hippocampus and cerebellum. Pioglitazone effectively blocked the EtOH-induced increase in the cytokines and chemokine in all tissues to the level expressed in handled-only and vehicle-treated control animals. EtOH also produced a change in microglial morphology in all brain regions that was indicative of microglial activation, and pioglitazone blocked this EtOH-induced morphological change. CONCLUSIONS These studies indicate that EtOH activates microglia to a pro-inflammatory stage and also increases the expression of neuroinflammatory cytokines and chemokines in diverse regions of the developing brain. Further, the anti-inflammatory and neuroprotective PPAR-γ agonist pioglitazone blocked these effects. It is proposed that microglial activation and inflammatory molecules expressed as a result of EtOH treatment during brain development contribute to the sequelae associated with FASD. Thus, pioglitazone and anti-inflammatory pharmaceuticals more broadly have potential as novel therapeutics for FASD.
Collapse
Affiliation(s)
- Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | |
Collapse
|
44
|
Liu M, Zhang D, Shen D. View-centralized multi-atlas classification for Alzheimer's disease diagnosis. Hum Brain Mapp 2015; 36:1847-65. [PMID: 25624081 DOI: 10.1002/hbm.22741] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 01/29/2023] Open
Abstract
Multi-atlas based methods have been recently used for classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Compared with traditional single-atlas based methods, multiatlas based methods adopt multiple predefined atlases and thus are less biased by a certain atlas. However, most existing multiatlas based methods simply average or concatenate the features from multiple atlases, which may ignore the potentially important diagnosis information related to the anatomical differences among different atlases. In this paper, we propose a novel view (i.e., atlas) centralized multi-atlas classification method, which can better exploit useful information in multiple feature representations from different atlases. Specifically, all brain images are registered onto multiple atlases individually, to extract feature representations in each atlas space. Then, the proposed view-centralized multi-atlas feature selection method is used to select the most discriminative features from each atlas with extra guidance from other atlases. Next, we design a support vector machine (SVM) classifier using the selected features in each atlas space. Finally, we combine multiple SVM classifiers for multiple atlases through a classifier ensemble strategy for making a final decision. We have evaluated our method on 459 subjects [including 97 AD, 117 progressive MCI (p-MCI), 117 stable MCI (s-MCI), and 128 normal controls (NC)] from the Alzheimer's Disease Neuroimaging Initiative database, and achieved an accuracy of 92.51% for AD versus NC classification and an accuracy of 78.88% for p-MCI versus s-MCI classification. These results demonstrate that the proposed method can significantly outperform the previous multi-atlas based classification methods.
Collapse
Affiliation(s)
- Mingxia Liu
- School of Computer Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, USA; School of Information Science and Technology, Taishan University, Taian, China
| | | | | | | |
Collapse
|
45
|
Kable JA, Reynolds JN, Valenzuela CF, Medina AE. Proceedings of the 2013 annual meeting of the Fetal Alcohol Spectrum Disorders Study Group. Alcohol 2014; 48:623-30. [PMID: 25224492 PMCID: PMC4250505 DOI: 10.1016/j.alcohol.2014.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 2013 Fetal Alcohol Spectrum Disorders Study Group (FASDSG) meeting was held in Orlando (Grand Cypress), FL with the theme "Developing Brain-Based Interventions for Individuals with Fetal Alcohol Spectrum Disorders." Children with fetal alcohol spectrum disorders have significant impairments in cognitive functioning and behavioral regulation skills, which lead to a lifetime of challenges for themselves and their families; thus, developing interventions that remediate or compensate for these deficits is of great importance. The conference included 2 keynote presentations, FASt data talks, award presentations, and updates by government agencies. In addition, a lively panel discussion addressed the challenges faced by FASDSG researchers in the translation of intervention strategies developed in preclinical studies to clinical trials and, ultimately, to clinical practice.
Collapse
Affiliation(s)
- Julie A Kable
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - James N Reynolds
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, Canada
| | - C Fernando Valenzuela
- University Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Alexandre E Medina
- Department of Pediatrics, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Washburn SE, Ramadoss J, Chen WJA, Cudd TA. Effects of all three trimester moderate binge alcohol exposure on the foetal hippocampal formation and olfactory bulb. Brain Inj 2014; 29:104-9. [PMID: 25180624 DOI: 10.3109/02699052.2014.947629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Pre-natal alcohol exposure results in injury to the hippocampus and olfactory bulb,but currently there is no consensus on the critical window of vulnerability. This study tested thehypothesis that pre-natal exposure to a moderate dose of alcohol during all three trimesterequivalentsalters development of the hippocampal formation and olfactory bulb in an ovinemodel, where all brain development occurs pre-natally as it does in humans.Research design and methods: Pregnant sheep were divided into saline control and abinge drinking groups (alcohol dose 1.75 g kg(-1); mean peak blood alcohol concentration189 + 19mg dl(-1)). OUTCOME AND RESULTS The density, volume and total cell number were not different betweengroups for the dentate gyrus, pyramidal cells in the CA1 and CA2/3 fields and mitral cells in theolfactory bulb. CONCLUSIONS A moderate dose of alcohol administered in a binge pattern throughout gestationdoes not alter cell numbers in the hippocampus or olfactory bulb and exposure during thethird trimester-equivalent is required for hippocampal injury, unless very high doses of alcoholare administered. This has important implications in establishing the sensitivity of imagingmodalities such as MRI in which volumetric measures are being studied as biomarkers forpre-natal alcohol exposure.
Collapse
Affiliation(s)
- Shannon E Washburn
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | | | | | | |
Collapse
|
47
|
Joo EY, Kim H, Suh S, Hong SB. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep 2014; 37:1189-98. [PMID: 25061247 DOI: 10.5665/sleep.3836] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Despite compelling evidence from animal studies indicating hippocampal subfield-specific vulnerability to poor sleep quality and related cognitive impairment, there have been no human magnetic resonance imaging (MRI) studies investigating the relationship between hippocampal subfield volume and sleep disturbance. Our aim was to investigate the pattern of volume changes across hippocampal subfields in patients with primary insomnia relative to controls. DESIGN Pointwise morphometry allowed for volume measurements of hippocampal regions on T1-weighted MRI. SETTING University hospital. PATIENTS Twenty-seven unmedicated patients (age: 51.2 ± 9.6 y) and 30 good sleepers as controls (50.4 ± 7.1 y). INTERVENTIONS N/A. MEASUREMENTS We compared hippocampal subfield volumes between patients and controls and correlated volume with clinical and neuropsychological features in patients. RESULTS Patients exhibited bilateral atrophy across all hippocampal subfields (P < 0.05 corrected). Cornu ammonis (CA) 1 subfield atrophy was associated with worse sleep quality (higher Pittsburgh Sleep Quality Index and higher arousal index of polysomnography) (r < -0.45, P < 0.005). The volume of the combined region, including the dentate gyrus (DG) and CA3-4, negatively correlated with verbal memory, verbal information processing, and verbal fluency in patients (|r| > 0.45, P < 0.05). Hemispheric volume asymmetry of this region (left smaller than right) was associated with impaired verbal domain functions (r = 0.50, P < 0.005). CONCLUSION Hippocampal subfield atrophy in chronic insomnia suggests reduced neurogenesis in the dentate gyrus (DG) and neuronal loss in the cornu ammonis (CA) subfields in conditions of sleep fragmentation and related chronic stress condition. Atrophy in the CA3-4-DG region was associated with impaired cognitive functions in patients. These observations may provide insight into pathophysiological mechanisms that make patients with chronic sleep disturbance vulnerable to cognitive impairment. CITATION Joo EY, Kim H, Suh S, Hong SB. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry.
Collapse
Affiliation(s)
- Eun Yeon Joo
- Sleep Center, Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Seoul, Korea
| | - Hosung Kim
- Department of Neurology and Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sooyeon Suh
- Korea University Ansan Hospital, Human Genome Institute, Korea University, Seoul, Korea ; Stanford University, Department of Psychiatry, Redwood City, CA
| | - Seung Bong Hong
- Sleep Center, Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
48
|
Moore EM, Migliorini R, Infante MA, Riley EP. Fetal Alcohol Spectrum Disorders: Recent Neuroimaging Findings. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014; 1:161-172. [PMID: 25346882 DOI: 10.1007/s40474-014-0020-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Since the identification of Fetal Alcohol Syndrome over 40 years ago, much has been learned about the detrimental effects of prenatal alcohol exposure on the developing brain. This review highlights recent neuroimaging studies, within the context of previous work. Structural magnetic resonance imaging has described morphological differences in the brain and their relationships to cognitive deficits and measures of facial dysmorphology. Diffusion tensor imaging has elaborated on the relationship between white matter microstructure and behavior. Atypical neuromaturation across childhood and adolescence has been observed in longitudinal neuroimaging studies. Functional imaging has revealed differences in neural activation patterns underlying sensory processing, cognition and behavioral deficits. A recent functional connectivity analysis demonstrates reductions in global network efficiency. Despite this progress much remains unknown about the impact of prenatal alcohol exposure on the brain, and continued research efforts are essential.
Collapse
Affiliation(s)
- Eileen M Moore
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120
| | - Robyn Migliorini
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120 ; SDSU/UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120
| | - M Alejandra Infante
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120 ; SDSU/UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120
| | - Edward P Riley
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120 ; Department of Psychology, San Diego State University, San Diego, CA 92182
| |
Collapse
|
49
|
Gao Y, Riklin-Raviv T, Bouix S. Shape analysis, a field in need of careful validation. Hum Brain Mapp 2014; 35:4965-78. [PMID: 24753006 DOI: 10.1002/hbm.22525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/04/2014] [Accepted: 03/26/2014] [Indexed: 02/02/2023] Open
Abstract
In the last two decades, the statistical analysis of shape has become an actively studied field and finds applications in a wide range of areas. In addition to algorithmic development, many researchers have distributed end-user orientated toolboxes, which further enable the utilization of the algorithms in an "off the shelf" fashion. However, there is little work on the evaluation and validation of these techniques, which poses a rather serious challenge when interpreting their results. To address this lack of validation, we design a validation framework and then use it to test some of the most widely used toolboxes. Our initial results show inconsistencies and disagreement among four different methods. We believe this type of analysis to be critical not only for the community of algorithm designers but also perhaps more importantly to researchers who use these tools without knowing the algorithm details and seek objective criteria for tool selection.
Collapse
Affiliation(s)
- Yi Gao
- Department of Electrical and Computer Engineering, The University of Alabama at Birmingham, Birmingham, Alabama; Neuro-Oncology Program, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
50
|
Parnell SE, Holloway HT, O'Leary-Moore SK, Dehart DB, Paniaqua B, Oguz I, Budin F, Styner MA, Johnson GA, Sulik KK. Magnetic resonance microscopy-based analyses of the neuroanatomical effects of gestational day 9 ethanol exposure in mice. Neurotoxicol Teratol 2013; 39:77-83. [PMID: 23911654 PMCID: PMC3795920 DOI: 10.1016/j.ntt.2013.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/03/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022]
Abstract
Animal model-based studies have shown that ethanol exposure during early gestation induces developmental stage-specific abnormalities of the face and brain. The exposure time-dependent variability in ethanol's teratogenic outcomes is expected to contribute significantly to the wide spectrum of effects observed in humans with fetal alcohol spectrum disorder (FASD). The work presented here employs a mouse FASD model and magnetic resonance microscopy (MRM; high resolution magnetic resonance imaging) in studies designed to further our understanding of the developmental stage-specific defects of the brain that are induced by ethanol. At neurulation stages, i.e. at the beginning of gestational day (GD) 9 and again 4 hours later, time-mated C57Bl/6J dams were intraperitoneally administered 2.9 g/kg ethanol or vehicle. Ethanol-exposed fetuses were collected on GD 17, processed for MRM analysis, and results compared to comparably staged controls. Linear and volume measurements as well as shape changes for numerous individual brain regions were determined. GD 9 ethanol exposure resulted in significantly increased septal region width, reduction of cerebellar volume, and enlargement of all of the ventricles. Additionally, the results of shape analyses showed that many areas of the ethanol-exposed brains including the cerebral cortex, hippocampus and right striatum were significantly misshapen. These data demonstrate that ethanol can induce dysmorphology that may not be obvious based on volumetric analyses alone, highlight the asymmetric aspects of ethanol-induced defects, and add to our understanding of ethanol's developmental stage-dependent neuroteratogenesis.
Collapse
Affiliation(s)
- Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|