1
|
Tu S, Vucic S, Kiernan MC. Pathological insights derived from neuroimaging in amyotrophic lateral sclerosis: emerging clinical applications. Curr Opin Neurol 2024; 37:577-584. [PMID: 38958573 DOI: 10.1097/wco.0000000000001295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Neuroimaging has been instrumental in shaping current understanding of the pathoanatomical signature of amyotrophic lateral sclerosis (ALS) across clinically well defined patient cohorts. The potential utility of imaging as an objective disease marker, however, remains poorly defined. RECENT FINDINGS Increasingly advanced quantitative and computational imaging studies have highlighted emerging clinical applications for neuroimaging as a complementary clinical modality for diagnosis, monitoring, and modelling disease propagation. Multimodal neuroimaging has demonstrated novel approaches for capturing primary motor disease. Extra-motor subcortical dysfunction is increasingly recognized as key modulators of disease propagation. SUMMARY The neural signature of cortical and subcortical dysfunction in ALS has been well defined at the population level. Objective metrics of focal primary motor dysfunction are increasingly sensitive and translatable to the individual patient level. Integrity of extra-motor subcortical abnormalities are recognized to represent critical pathways of the ALS disease 'connectome', predicting pathological spread. Neuroimaging plays a pivotal role in capturing upper motor neuron pathology in ALS. Their potential clinical role as objective disease markers for disease classification, longitudinal monitoring, and prognosis in ALS have become increasingly well defined.
Collapse
Affiliation(s)
- Sicong Tu
- Brain and Mind Centre
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney
- Neuroscience Research Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney
- Neuroscience Research Australia
| |
Collapse
|
2
|
Pavey N, Hannaford A, Higashihara M, van den Bos M, Geevasinga N, Vucic S, Menon P. Cortical inexcitability in ALS: correlating a clinical phenotype. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-333928. [PMID: 39137976 DOI: 10.1136/jnnp-2024-333928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cortical inexcitability, a less studied feature of upper motor neuron (UMN) dysfunction in amyotrophic lateral sclerosis (ALS), was identified in a large cross-sectional cohort of ALS patients and their demographic and clinical characteristics were contrasted with normal or hyperexcitable ALS cohorts to assess the impact of cortical inexcitability on ALS phenotype and survival. METHODS Threshold-tracking transcranial magnetic stimulation (TMS) technique with measurement of mean short interval intracortical inhibition (SICI) differentiated ALS patients into three groups (1) inexcitable (no TMS response at maximal stimulator output in the setting of preserved lower motor neuron (LMN) function), (2) hyperexcitable (SICI≤5.5%) and (3) normal cortical excitability (SICI>5.5%). Clinical phenotyping and neurophysiological assessment of LMN function were undertaken, and survival was recorded in the entire cohort. RESULTS 417 ALS patients were recruited, of whom 26.4% exhibited cortical inexcitability. Cortical inexcitability was associated with a younger age of disease onset (p<0.05), advanced Awaji criteria (p<0.01) and Kings stage (p<0.01) scores. Additionally, patients with cortical inexcitability had higher UMN score (p<0.01), lower revised ALS Functional Rating Scale score (p<0.01) and reduced upper limb strength score (MRC UL, p<0.01). Patient survival (p=0.398) was comparable across the groups, despite lower riluzole use in the cortical inexcitability patient group (p<0.05). CONCLUSION The present study established that cortical inexcitability was associated with a phenotype characterised by prominent UMN signs, greater motor and functional decline, and a younger age of onset. The present findings inform patient management and could improve patient stratification in clinical trials.
Collapse
Affiliation(s)
- Nathan Pavey
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Andrew Hannaford
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Mehdi van den Bos
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Nimeshan Geevasinga
- The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Steve Vucic
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Parvathi Menon
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Kleinerova J, Tahedl M, Tan EL, Delaney S, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Chang KM, Finegan E, Bede P. Supra- and infra-tentorial degeneration patterns in primary lateral sclerosis: a multimodal longitudinal neuroradiology study. J Neurol 2024; 271:3239-3255. [PMID: 38438819 PMCID: PMC11136747 DOI: 10.1007/s00415-024-12261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is traditionally solely associated with progressive upper motor neuron dysfunction manifesting in limb spasticity, gait impairment, bulbar symptoms and pseudobulbar affect. Recent studies have described frontotemporal dysfunction in some patients resulting in cognitive manifestations. Cerebellar pathology is much less well characterised despite sporadic reports of cerebellar disease. METHODS A multi-timepoint, longitudinal neuroimaging study was conducted to characterise the evolution of both intra-cerebellar disease burden and cerebro-cerebellar connectivity. The volumes of deep cerebellar nuclei, cerebellar cortical volumes, cerebro-cerebellar structural and functional connectivity were assessed longitudinally in a cohort of 43 individuals with PLS. RESULTS Cerebello-frontal, -temporal, -parietal, -occipital and cerebello-thalamic structural disconnection was detected at baseline based on radial diffusivity (RD) and cerebello-frontal decoupling was also evident based on fractional anisotropy (FA) alterations. Functional connectivity changes were also detected in cerebello-frontal, parietal and occipital projections. Volume reductions were identified in the vermis, anterior lobe, posterior lobe, and crura. Among the deep cerebellar nuclei, the dorsal dentate was atrophic. Longitudinal follow-up did not capture statistically significant progressive changes. Significant primary motor cortex atrophy and inter-hemispheric transcallosal degeneration were also captured. CONCLUSIONS PLS is not only associated with upper motor neuron dysfunction, but cerebellar cortical volume loss and deep cerebellar nuclear atrophy can also be readily detected. In addition to intra-cerebellar disease burden, cerebro-cerebellar connectivity alterations also take place. Our data add to the evolving evidence of widespread neurodegeneration in PLS beyond the primary motor regions. Cerebellar dysfunction in PLS is likely to exacerbate bulbar, gait and dexterity impairment and contribute to pseudobulbar affect.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Marlene Tahedl
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Siobhan Delaney
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Department of Neurology, St James's Hospital, Dublin, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
5
|
Tan EL, Tahedl M, Lope J, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Chang KM, Finegan E, Bede P. Language deficits in primary lateral sclerosis: cortical atrophy, white matter degeneration and functional disconnection between cerebral regions. J Neurol 2024; 271:431-445. [PMID: 37759084 DOI: 10.1007/s00415-023-11994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is traditionally regarded as a pure upper motor neuron disorder, but recent cases series have highlighted cognitive deficits in executive and language domains. METHODS A single-centre, prospective neuroimaging study was conducted with comprehensive clinical and genetic profiling. The structural and functional integrity of language-associated brain regions and networks were systematically evaluated in 40 patients with PLS in comparison to 111 healthy controls. The structural integrity of the arcuate fascicle, frontal aslant tract, inferior occipito-frontal fascicle, inferior longitudinal fascicle, superior longitudinal fascicle and uncinate fascicle was evaluated. Functional connectivity between the supplementary motor region and the inferior frontal gyrus and connectivity between Wernicke's and Broca's areas was also assessed. RESULTS Cortical thickness reductions were observed in both Wernicke's and Broca's areas. Fractional anisotropy reduction was noted in the aslant tract and increased radical diffusivity (RD) identified in the aslant tract, arcuate fascicle and superior longitudinal fascicle in the left hemisphere. Functional connectivity was reduced along the aslant track, i.e. between the supplementary motor region and the inferior frontal gyrus, but unaffected between Wernicke's and Broca's areas. Cortical thickness alterations, structural and functional connectivity changes were also noted in the right hemisphere. CONCLUSIONS Disease-burden in PLS is not confined to motor regions, but there is also a marked involvement of language-associated tracts, networks and cortical regions. Given the considerably longer survival in PLS compared to ALS, the impact of language impairment on the management of PLS needs to be carefully considered.
Collapse
Affiliation(s)
- Ee Ling Tan
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Marlene Tahedl
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Jasmin Lope
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Kai Ming Chang
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
6
|
Canu E, Castelnovo V, Rancoita PMV, Leocadi M, Lamanuzzi A, Spinelli EG, Basaia S, Riva N, Poletti B, Solca F, Verde F, Ticozzi N, Silani V, Abrahams S, Filippi M, Agosta F. Italian reference values and brain correlates of verbal fluency index - vs standard verbal fluency test - to assess executive dysfunction in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:457-465. [PMID: 36654496 PMCID: PMC11166044 DOI: 10.1080/21678421.2023.2167606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Objectives: In amyotrophic lateral sclerosis (ALS), verbal fluency index (Vfi) is used to investigate fluency accounting for motor impairment. This study has three aims: (1) to provide Vfi reference values from a cohort of Italian healthy subjects; (2) to assess the ability of Vfi reference values (vs standard verbal fluency test [VFT]) in distinguishing ALS patients with and without executive dysfunction; and (3) to investigate the association between Vfi and brain structural features of ALS patients. Methods: We included 180 healthy subjects and 157 ALS patients who underwent neuropsychological assessment, including VFT and Vfi, and brain MRI. Healthy subjects were split into four subgroups according to sex and education. For each subgroup, we defined the 95th percentile of Vfi as the cutoff. In ALS, the distributions of "abnormal" cases based on Vfi and standard VFT cutoffs were compared using Fisher's exact test. Using quantile regressions in patients, we assessed the association between Vfi and VFT scores, separately, with gray matter volumes and white matter (WM) tract integrity. Results: Applying Vfi and VFT cutoffs, 9 and 13% of ALS cases, respectively, had abnormal scores (p < 0.001). In ALS, while higher Vfi scores were associated with WM changes of callosal fibers linking supplementary motor area, lower VFT performances related to corticospinal tract alterations. Discussion: We provided Italian reference values for the spoken Vfi. Compared to VFT, Vfis are critical to disentangle motor and cognitive deficits in ALS. In patients, abnormal Vfis were associated with damage to WM tracts specifically involved in ideational information processing.
Collapse
Affiliation(s)
- Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola MV Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Michela Leocadi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Lamanuzzi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK, and
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Yeung HW, Stolicyn A, Buchanan CR, Tucker‐Drob EM, Bastin ME, Luz S, McIntosh AM, Whalley HC, Cox SR, Smith K. Predicting sex, age, general cognition and mental health with machine learning on brain structural connectomes. Hum Brain Mapp 2023; 44:1913-1933. [PMID: 36541441 PMCID: PMC9980898 DOI: 10.1002/hbm.26182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.
Collapse
Affiliation(s)
- Hon Wah Yeung
- Department of PsychiatryUniversity of EdinburghEdinburghUK
| | - Aleks Stolicyn
- Department of PsychiatryUniversity of EdinburghEdinburghUK
| | - Colin R. Buchanan
- Department of PsychologyUniversity of EdinburghEdinburghUK
- Lothian Birth Cohorts, University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE)EdinburghUK
| | - Elliot M. Tucker‐Drob
- Department of PsychologyUniversity of TexasAustinTexasUSA
- Population Research Center and Center on Aging and Population SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Mark E. Bastin
- Lothian Birth Cohorts, University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE)EdinburghUK
- Centre for Clinical Brain ScienceUniversity of EdinburghEdinburghUK
| | - Saturnino Luz
- Edinburgh Medical SchoolUsher Institute, The University of EdinburghEdinburghUK
| | - Andrew M. McIntosh
- Department of PsychiatryUniversity of EdinburghEdinburghUK
- Centre for Genomic and Experimental MedicineInstitute of Genetics and Molecular Medicine, University of EdinburghEdinburghUK
| | | | - Simon R. Cox
- Department of PsychologyUniversity of EdinburghEdinburghUK
- Lothian Birth Cohorts, University of EdinburghEdinburghUK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE)EdinburghUK
| | - Keith Smith
- Department of Physics and MathematicsNottingham Trent UniversityNottinghamUK
| |
Collapse
|
8
|
Tahedl M, Tan EL, Shing SLH, Chipika RH, Siah WF, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Finegan E, Bede P. Not a benign motor neuron disease: longitudinal imaging captures relentless motor connectome disintegration in primary lateral sclerosis. Eur J Neurol 2023; 30:1232-1245. [PMID: 36739888 DOI: 10.1111/ene.15725] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Primary lateral sclerosis (PLS) is a progressive upper motor neuron disorder associated with considerable clinical disability. Symptoms are typically exclusively linked to primary motor cortex degeneration and the contribution of pre-motor, supplementary motor, cortico-medullary and inter-hemispheric connectivity alterations are less well characterized. METHODS In a single-centre, prospective, longitudinal neuroimaging study 41 patients with PLS were investigated. Patients underwent standardized neuroimaging, genetic profiling with whole exome sequencing, and comprehensive clinical assessments including upper motor neuron scores, tapping rates, mirror movements, spasticity assessment, cognitive screening and evaluation for pseudobulbar affect. Longitudinal neuroimaging data from 108 healthy controls were used for image interpretation. A standardized imaging protocol was implemented including 3D T1-weighted structural, diffusion tensor imaging and resting-state functional magnetic resonance imaging. Following somatotopic segmentation, cortical thickness analyses, probabilistic tractography, blood oxygenation level dependent signal analyses and brainstem volumetry were conducted to evaluate cortical, brainstem, cortico-medullary and inter-hemispheric connectivity alterations both cross-sectionally and longitudinally. RESULTS Our data confirm progressive primary motor cortex degeneration, considerable supplementary motor and pre-motor area involvement, progressive brainstem atrophy, cortico-medullary and inter-hemispheric disconnection, and close associations between clinical upper motor neuron scores and somatotopic connectivity indices in PLS. DISCUSSION Primary lateral sclerosis is associated with relentlessly progressive motor connectome degeneration. Clinical disability in PLS is likely to stem from a combination of intra- and inter-hemispheric connectivity decline and primary, pre- and supplementary motor cortex degeneration. Simple 'bedside' clinical tools, such as tapping rates, are excellent proxies of the integrity of the relevant fibres of the contralateral corticospinal tract.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Spinelli EG, Ghirelli A, Riva N, Canu E, Castelnovo V, Domi T, Pozzi L, Carrera P, Silani V, Chiò A, Filippi M, Agosta F. Profiling morphologic MRI features of motor neuron disease caused by TARDBP mutations. Front Neurol 2022; 13:931006. [PMID: 35911889 PMCID: PMC9334911 DOI: 10.3389/fneur.2022.931006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Mutations in the TARDBP gene are a rare cause of genetic motor neuron disease (MND). Morphologic MRI characteristics of MND patients carrying this mutation have been poorly described. Our objective was to investigate distinctive clinical and MRI features of a relatively large sample of MND patients carrying TARDBP mutations. Methods Eleven MND patients carrying a TARDBP mutation were enrolled. Eleven patients with sporadic MND (sMND) and no genetic mutations were also selected and individually matched by age, sex, clinical presentation and disease severity, along with 22 healthy controls. Patients underwent clinical and cognitive evaluations, as well as 3D T1-weighted and diffusion tensor (DT) MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a whole-brain level using voxel-based morphometry (VBM). GM volumes and DT MRI metrics of the main white matter (WM) tracts were also obtained. Clinical, cognitive and MRI features were compared between groups. Results MND with TARDBP mutations was associated with all possible clinical phenotypes, including isolated upper/lower motor neuron involvement, with no predilection for bulbar or limb involvement at presentation. Greater impairment at naming tasks was found in TARDBP mutation carriers compared with sMND. VBM analysis showed significant atrophy of the right lateral parietal cortex in TARDBP patients, compared with controls. A distinctive reduction of GM volumes was found in the left precuneus and right angular gyrus of TARDBP patients compared to controls. WM microstructural damage of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was found in both sMND and TARDBP patients, compared with controls, although decreased fractional anisotropy of the right CST and increased axial diffusivity of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers. Conclusions TARDBP patients showed a distinctive parietal pattern of cortical atrophy and greater damage of motor and extra-motor WM tracts compared with controls, which sMND patients matched for disease severity and clinical presentation were lacking. Our findings suggest that TDP-43 pathology due to TARDBP mutations may cause deeper morphologic alterations in both GM and WM.
Collapse
Affiliation(s)
- Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nilo Riva
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Adriano Chiò
- Rita Levi Montalcini “Department of Neuroscience, ” ALS Center, University of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta
| |
Collapse
|
10
|
Münch M, Müller HP, Behler A, Ludolph AC, Kassubek J. Segmental alterations of the corpus callosum in motor neuron disease: A DTI and texture analysis in 575 patients. Neuroimage Clin 2022; 35:103061. [PMID: 35653913 PMCID: PMC9163839 DOI: 10.1016/j.nicl.2022.103061] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 10/29/2022]
Abstract
INTRODUCTION Within the core neuroimaging signature of amyotrophic lateral sclerosis (ALS), the corpus callosum (CC) is increasingly recognized as a consistent feature. The aim of this study was to investigate the sensitivity and specificity of the microstructural segmental CC morphology, assessed by diffusion tensor imaging (DTI) and high-resolution T1-weighted (T1w) imaging, in a large cohort of ALS patients including different clinical phenotypes. METHODS In a single-centre study, 575 patients with ALS (classical phenotype, N = 432; restricted phenotypes primary lateral sclerosis (PLS) N = 55, flail arm syndrome (FAS) N = 45, progressive bulbar palsy (PBP) N = 22, lower motor neuron disease (LMND) N = 21) and 112 healthy controls underwent multiparametric MRI, i.e. volume-rendering T1w scans and DTI. Tract-based fractional anisotropy statistics (TFAS) was applied to callosal tracts of CC areas I-V, identified from DTI data (tract-of-interest (TOI) analysis), and texture analysis was applied to T1w data. In order to further specify the callosal alterations, a support vector machine (SVM) algorithm was used to discriminate between motor neuron disease patients and controls. RESULTS The analysis of white matter integrity revealed predominantly FA reductions for tracts of the callosal areas I, II, and III (with highest reductions in callosal area III) for all ALS patients and separately for each phenotype when compared to controls; texture analysis demonstrated significant alterations of the parameters entropy and homogeneity for ALS patients and all phenotypes for the CC areas I, II, and III (with again highest reductions in callosal area III) compared to controls. With SVM applied on multiparametric callosal parameters of area III, a separation of all ALS patients including phenotypes from controls with 72% sensitivity and 73% specificity was achieved. These results for callosal area III parameters could be improved by an SVM of six multiparametric callosal parameters of areas I, II, and III, achieving a separation of all ALS patients including phenotypes from controls with 84% sensitivity and 85% specificity. DISCUSSION The multiparametric MRI texture and DTI analysis demonstrated substantial alterations of the frontal and central CC with most significant alterations in callosal area III (motor segment) in ALS and separately in all investigated phenotypes (PLS, FAS, PBP, LMND) in comparison to controls, while no significant differences were observed between ALS and its phenotypes. The combination of the texture and the DTI parameters in an unbiased SVM-based approach might contribute as a neuroimaging marker for the assessment of the CC in ALS, including subtypes.
Collapse
Affiliation(s)
| | | | - Anna Behler
- Department of Neurology, University of Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
11
|
Finegan E, Siah WF, Li Hi Shing S, Chipika RH, Hardiman O, Bede P. Cerebellar degeneration in primary lateral sclerosis: an under-recognized facet of PLS. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:542-553. [PMID: 34991421 DOI: 10.1080/21678421.2021.2023188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
While primary lateral sclerosis (PLS) has traditionally been regarded as a pure upper motor neuron disorder, recent clinical, neuroimaging and postmortem studies have confirmed significant extra-motor involvement. Sporadic reports have indicated that in addition to the motor cortex and corticospinal tracts, the cerebellum may also be affected in PLS. Cerebellar manifestations are difficult to ascertain in PLS as the clinical picture is dominated by widespread upper motor neuron signs. The likely contribution of cerebellar dysfunction to gait disturbance, falls, pseudobulbar affect and dysarthria may be overlooked in the context of progressive spasticity. The objective of this study is the comprehensive characterization of cerebellar gray and white matter degeneration in PLS using multiparametric quantitative neuroimaging methods to systematically evaluate each cerebellar lobule and peduncle. Forty-two patients with PLS and 117 demographically-matched healthy controls were enrolled in a prospective MRI study. Complementary volumetric and voxelwise analyses revealed focal cerebellar alterations instead of global cerebellar atrophy. Bilateral gray matter volume reductions were observed in lobules III, IV and VIIb. Significant diffusivity alterations within the superior cerebellar peduncle indicate disruption of the main cerebellar outflow tracts. These findings suggest that the considerable intra-cerebellar disease-burden is coupled with concomitant cerebro-cerebellar connectivity disruptions. While cerebellar dysfunction is challenging to demonstrate clinically, cerebellar pathology is likely to be a significant contributor to disability in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Hübers A, Kassubek J, Müller HP, Broc N, Dreyhaupt J, Ludolph AC. The ipsilateral silent period: an early diagnostic marker of callosal disconnection in ALS. Ther Adv Chronic Dis 2021; 12:20406223211044072. [PMID: 34729145 PMCID: PMC8442475 DOI: 10.1177/20406223211044072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Imaging studies showed affection of the corpus callosum (CC) in
amyotrophic lateral sclerosis (ALS). Here, we sought to
determine whether these structural alterations reflect on the
functional level, using transcranial magnetic stimulation
(TMS). Methods: In 31 ALS patients and 12 controls, we studied mirror movements
(MM) and transcallosal inhibition (TI) using TMS. Structural
integrity of transcallosal fibres was assessed using diffusion
tensor imaging. Results: TI was pathologic in 25 patients (81%), 22 (71%) showed MM. Loss of
TI was observed in very early stages (disease duration
<4 months). No correlation was found between TI/MM and
fractional anisotropy of transcallosal fibres. Discussion: These results substantiate the body of evidence towards a
functional involvement of the CC in early ALS beyond
microstructural alterations. Significance: TI may become a useful early diagnostic marker in ALS, even before
descending tracts are affected. Diagnostic delay in ALS is high,
often preventing patients from gaining access to therapeutic
trials, and sensitive diagnostic tools are urgently needed. Our
findings also provide insights into the pathophysiology of ALS,
potentially supporting the so-called ‘top-down’ hypothesis, that
is, corticoefferent (intracortical/corticospinal) propagation.
Callosal affection in early stages might represent the ‘missing
link’ to explain corticocortical disease-spreading.
Collapse
Affiliation(s)
- Annemarie Hübers
- Department of Clinical Neurosciences, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | | | - Nicolas Broc
- Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | | |
Collapse
|
13
|
Tahedl M, Li Hi Shing S, Finegan E, Chipika RH, Lope J, Hardiman O, Bede P. Propagation patterns in motor neuron diseases: Individual and phenotype-associated disease-burden trajectories across the UMN-LMN spectrum of MNDs. Neurobiol Aging 2021; 109:78-87. [PMID: 34656922 DOI: 10.1016/j.neurobiolaging.2021.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023]
Abstract
Motor neuron diseases encompass a divergent group of conditions with considerable differences in clinical manifestations, survival, and genetic vulnerability. One of the key aspects of clinical heterogeneity is the preferential involvement of upper (UMN) and lower motor neurons (LMN). While longitudinal imaging patters are relatively well characterized in ALS, progressive cortical changes in UMN,- and LMN-predominant conditions are seldom evaluated. Accordingly, the objective of this study is the juxtaposition of longitudinal trajectories in 3 motor neuron phenotypes; a UMN-predominant syndrome (PLS), a mixed UMN-LMN condition (ALS), and a lower motor neuron condition (poliomyelitis survivors). A standardized imaging protocol was implemented in a prospective, multi-timepoint longitudinal study with a uniform follow-up interval of 4 months. Forty-five poliomyelitis survivors, 61 patients with amyotrophic lateral sclerosis (ALS), and 23 patients with primary lateral sclerosis (PLS) were included. Cortical thickness alterations were evaluated in a dual analysis pipeline, using standard cortical thickness analyses, and a z-score-based individualized approach. Our results indicate that PLS patients exhibit rapidly progressive cortical thinning primarily in motor regions; ALS patients show cortical atrophy in both motor and extra-motor regions, while poliomyelitis survivors exhibit cortical thickness gains in a number of cerebral regions. Our findings suggest that dynamic cortical changes in motor neuron diseases may depend on relative UMN and/or LMN involvement, and increased cortical thickness in LMN-predominant conditions may represent compensatory, adaptive processes.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Psychiatry and Psychotherapy and Institute for Psychology, University of Regensburg, 93053 Regensburg, Germany
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
14
|
Canna A, Trojsi F, Di Nardo F, Caiazzo G, Tedeschi G, Cirillo M, Esposito F. Combining structural and metabolic markers in a quantitative MRI study of motor neuron diseases. Ann Clin Transl Neurol 2021; 8:1774-1785. [PMID: 34342169 PMCID: PMC8419394 DOI: 10.1002/acn3.51418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the performance of a combination of three quantitative MRI markers (iron deposition, basal neuronal metabolism, and regional atrophy) for differential diagnosis between amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). METHODS In total, 33 ALS, 12 PLS, and 28 healthy control (HC) subjects underwent a 3T MRI study including single- and multi-echo sequences for gray matter (GM) volumetry and quantitative susceptibility mapping (QSM) and a pseudo-continuous arterial spin labeling (ASL) sequence for cerebral blood flow (CBF) measurement. Mean values of QSM, CBF, and GM volumes were extracted in the motor cortex, basal ganglia, thalamus, amygdala, and hippocampus. A generalized linear model was applied to the three measures to binary discriminate between groups. The diagnostic performances were evaluated via receiver operating characteristic analyses. RESULTS A significant discrimination was obtained: between ALS and HCs in the left and right motor cortex, where QSM increases were respectively associated with disability scores and disease duration; between PLS and ALS in the left motor cortex, where PLS patients resulted significantly more atrophic; between ALS and HC in the right motor cortex, where GM volumes were associated with upper motor neuron scores. Significant discrimination between ALS and HC was achieved in subcortical structures only combining all three parameters. INTERPRETATION While increased QSM values in the motor cortex of ALS patients is a consolidated finding, combining QSM, CBF, and GM volumetry shows higher diagnostic potential for differentiating ALS patients from HC subjects and, in the motor cortex, between ALS and PLS.
Collapse
Affiliation(s)
- Antonietta Canna
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Mario Cirillo
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical SciencesUniversity of Campania "Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
15
|
Gilmore M, Elman L, Babu S, Andres P, Floeter MK. Measuring disease progression in primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2021; 21:59-66. [PMID: 33602016 DOI: 10.1080/21678421.2020.1837179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Quantitative measures of disease severity are essential outcome measures for clinical trials. The slow progression of disease in primary lateral sclerosis (PLS) requires clinical measures that are sensitive to changes occurring within the time frame of a clinical trial. Proposed clinical outcome measures include the PLS functional rating scale (PLSFRS), burden scores derived from clinical examination findings, and quantitative measures of motor performance. The PLSFRS has good inter-rater reliability and showed greater longitudinal change over 6- and 12-months compared to the revised ALS functional rating scale. Examination-based upper motor neuron burden (UMNB) scales also have good reliability, and longitudinal studies are in process. Quantitative measures of strength, dexterity, gait, and speech have the potential to provide objective and precise measures of clinical change, but have been the least studied in persons with PLS.
Collapse
Affiliation(s)
- Madison Gilmore
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Lauren Elman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Suma Babu
- Sean M Healy & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia Andres
- Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Mary Kay Floeter
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| |
Collapse
|
16
|
Bede P, Pradat PF, Lope J, Vourc'h P, Blasco H, Corcia P. Primary Lateral Sclerosis: Clinical, radiological and molecular features. Rev Neurol (Paris) 2021; 178:196-205. [PMID: 34243936 DOI: 10.1016/j.neurol.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 10/20/2022]
Abstract
Primary Lateral Sclerosis (PLS) is an uncommon motor neuron disorder. Despite the well-recognisable constellation of clinical manifestations, the initial diagnosis can be challenging and therapeutic options are currently limited. There have been no recent clinical trials of disease-modifying therapies dedicated to this patient cohort and awareness of recent research developments is limited. The recent consensus diagnostic criteria introduced the category 'probable' PLS which is likely to curtail the diagnostic journey of patients. Extra-motor clinical manifestations are increasingly recognised, challenging the view of PLS as a 'pure' upper motor neuron condition. The post mortem literature of PLS has been expanded by seminal TDP-43 reports and recent PLS studies increasingly avail of meticulous genetic profiling. Research in PLS has gained unprecedented momentum in recent years generating novel academic insights, which may have important clinical ramifications.
Collapse
Affiliation(s)
- P Bede
- Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland.
| | - P-F Pradat
- Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| | - J Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - P Vourc'h
- Department of Biochemistry and Molecular Biology, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Université de Tours, Inserm, France
| | - H Blasco
- Department of Biochemistry and Molecular Biology, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Université de Tours, Inserm, France
| | - P Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, France; ALS and MND centre (FILSLAN), University of Tours, "iBrain", inserm, France
| |
Collapse
|
17
|
Fullam T, Statland J. Upper Motor Neuron Disorders: Primary Lateral Sclerosis, Upper Motor Neuron Dominant Amyotrophic Lateral Sclerosis, and Hereditary Spastic Paraplegia. Brain Sci 2021; 11:brainsci11050611. [PMID: 34064596 PMCID: PMC8151104 DOI: 10.3390/brainsci11050611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Following the exclusion of potentially reversible causes, the differential for those patients presenting with a predominant upper motor neuron syndrome includes primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), or upper motor neuron dominant ALS (UMNdALS). Differentiation of these disorders in the early phases of disease remains challenging. While no single clinical or diagnostic tests is specific, there are several developing biomarkers and neuroimaging technologies which may help distinguish PLS from HSP and UMNdALS. Recent consensus diagnostic criteria and use of evolving technologies will allow more precise delineation of PLS from other upper motor neuron disorders and aid in the targeting of potentially disease-modifying therapeutics.
Collapse
|
18
|
Agosta F, Filippi M. The Benign Course of PLS: A Strong Point in Favor of an Earlier Differentiation From ALS. Neurology 2021; 96:783-784. [PMID: 33637628 DOI: 10.1212/wnl.0000000000011773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Federica Agosta
- From the Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University, Milan, Italy.
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
19
|
Müller HP, Lulé D, Roselli F, Behler A, Ludolph AC, Kassubek J. Segmental involvement of the corpus callosum in C9orf72-associated ALS: a tract of interest-based DTI study. Ther Adv Chronic Dis 2021; 12:20406223211002969. [PMID: 33815737 PMCID: PMC7989124 DOI: 10.1177/20406223211002969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background: C9orf72 hexanucleotide repeat expansions are associated with widespread cerebral alterations, including white matter alterations. However, there is lack of information on changes in commissure fibres. Diffusion tensor imaging (DTI) can identify amyotrophic lateral sclerosis (ALS)-associated patterns of regional brain alterations at the group level. The objective of this study was to investigate the structural connectivity of the corpus callosum (CC) in ALS patients with C9orf72 expansions. Methods: DTI-based white matter mapping was performed by a hypothesis-guided tractwise analysis of fractional anisotropy (FA) maps for 25 ALS patients with C9orf72 expansion versus 25 matched healthy controls. Furthermore, a comparison with a patient control group of 25 sporadic ALS patients was performed. DTI-based tracts that originate from callosal sub-areas I to V were identified and correlated with clinical data. Results: The analysis of white matter integrity demonstrated regional FA reductions for tracts of the callosal areas II and III for ALS patients with C9orf72 expansions while FA reductions in sporadic ALS patients were observed only for tracts of the callosal area III; these reductions were correlated with clinical parameters. Conclusion: The tract-of-interest-based analysis showed a microstructural callosal involvement pattern in C9orf72-associated ALS that included the motor segment III together with frontal callosal connections, as an imaging signature of the C9orf72-associated overlap of motor neuron disease and frontotemporal pathology.
Collapse
Affiliation(s)
| | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Anna Behler
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm, 89081, Germany
| |
Collapse
|
20
|
Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use. J Neurol 2021; 268:1913-1926. [PMID: 33399966 DOI: 10.1007/s00415-020-10368-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The majority of imaging studies in ALS infer group-level imaging signatures from group comparisons, as opposed to estimating disease burden in individual patients. In a condition with considerable clinical heterogeneity, the characterisation of individual patterns of pathology is hugely relevant. In this study, we evaluate a strategy to track progressive cortical involvement in single patients by using subject-specific reference cohorts. METHODS We have interrogated a multi-timepoint longitudinal dataset of 61 ALS patients to demonstrate the utility of estimating cortical disease burden and the expansion of cerebral atrophy over time. We contrast our strategy to the gold-standard approach to gauge the advantages and drawbacks of our method. We modelled the evolution of cortical integrity in a conditional growth model, in which we accounted for age, gender, disability, symptom duration, education and handedness. We hypothesised that the variance associated with demographic variables will be successfully eliminated in our approach. RESULTS In our model, the only covariate which modulated the expansion of atrophy was motor disability as measured by the ALSFRS-r (t(153) = - 2.533, p = 0.0123). Using the standard approach, age also significantly influenced progression of CT change (t(153) = - 2.151, p = 0.033) demonstrating the validity and potential clinical utility of our approach. CONCLUSION Our strategy of estimating the extent of cortical atrophy in individual patients with ALS successfully corrects for demographic factors and captures relevant cortical changes associated with clinical disability. Our approach provides a framework to interpret single T1-weighted images in ALS and offers an opportunity to track cortical propagation patterns both at individual subject level and at cohort level.
Collapse
|
21
|
Basaia S, Agosta F, Cividini C, Trojsi F, Riva N, Spinelli EG, Moglia C, Femiano C, Castelnovo V, Canu E, Falzone Y, Monsurrò MR, Falini A, Chiò A, Tedeschi G, Filippi M. Structural and functional brain connectome in motor neuron diseases: A multicenter MRI study. Neurology 2020; 95:e2552-e2564. [PMID: 32913015 PMCID: PMC7682834 DOI: 10.1212/wnl.0000000000010731] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate structural and functional neural organization in amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS), and progressive muscular atrophy (PMA). METHODS A total of 173 patients with sporadic ALS, 38 patients with PLS, 28 patients with PMA, and 79 healthy controls were recruited from 3 Italian centers. Participants underwent clinical, neuropsychological, and brain MRI evaluations. Using graph analysis and connectomics, global and lobar topologic network properties and regional structural and functional brain connectivity were assessed. The association between structural and functional network organization and clinical and cognitive data was investigated. RESULTS Compared with healthy controls, patients with ALS and patients with PLS showed altered structural global network properties, as well as local topologic alterations and decreased structural connectivity in sensorimotor, basal ganglia, frontal, and parietal areas. Patients with PMA showed preserved global structure. Patient groups did not show significant alterations of functional network topologic properties relative to controls. Increased local functional connectivity was observed in patients with ALS in the precentral, middle, and superior frontal areas, and in patients with PLS in the sensorimotor, basal ganglia, and temporal networks. In patients with ALS and patients with PLS, structural connectivity alterations correlated with motor impairment, whereas functional connectivity disruption was closely related to executive dysfunction and behavioral disturbances. CONCLUSIONS This multicenter study showed widespread motor and extramotor network degeneration in ALS and PLS, suggesting that graph analysis and connectomics might represent a powerful approach to detect upper motor neuron degeneration, extramotor brain changes, and network reorganization associated with the disease. Network-based advanced MRI provides an objective in vivo assessment of motor neuron diseases, delivering potential prognostic markers.
Collapse
Affiliation(s)
- Silvia Basaia
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Federica Agosta
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Camilla Cividini
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Francesca Trojsi
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Nilo Riva
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Edoardo G Spinelli
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Cristina Moglia
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Cinzia Femiano
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Veronica Castelnovo
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Elisa Canu
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Yuri Falzone
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Maria Rosaria Monsurrò
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Andrea Falini
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Adriano Chiò
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Gioacchino Tedeschi
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, (S.B., F.A., C.C., E.G.S., V.C., E.C., M.F.), Neurorehabilitation Unit (N.R.), Neurology Unit (Y.F., M.F.), Neurophysiology Unit (M.F.), and Department of Neuroradiology and CERMAC (A.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (F.A., C.C., E.G.S., V.C., Y.F., A.F., M.F.), Milan; Department of Advanced Medical and Surgical Sciences (F.T., C.F., M.R.M., G.T.), University of Campania "Luigi Vanvitelli," Naples; and ALS Center (C.M., A.C.), "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Italy.
| |
Collapse
|
22
|
Pioro EP, Turner MR, Bede P. Neuroimaging in primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:18-27. [PMID: 33602015 DOI: 10.1080/21678421.2020.1837176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Increased interest in the underlying pathogenesis of primary lateral sclerosis (PLS) and its relationship to amyotrophic lateral sclerosis (ALS) has corresponded to a growing number of CNS imaging studies, especially in the past decade. Both its rarity and uncertainty of definite diagnosis prior to 4 years from symptom onset have resulted in PLS being less studied than ALS. In this review, we highlight most relevant papers applying magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) to analyzing CNS changes in PLS, often in relation to ALS. In patients with PLS, mostly brain, but also spinal cord has been evaluated since significant neurodegeneration is essentially restricted to upper motor neuron (UMN) structures and related pathways. Abnormalities of cortex and subcortical white matter tracts have been identified by structural and functional MRI and MRS studies, while metabolic and cell-specific changes in PLS brain have been revealed using various PET radiotracers. Future neuroimaging studies will continue to explore the interface between the PLS-ALS continuum, identify more changes unique to PLS, apply novel MRI and MRS sequences showing greater structural and neurochemical detail, as well as expand the repertoire of PET radiotracers that reveal various cellular pathologies. Neuroimaging has the potential to play an important role in the evaluation of novel therapies for patients with PLS.
Collapse
Affiliation(s)
- Erik P Pioro
- Section of ALS & Related Disorders, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Ludolph AC, Emilian S, Dreyhaupt J, Rosenbohm A, Kraskov A, Lemon RN, Del Tredici K, Braak H. Pattern of paresis in ALS is consistent with the physiology of the corticomotoneuronal projections to different muscle groups. J Neurol Neurosurg Psychiatry 2020; 91:991-998. [PMID: 32665323 DOI: 10.1136/jnnp-2020-323331] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE A recent neuroanatomical staging scheme of amyotrophic lateral sclerosis (ALS) indicates that a cortical lesion may spread, as a network disorder, both at the cortical level and via corticofugal tracts, including corticospinal projections providing direct monosynaptic input to α-motoneurons. These projections are involved preferentially and early in ALS. If these findings are clinically relevant, the pattern of paresis in ALS should primarily involve those muscle groups that receive the strongest direct corticomotoneuronal (CM) innervation. METHODS In a large cohort (N=436), we analysed retrospectively the pattern of muscle paresis in patients with ALS using the UK Medical Research Council (MRC) scoring system; we subsequently carried out two independent prospective studies in two smaller groups (N=92 and N=54). RESULTS The results indicated that a characteristic pattern of paresis exists. When pairs of muscle groups were compared within patients, the group known to receive the more pronounced CM connections was significantly weaker. Within patients, there was greater relative weakness (lower MRC score) in thumb abductors versus elbow extensors, for hand extensors versus hand flexors and for elbow flexors versus elbow extensors. In the lower limb, knee flexors were relatively weaker than extensors, and plantar extensors were weaker than plantar flexors. CONCLUSIONS These findings were mostly significant (p<0.01) for all six pairs of muscles tested and provide indirect support for the concept that ALS may specifically affect muscle groups with strong CM connections. This specific pattern could help to refine clinical and electrophysiological ALS diagnostic criteria and complement prospective clinicopathological correlation studies.
Collapse
Affiliation(s)
- Albert C Ludolph
- Department of Neurology, University of Ulm, 89081 Ulm, Germany .,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Susanne Emilian
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Alexander Kraskov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Roger N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Kelly Del Tredici
- Department of Neurology, Clinical Neuroanatomy (Center for Biomedical Research), Ulm, Germany
| | - Heiko Braak
- Department of Neurology, Clinical Neuroanatomy (Center for Biomedical Research), Ulm, Germany
| |
Collapse
|
25
|
Finegan E, Li Hi Shing S, Siah WF, Chipika RH, Chang KM, McKenna MC, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, Hutchinson S, McLaughlin RL, Hardiman O, Bede P. Evolving diagnostic criteria in primary lateral sclerosis: The clinical and radiological basis of "probable PLS". J Neurol Sci 2020; 417:117052. [PMID: 32731060 DOI: 10.1016/j.jns.2020.117052] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Primary lateral sclerosis is a rare neurodegenerative disorder of the upper motor neurons. Diagnostic criteria have changed considerably over the years, and the recent consensus criteria introduced 'probable PLS' for patients with a symptom duration of 2-4 years. The objective of this study is the systematic evaluation of clinical and neuroimaging characteristics in early PLS by studying a group of 'probable PLS patients' in comparison to a cohort of established PLS patients. METHODS In a prospective neuroimaging study, thirty-nine patients were stratified by the new consensus criteria into 'probable' (symptom duration 2-4 years) or 'definite' PLS (symptom duration >4 years). Patients were evaluated with a standardised battery of clinical instruments (ALSFRS-r, Penn upper motor neuron score, the modified Ashworth spasticity scale), whole genome sequencing, and underwent structural and diffusion MRI. The imaging profile of the two PLS cohorts were contrasted to a dataset of 100 healthy controls. All 'probable PLS' patients subsequently fulfilled criteria for 'definite' PLS on longitudinal follow-up and none transitioned to develop ALS. RESULTS PLS patients tested negative for known ALS- or HSP-associated mutations on whole genome sequencing. Despite their shorter symptom duration, 'probable PLS' patients already exhibited considerable functional disability, upper motor neuron disease burden and the majority of them required walking aids for safe ambulation. Their ALSFRS-r, UMN and modified Ashworth score means were 83%, 98% and 85% of the 'definite' group respectively. Motor cortex thickness was significantly reduced in both PLS groups in comparison to controls, but cortical changes were less widespread in 'probable' PLS on morphometric analyses. Corticospinal tract and corpus callosum metrics were relatively well preserved in the 'probable' group in contrast to the widespread white matter degeneration observed in the 'definite' group. CONCLUSIONS Our clinical and radiological analyses support the recent introduction of the 'probable' PLS category, as this cohort already exhibits considerable disability and cerebral changes consistent with established PLS. Before the publication of the new consensus criteria, these patients would have not been diagnosed with PLS on the basis of their symptom duration despite their significant functional impairment and motor cortex atrophy. The introduction of this new category will facilitate earlier recruitment into clinical trials, and shorten the protracted diagnostic uncertainty the majority of PLS patients face.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Colette Donaghy
- Department of Neurology, Belfast, Western Health & Social Care Trust, UK
| | | | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
26
|
Structural MRI outcomes and predictors of disease progression in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102315. [PMID: 32593977 PMCID: PMC7327879 DOI: 10.1016/j.nicl.2020.102315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022]
Abstract
Serial diffusion tensor (DT) MRI showed progression of white matter pathology in ALS. Early involvement of motor fibers and later spread to extra-motor regions was found. DT MRI measures of damage to the motor networks showed consistent worsening. These correlated with clinical progression and long-term functional prognosis. No significant cortical thinning was detected either at baseline or over time.
Background and aims Considering the great heterogeneity of amyotrophic lateral sclerosis (ALS), the identification of accurate prognostic predictors is fundamental for both the clinical practice and the design of treatment trials. This study aimed to explore the progression of clinical and structural brain changes in patients with ALS, and to assess magnetic resonance imaging (MRI) measures of brain damage as predictors of subsequent functional decline. Methods 50 ALS patients underwent clinical evaluations and 3 T MRI scans at regular intervals for a maximum of 2 years (total MRI scans = 164). MRI measures of cortical thickness, as well as diffusion tensor (DT) metrics of microstructural damage along white matter (WM) tracts were obtained. Voxel-wise regression models and longitudinal mixed-effects models were used to test the relationship between clinical decline and baseline and longitudinal MRI features. Results The rate of decline of the ALS Functional Rating Scale revised (ALSFRS-r) was significantly associated with the rate of fractional anisotropy (FA) decrease in the body of the corpus callosum (CC). Corticospinal tract (CST) and CC-body alterations had a faster progression in patients with higher baseline ALSFRS-r scores and greater CC-body disruption at baseline. Lower FA of the cerebral peduncle was associated with faster subsequent clinical progression. Conclusions In this longitudinal study, we identified a significant association between measures of WM damage of the motor tracts and functional decline in ALS patients. Our data suggest that a multiparametric approach including DT MRI measures of brain damage would provide an optimal method for an accurate stratification of ALS patients into prognostic classes.
Collapse
|
27
|
Chen QF, Zhang XH, Huang NX, Chen HJ. Identification of Amyotrophic Lateral Sclerosis Based on Diffusion Tensor Imaging and Support Vector Machine. Front Neurol 2020; 11:275. [PMID: 32411072 PMCID: PMC7198809 DOI: 10.3389/fneur.2020.00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: White matter (WM) impairments involving both motor and extra-motor areas have been well-documented in amyotrophic lateral sclerosis (ALS). This study tested the potential of diffusion measurements in WM for identifying ALS based on support vector machine (SVM). Methods: Voxel-wise fractional anisotropy (FA) values of diffusion tensor images (DTI) were extracted from 22 ALS patients and 26 healthy controls and served as discrimination features. The revised ALS Functional Rating Scale (ALSFRS-R) was employed to assess ALS severity. Feature ranking and selection were based on Fisher scores. A linear kernel SVM algorithm was applied to build the classification model, from which the classification performance was evaluated. To promote classifier generalization ability, a leave-one-out cross-validation (LOOCV) method was adopted. Results: By using the 2,400~3,400 ranked features as optimal features, the highest classification accuracy of 83.33% (sensitivity = 77.27% and specificity = 88.46%, P = 0.0001) was achieved, with an area under receiver operating characteristic curve of 0.862. The predicted function value was positively correlated with patient ALSFRS-R scores (r = 0.493, P = 0.020). In the optimized SVM model, FA values from several regions mostly contributed to classification, primarily involving the corticospinal tract pathway, postcentral gyrus, and frontal and parietal areas. Conclusions: Our results suggest the feasibility of ALS diagnosis based on SVM analysis and diffusion measurements of WM. Additional investigations using a larger cohort is recommended in order to validate the results of this study.
Collapse
Affiliation(s)
- Qiu-Feng Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
28
|
Swash M, Burke D, Turner MR, Grosskreutz J, Leigh PN, deCarvalho M, Kiernan MC. Occasional essay: Upper motor neuron syndrome in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2020; 91:227-234. [PMID: 32054724 DOI: 10.1136/jnnp-2019-321938] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Michael Swash
- Barts and the London School of Medicine, QMUL, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, London, UK
| | - David Burke
- University of Sydney and Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Julian Grosskreutz
- Universitätsklinikum Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - P Nigel Leigh
- Trafford Centre for Biomedical Research, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Mamede deCarvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, and Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Matthew C Kiernan
- University of Sydney and Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
29
|
Tu S, Wang C, Menke RAL, Talbot K, Barnett M, Kiernan MC, Turner MR. Regional callosal integrity and bilaterality of limb weakness in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:396-402. [PMID: 32106716 DOI: 10.1080/21678421.2020.1733020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background and Objectives: The corpus callosum is a site of pathological involvement in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS). The corpus callosum shows widespread cortical connectivity topographically distributed along its length. Initial limb weakness in ALS is typically unilateral, becoming bilateral with disease progression. The precise anatomical substrate for this spread is uncertain. The present study investigated sub-regional variations in corpus callosum integrity in ALS, and whether these reflect a relationship with the development of unilateral or bilateral limb weakness. Methods: Sporadic ALS patients were categorized into unilateral (n = 14) or bilateral (n = 25) limb weakness at the time of assessment and underwent diffusion tensor imaging. Probabilistic bundle-specific tracking was carried out using MRtrix and TractSeg to parcellate the corpus callosum into seven anatomical segments (rostrum; genu; rostral body; anterior midbody; posterior midbody; isthmus; splenium). White matter tract integrity was assessed in all segments and compared with MRI data acquired from 25 healthy controls. Results: In the combined patient group, the most prominent differences in diffusivity metrics were in the rostral body, posterior midbody and isthmus of the corpus callosum (p < 0.04). Loss of corpus callosum integrity was most prominent in the sub-group with unilateral limb weakness at the time of scanning (p < 0.05). Conclusions: Corpus callosum involvement in ALS is detectable across multiple segments, in keeping with a widespread cortical distribution of pathology. The association of unilateral limb weakness with greater loss of corpus callosum integrity informs connectivity-based hypotheses of symptom propagation in ALS.
Collapse
Affiliation(s)
- Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ricarda A L Menke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | | | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Müller HP, Dreyhaupt J, Roselli F, Schlecht M, Ludolph AC, Huppertz HJ, Kassubek J. Focal alterations of the callosal area III in primary lateral sclerosis: An MRI planimetry and texture analysis. NEUROIMAGE-CLINICAL 2020; 26:102223. [PMID: 32114375 PMCID: PMC7049663 DOI: 10.1016/j.nicl.2020.102223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
The regional pattern of cerebral alterations in PLS includes the area III of the CC. Callosal alterations of the texture parameters entropy and homogeneity were shown in PLS. Texture and macrostructure of the callosal area III is targeted as a neuroimaging marker in PLS.
Background The regional distribution of cerebral morphological alterations in primary lateral sclerosis (PLS) is considered to include the area III of the corpus callosum (CC). Objective The study was designed to investigate regional white matter (WM) alterations in the callosal area III by T1 weighted magnetic resonance imaging (T1w-MRI) data in PLS patients compared with healthy controls, in order to identify atrophy and texture changes in vivo. Methods T1w-MRI-based white matter mapping was used to perform an operator-independent CC-segmentation for the different areas of the CC in 67 PLS patients vs 82 matched healthy controls and vs 85 ALS patients. The segmentation was followed by texture analysis of the separated CC areas for the PLS patients vs controls and vs ALS patients. Results PLS was associated with significant atrophy in the area III of the CC (but not in the other callosal segments), while the alterations in the ALS patients were much more variable and were not significant at the group level. Furthermore, significant regional alterations of the texture parameters entropy and homogeneity in this area were shown in PLS patients and in ALS patients. Conclusions This T1w-MRI study demonstrated focused regional CC atrophy and texture alterations limited to the callosal area III (which comprises fibers projecting into the primary motor cortices) in PLS, in comparison to a higher variability in CC size in ALS.
Collapse
Affiliation(s)
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Germany
| | | | | | | | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany.
| |
Collapse
|
31
|
Buchanan CR, Bastin ME, Ritchie SJ, Liewald DC, Madole JW, Tucker-Drob EM, Deary IJ, Cox SR. The effect of network thresholding and weighting on structural brain networks in the UK Biobank. Neuroimage 2020; 211:116443. [PMID: 31927129 DOI: 10.1016/j.neuroimage.2019.116443] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Whole-brain structural networks can be constructed using diffusion MRI and probabilistic tractography. However, measurement noise and the probabilistic nature of the tracking procedure result in an unknown proportion of spurious white matter connections. Faithful disentanglement of spurious and genuine connections is hindered by a lack of comprehensive anatomical information at the network-level. Therefore, network thresholding methods are widely used to remove ostensibly false connections, but it is not yet clear how different thresholding strategies affect basic network properties and their associations with meaningful demographic variables, such as age. In a sample of 3153 generally healthy volunteers from the UK Biobank Imaging Study (aged 44-77 years), we constructed whole-brain structural networks and applied two principled network thresholding approaches (consistency and proportional thresholding). These were applied over a broad range of threshold levels across six alternative network weightings (streamline count, fractional anisotropy, mean diffusivity and three novel weightings from neurite orientation dispersion and density imaging) and for four common network measures (mean edge weight, characteristic path length, network efficiency and network clustering coefficient). We compared network measures against age associations and found that: 1) measures derived from unthresholded matrices yielded the weakest age-associations (0.033 ≤ |β| ≤ 0.409); and 2) the most commonly-used level of proportional-thresholding from the literature (retaining 68.7% of all possible connections) yielded significantly weaker age-associations (0.070 ≤ |β| ≤ 0.406) than the consistency-based approach which retained only 30% of connections (0.140 ≤ |β| ≤ 0.409). However, we determined that the stringency of the threshold was a stronger determinant of the network-age association than the choice of threshold method and the two thresholding approaches identified a highly overlapping set of connections (ICC = 0.84), when matched at 70% network sparsity. Generally, more stringent thresholding resulted in more age-sensitive network measures in five of the six network weightings, except at the highest levels of sparsity (>90%), where crucial connections were then removed. At two commonly-used threshold levels, the age-associations of the connections that were discarded (mean β ≤ |0.068|) were significantly smaller in magnitude than the corresponding age-associations of the connections that were retained (mean β ≤ |0.219|, p < 0.001, uncorrected). Given histological evidence of widespread degeneration of structural brain connectivity with increasing age, these results indicate that stringent thresholding methods may be most accurate in identifying true white matter connections.
Collapse
Affiliation(s)
- Colin R Buchanan
- Lothian Birth Cohorts group, The University of Edinburgh, Edinburgh, UK; Department of Psychology, The University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.
| | - Mark E Bastin
- Lothian Birth Cohorts group, The University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK
| | - Stuart J Ritchie
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - David C Liewald
- Lothian Birth Cohorts group, The University of Edinburgh, Edinburgh, UK; Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - James W Madole
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Ian J Deary
- Lothian Birth Cohorts group, The University of Edinburgh, Edinburgh, UK; Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, The University of Edinburgh, Edinburgh, UK; Department of Psychology, The University of Edinburgh, Edinburgh, UK; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| |
Collapse
|
32
|
Finegan E, Li Hi Shing S, Chipika RH, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, Pender N, McLaughlin RL, Hardiman O, Bede P. Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. NEUROIMAGE-CLINICAL 2019; 24:102089. [PMID: 31795059 PMCID: PMC6978214 DOI: 10.1016/j.nicl.2019.102089] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/02/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is a low incidence motor neuron disease which carries a markedly better prognosis than amyotrophic lateral sclerosis (ALS). Despite sporadic reports of extra-motor symptoms, PLS is widely regarded as a pure upper motor neuron disorder. The post mortem literature of PLS is strikingly sparse and very little is known of subcortical grey matter pathology in this condition. METHODS A prospective imaging study was undertaken with 33 PLS patients, 117 healthy controls and 100 ALS patients to specifically assess the integrity of subcortical grey matter structures and determine whether PLS and ALS have divergent thalamic, hippocampal and basal ganglia signatures. Volumetric, morphometric, segmentation and vertex-wise analyses were carried out in the three study groups to evaluate the integrity of thalamus, hippocampus, caudate, amygdala, pallidum, putamen and accumbens nucleus in each hemisphere. The hippocampus was further parcellated to characterise the involvement of specific subfields. RESULTS Considerable thalamic, caudate, and hippocampal atrophy was detected in PLS based on both volumetric and vertex analyses. Significant volume reductions were also detected in the accumbens nuclei. Hippocampal atrophy in PLS was dominated by dentate gyrus, hippocampal tail and CA4 subfield volume reductions. The morphometric comparison of ALS and PLS cohorts revealed preferential medial bi-thalamic pathology in PLS compared to the predominant putaminal degeneration detected in ALS. Another distinguishing feature between ALS and PLS was the preferential atrophy of the amygdala in ALS. CONCLUSIONS PLS is associated with considerable subcortical grey matter degeneration and due to the extensive extra-motor involvement, it should no longer be regarded a pure upper motor neuron disorder. Given its unique pathological features and a clinical course which differs considerably from ALS, dedicated research studies and disease-specific therapeutic strategies are urgently required in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | | | - Niall Pender
- Department of Psychology, Beaumont Hospital Dublin, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
33
|
Bede P, Chipika RH, Finegan E, Li Hi Shing S, Doherty MA, Hengeveld JC, Vajda A, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NEUROIMAGE-CLINICAL 2019; 24:102054. [PMID: 31711033 PMCID: PMC6849418 DOI: 10.1016/j.nicl.2019.102054] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
Computational neuroimaging captures focal brainstem pathology in motor neuron diseases in contrast to both healthy- and disease controls. ALS patients exhibit progressive medulla oblongata, pontine and mesencephalic volume loss over time. Brainstem atrophy in ALS and PLS is dominated by medulla oblongata volume reductions. Vertex analyses of ALS patients reveal flattening of the medullary pyramids bilaterally. Morphometric analyses in ALS detect density reductions in the mesencephalic crura consistent with corticospinal tract degeneration.
Background Brainstem pathology is a hallmark feature of ALS, yet most imaging studies focus on cortical grey matter alterations and internal capsule white matter pathology. Brainstem imaging in ALS provides a unique opportunity to appraise descending motor tract degeneration and bulbar lower motor neuron involvement. Methods A prospective longitudinal imaging study has been undertaken with 100 patients with ALS, 33 patients with PLS, 30 patients with FTD and 100 healthy controls. Volumetric, vertex and morphometric analyses were conducted correcting for demographic factors to characterise disease-specific patterns of brainstem pathology. Using a Bayesian segmentation algorithm, the brainstem was segmented into the medulla, pons and mesencephalon to measure regional volume reductions, shape analyses were performed to ascertain the atrophy profile of each study group and region-of-interest morphometry was used to evaluate focal density alterations. Results ALS and PLS patients exhibit considerable brainstem atrophy compared to both disease- and healthy controls. Volume reductions in ALS and PLS are dominated by medulla oblongata pathology, but pontine atrophy can also be detected. In ALS, vertex analyses confirm the flattening of the medullary pyramids bilaterally in comparison to healthy controls and widespread pontine shape deformations in contrast to PLS. The ALS cohort exhibit bilateral density reductions in the mesencephalic crura in contrast to healthy controls, central pontine atrophy compared to disease controls, peri-aqueduct mesencephalic and posterior pontine changes in comparison to PLS patients. Conclus ions: Computational brainstem imaging captures the degeneration of both white and grey matter components in ALS. Our longitudinal data indicate progressive brainstem atrophy over time, underlining the biomarker potential of quantitative brainstem measures in ALS. At a time when a multitude of clinical trials are underway worldwide, there is an unprecedented need for accurate biomarkers to monitor disease progression and detect response to therapy. Brainstem imaging is a promising addition to candidate biomarkers of ALS and PLS.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Western Health & Social Care Trust, Belfast, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
34
|
The clinical and radiological profile of primary lateral sclerosis: a population-based study. J Neurol 2019; 266:2718-2733. [PMID: 31325016 DOI: 10.1007/s00415-019-09473-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Primary lateral sclerosis is a progressive upper-motor-neuron disorder associated with markedly longer survival than ALS. In contrast to ALS, the genetic susceptibility, histopathological profile and imaging signature of PLS are poorly characterised. Suspected PLS patients often face considerable diagnostic delay and prognostic uncertainty. OBJECTIVE To characterise the distinguishing clinical, genetic and imaging features of PLS in contrast to ALS and healthy controls. METHODS A prospective population-based study was conducted with 49 PLS patients, 100 ALS patients and 100 healthy controls using genetic profiling, standardised clinical assessments and neuroimaging. Whole-brain and region-of-interest analyses were undertaken to evaluate patterns of grey and white matter degeneration. RESULTS In PLS, disease burden in the motor cortex is more medial than in ALS consistent with its lower limb symptom-predominance. PLS is associated with considerable cerebellar white and grey matter degeneration and the extra-motor profile of PLS includes marked insular, inferior frontal and left pars opercularis pathology. Contrary to ALS, PLS spares the postcentral gyrus. The body and splenium of the corpus callosum are preferentially affected in PLS, in contrast to the genu involvement observed in ALS. Clinical measures show anatomically meaningful correlations with imaging metrics in a somatotopic distribution. PLS patients tested negative for C9orf72 repeat expansions, known ALS and HSP-associated genes. CONCLUSIONS Multiparametric imaging in PLS highlights disease-specific motor and extra-motor involvement distinct from ALS. In a condition where limited post-mortem data are available, imaging offers invaluable pathological insights. Anatomical correlations with clinical metrics confirm the biomarker potential of quantitative neuroimaging in PLS.
Collapse
|
35
|
Agosta F, Spinelli EG, Riva N, Fontana A, Basaia S, Canu E, Castelnovo V, Falzone Y, Carrera P, Comi G, Filippi M. Survival prediction models in motor neuron disease. Eur J Neurol 2019; 26:1143-1152. [PMID: 30920076 DOI: 10.1111/ene.13957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE This study aimed to assess the predictive value of multimodal brain magnetic resonance imaging (MRI) on survival in a large cohort of patients with motor neuron disease (MND), in combination with clinical and cognitive features. METHODS Two hundred MND patients were followed up prospectively for a median of 4.13 years. At baseline, subjects underwent neurological examination, cognitive assessment and brain MRI. Grey matter volumes of cortical and subcortical structures and diffusion tensor MRI metrics of white matter tracts were obtained. A multivariable Royston-Parmar survival model was created using clinical and cognitive variables. The increase of survival prediction accuracy provided by MRI variables was assessed. RESULTS The multivariable clinical model included predominant upper or lower motor neuron presentations and diagnostic delay as significant prognostic predictors, reaching an area under the receiver operating characteristic curve (AUC) of a 4-year survival prediction of 0.79. The combined clinical and MRI model including selected grey matter fronto-temporal volumes and diffusion tensor MRI metrics of the corticospinal and extra-motor tracts reached an AUC of 0.89. Considering amyotrophic lateral sclerosis patients only, the clinical model including diagnostic delay and semantic fluency scores provided an AUC of 0.62, whereas the combined clinical and MRI model reached an AUC of 0.77. CONCLUSION Our study demonstrated that brain MRI measures of motor and extra-motor structural damage, when combined with clinical and cognitive features, are useful predictors of survival in patients with MND, particularly when a diagnosis of amyotrophic lateral sclerosis is made.
Collapse
Affiliation(s)
- F Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - E G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - N Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - A Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - S Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - E Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - V Castelnovo
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Y Falzone
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - P Carrera
- Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, Clinical Molecular Biology Laboratory, San Raffaele Scientific Institute, Milan, Italy
| | - G Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - M Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
36
|
Spinelli EG, Agosta F, Ferraro PM, Querin G, Riva N, Bertolin C, Martinelli I, Lunetta C, Fontana A, Sorarù G, Filippi M. Brain MRI shows white matter sparing in Kennedy's disease and slow-progressing lower motor neuron disease. Hum Brain Mapp 2019; 40:3102-3112. [PMID: 30924230 DOI: 10.1002/hbm.24583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
The extent of central nervous system involvement in Kennedy's disease (KD) relative to other motor neuron disease (MND) phenotypes still needs to be clarified. In this study, we investigated cortical and white matter (WM) MRI alterations in 25 patients with KD, compared with 24 healthy subjects, 25 patients with sporadic amyotrophic lateral sclerosis (ALS), and 35 cases with lower motor neuron-predominant disease (LMND). LMND patients were clinically differentiated into 24 fast and 11 slow progressors. Whole-brain cortical thickness, WM tract-based spatial statistics and corticospinal tract (CST) tractography analyses were performed. No significant difference in terms of cortical thickness was found between groups. ALS patients showed widespread decreased fractional anisotropy and increased mean (MD) and radial diffusivity (radD) in the CST, corpus callosum and fronto-temporal extra-motor tracts, compared with healthy controls and other patient groups. CST tractography showed significant alterations of DT MRI metrics in ALS and LMND-fast patients whereas KD and LMND-slow patients were comparable with healthy controls. Our study demonstrated the absence of WM abnormalities in patients with KD and LMND-slow, in contrast with diffuse WM damage in ALS and focal CST degeneration in LMND-fast, supporting the use of DT MRI measures as powerful tools to differentiate fast- and slow-progressing MND syndromes, including KD.
Collapse
Affiliation(s)
- Edoardo G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgia Querin
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padova, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Cinzia Bertolin
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padova, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padova, Italy
| | | | - Andrea Fontana
- Biostatistics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Unit of Biostatistics, Foggia, Italy
| | - Gianni Sorarù
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padova, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
37
|
Basaia S, Filippi M, Spinelli EG, Agosta F. White Matter Microstructure Breakdown in the Motor Neuron Disease Spectrum: Recent Advances Using Diffusion Magnetic Resonance Imaging. Front Neurol 2019; 10:193. [PMID: 30891004 PMCID: PMC6413536 DOI: 10.3389/fneur.2019.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron disease (MND) is a fatal progressive neurodegenerative disorder characterized by the breakdown of the motor system. The clinical spectrum of MND encompasses different phenotypes classified according to the relative involvement of the upper or lower motor neurons (LMN) and the presence of genetic or cognitive alterations, with clear prognostic implications. However, the pathophysiological differences of these phenotypes remain largely unknown. Recently, magnetic resonance imaging (MRI) has been recognized as a helpful in-vivo MND biomarker. An increasing number of studies is applying advanced neuroimaging techniques in order to elucidate the pathophysiological processes and to identify quantitative outcomes to be used in clinical trials. Diffusion tensor imaging (DTI) is a non-invasive method to detect white matter alterations involving the upper motor neuron and extra-motor white matter tracts. According to this background, the aim of this review is to highlight the key role of MRI and especially DTI, summarizing cross-sectional and longitudinal results of different approaches applied in MND. Current literature suggests that DTI is a promising tool in order to define anatomical “signatures” of the different phenotypes of MND and to track in vivo the progressive spread of pathological proteins aggregates.
Collapse
Affiliation(s)
- Silvia Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
38
|
Finegan E, Chipika RH, Shing SLH, Hardiman O, Bede P. Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:133-145. [PMID: 30654671 DOI: 10.1080/21678421.2018.1550518] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Primary lateral sclerosis (PLS) has been traditionally viewed as a distinct upper motor neuron condition (UMN) but is increasingly regarded as a sub-phenotype within the amyotrophic lateral sclerosis (ALS) spectrum. Despite established diagnostic criteria, formal diagnosis can be challenging and the protracted diagnostic journey and uncertainty about longer-term prognosis cause considerable distress to patients and caregivers. PLS patients are invariably excluded from ALS clinical trials, while PLS pharmacological trials are lacking. There remains an unmet need for diagnostic biomarkers for upper motor neuron predominant conditions and prognostic indicators regarding prognosis, survival, and risk of conversion to ALS. Validated biomarkers will not only have implications for individualized patient care but also serve as outcome measures in pharmaceutical trials. Given the paucity of post-mortem studies in PLS, novel pathological insights are generally inferred from state-of-the-art imaging studies. Computational neuroimaging has already contributed significantly to the characterization of PLS-associated pathology in vivo and has underscored the role of neuro-inflammation, the presence of extra-motor changes, and confirmed pathological patterns similar to ALS. This systematic review assesses the current state of PLS research across clinical, neuroimaging and neuropathological domains from a combined clinical and academic perspective. We discuss patterns of pathological overlap with other ALS phenotypes, examine if the biological processes of PLS warrant therapeutic strategies distinct from ALS, and evaluate the evidence that classes PLS as a distinct clinico-pathological entity.
Collapse
Affiliation(s)
- Eoin Finegan
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Rangariroyashe H Chipika
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Stacey Li Hi Shing
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Orla Hardiman
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Peter Bede
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| |
Collapse
|
39
|
Olney NT, Bischof A, Rosen H, Caverzasi E, Stern WA, Lomen-Hoerth C, Miller BL, Henry RG, Papinutto N. Measurement of spinal cord atrophy using phase sensitive inversion recovery (PSIR) imaging in motor neuron disease. PLoS One 2018; 13:e0208255. [PMID: 30496320 PMCID: PMC6264489 DOI: 10.1371/journal.pone.0208255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The spectrum of motor neuron disease (MND) includes numerous phenotypes with various life expectancies. The degree of upper and lower motor neuron involvement can impact prognosis. Phase sensitive inversion recovery (PSIR) imaging has been shown to detect in vivo gray matter (GM) and white matter (WM) atrophy in the spinal cord of other patient populations but has not been explored in MND. METHODS In this study, total cord, WM and GM areas of ten patients with a diagnosis within the MND spectrum were compared to those of ten healthy controls (HC). Patients' diagnosis included amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, primary muscular atrophy, facial onset sensory and motor neuronopathy and ALS-Frontotemporal dementia. Axial 2D PSIR images were acquired at four cervical disc levels (C2-C3, C3-C4, C5-C6 and C7-T1) with a short acquisition time (2 minutes) protocol. Total cross-sectional areas (TCA), GM and WM areas were measured using a combination of highly reliable manual and semi-automated methods. Cord areas in MND patients were compared with HC using linear regression analyses adjusted for age and sex. Correlation of WM and GM areas in MND patients was explored to gain insights into underlying atrophy patterns. RESULTS MND patients as a group had significantly smaller cervical cord GM area compared to HC at all four levels (C2-C3: p = .009; C3-C4: p = .001; C5-C6: p = .006; C7-T1: p = .002). WM area at C5-C6 level was significantly smaller (p = .001). TCA was significantly smaller at C3-C4 (p = .018) and C5-C6 (p = .002). No significant GM and WM atrophy was detected in the two patients with predominantly bulbar phenotype. Concomitant GM and WM atrophy was detected in solely upper or lower motor neuron level phenotypes. There was a significant correlation between GM and WM areas at all four levels in this diverse population of MND. CONCLUSION Spinal cord GM and WM atrophy can be detected in vivo in patients within the MND spectrum using a short acquisition time 2D PSIR imaging protocol. PSIR imaging shows promise as a method for quantifying spinal cord involvement and thus may be useful for diagnosis, prognosis and for monitoring disease progression.
Collapse
Affiliation(s)
- Nicholas T. Olney
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco Amyotrophic Lateral Sclerosis Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Antje Bischof
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology and Immunology Clinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Howard Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
| | - Eduardo Caverzasi
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - William A. Stern
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Catherine Lomen-Hoerth
- Department of Neurology, University of California San Francisco Amyotrophic Lateral Sclerosis Center, University of California San Francisco, San Francisco, California, United States of America
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
| | - Roland G. Henry
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
40
|
Müller HP, Agosta F, Gorges M, Kassubek R, Spinelli EG, Riva N, Ludolph AC, Filippi M, Kassubek J. Cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: A two-centre tract of interest-based DTI analysis. NEUROIMAGE-CLINICAL 2018; 20:1062-1069. [PMID: 30343251 PMCID: PMC6198122 DOI: 10.1016/j.nicl.2018.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Background After the demonstration of a corticoefferent propagation pattern in amyotrophic lateral sclerosis (ALS) by neuropathological studies, this concept has been used for in vivo staging of individual patients by diffusion tensor imaging (DTI) techniques, both in `classical` ALS and in restricted phenotypes such as primary lateral sclerosis (PLS). Objective The study was designed to investigate that microstructural changes according to the neuropathologically defined ALS alteration pattern in PLS patients could be confirmed to be identical to ´classical´ ALS patients. The novelty in this approach is that the results were independent of the subject samples and the data acquisition parameters (as was validated in two samples from two different centres). That way, reproducibility across (international) centres in addition to harmonisation/standardisation of data analysis has been addressed, for the possible use of MRI-based staging to stratify patients in clinical trials. Methods Tractwise analysis of fractional anisotropy (FA) maps according to the ALS-staging pattern was applied to DTI data (pooled from two ALS centres) of 88 PLS patients and 88 ALS patients with a ‘classical’ phenotype in comparison to 88 matched controls in order to identify white matter integrity alterations. Results In the tract-specific analysis, alterations were identical for PLS and ALS in the tract systems corresponding to the ALS staging pattern, independent of the subject samples and the data acquisition parameters. The individual categorisation into ALS stages did not differ between PLS and ALS patients. Conclusions This DTI study in a two-centre setting demonstrated that the neuropathological stages can be mapped in vivo in PLS with high reproducibility and that PLS-associated cerebral propagation, although showing the same corticofugal patterns as ALS, might have a different time course of neuropathology, in analogy to its much slower clinical progression rates. Neuropathological ALS-stages are mapped in vivo in PLS with high reproducibility. Bicentric DTI supports the hypothesis that PLS is a phenotype variant of ALS. PLS-associated propagation shows corticofugal patterns resembling those observed in ALS.
Collapse
Affiliation(s)
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany.
| |
Collapse
|
41
|
Primary lateral sclerosis and the amyotrophic lateral sclerosis–frontotemporal dementia spectrum. J Neurol 2018; 265:1819-1828. [DOI: 10.1007/s00415-018-8917-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022]
|
42
|
Agosta F, Spinelli EG, Filippi M. Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 2018; 18:395-406. [PMID: 29630421 DOI: 10.1080/14737175.2018.1463160] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Several neuroimaging techniques have been used to define in vivo markers of pathological alterations underlying amyotrophic lateral sclerosis (ALS). Growing evidence supports the use of magnetic resonance imaging (MRI) and positron emission tomography (PET) for the non-invasive detection of central nervous system involvement in patients with ALS. Areas covered: A comprehensive overview of structural and functional neuroimaging applications in ALS is provided, focusing on motor and extra-motor involvement in the brain and the spinal cord. Implications for pathogenetic models, patient diagnosis, prognosis, monitoring, and the design of clinical trials are discussed. Expert commentary: State-of-the-art neuroimaging techniques provide fundamental instruments for the detection and quantification of upper motor neuron and extra-motor brain involvement in ALS, with relevance for both pathophysiologic investigation and clinical practice. Network-based analysis of structural and functional connectivity alterations and multimodal approaches combining several neuroimaging measures are promising tools for the development of novel diagnostic and prognostic markers to be used at the individual patient level.
Collapse
Affiliation(s)
- Federica Agosta
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Edoardo Gioele Spinelli
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,b Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,b Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
43
|
Müller HP, Gorges M, Kassubek R, Dorst J, Ludolph AC, Kassubek J. Identical patterns of cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: A tract of interest-based MRI study. NEUROIMAGE-CLINICAL 2018; 18:762-769. [PMID: 29785360 PMCID: PMC5959739 DOI: 10.1016/j.nicl.2018.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
Background There is an ongoing debate whether primary lateral sclerosis (PLS) should be regarded as an independent disease entity separate from amyotrophic lateral sclerosis (ALS) or as a slowly progressive variant of ALS. Objective The study was designed to investigate specific white matter alterations in diffusion tensor imaging (DTI) data from PLS patients by a hypothesis-guided tract-of-interest-based approach compared with ‘classical’ ALS patients and healthy controls, in order to identify microstructural changes according to the neuropathologically defined ALS affectation pattern in vivo. Methods DTI-based white matter mapping was performed both by an unbiased voxelwise statistical comparison and by a hypothesis-guided tractwise analysis of fractional anisotropy (FA) maps according to the ALS-staging pattern for 50 PLS and 50 ALS patients vs 50 matched controls. Results The analysis of white matter integrity by regional FA reductions demonstrated the characteristic alteration patterns along the CST and also in frontal and prefrontal brain areas in PLS patients and ALS patients. In the tract-specific analysis according to the ALS-staging pattern, PLS and ALS affectation patterns showed identical significant alterations of ALS-related tract systems when compared with controls and no differences when compared with each other. Conclusions This DTI study showed the same microstructural affectation patterns in PLS patients as in ALS, in support of the hypothesis that PLS is a phenotypical variant of ALS. PLS showed significant alterations in ALS-related tract systems. DTI shows identical microstructural alteration patterns of PLS and ALS in vivo. DTI supports the hypothesis that PLS is a phenotypical variant of ALS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany.
| |
Collapse
|
44
|
Zhou F, Zhao Y, Huang M, Zeng X, Wang B, Gong H. Disrupted interhemispheric functional connectivity in chronic insomnia disorder: a resting-state fMRI study. Neuropsychiatr Dis Treat 2018; 14:1229-1240. [PMID: 29795981 PMCID: PMC5957476 DOI: 10.2147/ndt.s162325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Abnormalities in both cerebral structure and intrinsic activity have been increasingly reported in patients with chronic insomnia disorder (CID). However, the inter-hemispheric integration function in CID is still not well understood. Functional homotopy reflects an essential aspect of the intrinsic functional architecture involved in interhemispheric coordination. METHODS In this study, voxel-mirrored homotopic connectivity (VMHC) was used to analyze the patterns of interhemispheric intrinsic functional connectivity in patients with CID (n=29). RESULTS Reduced homotopic connectivity was observed in the middle occipital/posterior middle temporal gyrus in CID patients relative to control subjects. Further analyses demonstrated different insomnia-related heterotopic connectivity patterns in the right and left middle occipital/posterior middle temporal gyrus. Furthermore, within the CID group, the connectivity coefficient within the connectivity network of the middle occipital/posterior middle temporal gyrus was associated with anxiety measures. CONCLUSION Negative significant findings of group differences were found in terms of both the local gray matter density and fractional anisotropy of the white matter skeletal measures in this study; this structural finding, together with the results of VMHC, suggested that disruptions in the intrinsic functional architecture of interhemispheric communication associated with CID can be observed in the absence of detectable microstructural or local morphometric changes in white and gray matter.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Yanlin Zhao
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Bo Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| |
Collapse
|
45
|
Construction of Brain Structural Connectome Using PROPELLER Echo-Planar Diffusion Tensor Imaging with Probabilistic Tractography: Comparison with Conventional Imaging. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Quantitative FLAIR MRI in Amyotrophic Lateral Sclerosis. Acad Radiol 2017; 24:1187-1194. [PMID: 28572001 PMCID: PMC5605225 DOI: 10.1016/j.acra.2017.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVES T2-weighted magnetic resonance imaging (MRI) hyperintensity assessed visually in the corticospinal tract (CST) lacks sensitivity for a diagnosis of amyotrophic lateral sclerosis (ALS). We sought to explore a quantitative approach to fluid-attenuated inversion recovery (FLAIR) MRI intensity across a range of ALS phenotypes. MATERIALS AND METHODS Thirty-three classical ALS patients, 10 with a flail arm presentation, and six with primary lateral sclerosis underwent MRI at 3 Tesla. Comparisons of quantitative FLAIR intensity in the CST and corpus callosum were made between 21 healthy controls and within patient phenotypic subgroups, some of whom were studied longitudinally. RESULTS Mean FLAIR intensity was greater in patient groups. The cerebral peduncle intensity provided the strongest subgroup classification. FLAIR intensity increased longitudinally. The rate of change of FLAIR within CST correlated with rate of decline in executive function and ALS functional rating score. CONCLUSIONS FLAIR MRI encodes quantifiable information of potential diagnostic, stratification, and monitoring value.
Collapse
|
47
|
Wais V, Rosenbohm A, Petri S, Kollewe K, Hermann A, Storch A, Hanisch F, Zierz S, Nagel G, Kassubek J, Weydt P, Brettschneider J, Weishaupt JH, Ludolph AC, Dorst J. The concept and diagnostic criteria of primary lateral sclerosis. Acta Neurol Scand 2017; 136:204-211. [PMID: 27858953 DOI: 10.1111/ane.12713] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Primary lateral sclerosis (PLS) is commonly considered as a motor neuron disease (MND) variant which almost exclusively affects upper motor neurons (UMN). There is still no consensus whether PLS should be regarded as an independent disease entity separate from amyotrophic lateral sclerosis (ALS) or as a comparatively slowly progressive variant of ALS. Given these different views, clinical diagnosis of PLS is a challenge. In this multicenter study, we analyzed clinical features of patients diagnosed with PLS in four specialized MND centers. MATERIAL AND METHODS We retrospectively analyzed clinical, laboratory, imaging, and electrophysiological data of 76 patients with PLS diagnosed in four specialized ALS centers. We analyzed the concept of the disease based on our findings and an extensive review of the literature. RESULTS We found that 79% of patients showed asymmetrical symptoms, 60% showed clinical or electrophysiological signs of lower motor neuron (LMN) involvement after a mean of 8.4 ± 5.0 years, and extrapyramidal and/or non-motoric symptoms were frequently observed. Interestingly, none of the patients diagnosed with PLS fulfilled the diagnostic criteria proposed by Pringle et al. in 1992. CONCLUSIONS Our data show that PLS as a disease entity is still not well enough defined and that there are different concepts about its clinical presentation. We believe that further prospective longitudinal studies are needed in order to refine diagnostic criteria to reflect current clinical practice. Furthermore, neuropathological and neuroimaging approaches might help to arrange PLS in the MND spectrum and its classification.
Collapse
Affiliation(s)
- Verena Wais
- Department of Neurology; University of Ulm; Ulm Germany
| | | | - Susanne Petri
- Department of Neurology; University of Hannover; Hannover Germany
| | - Katja Kollewe
- Department of Neurology; University of Hannover; Hannover Germany
| | - Andreas Hermann
- Department of Neurology; Division for Neurodegenerative Diseases; Dresden University of Technology; Dresden Germany
- German Center for Neurodegenerative Diseases (DZNE); Dresden Germany
| | - Alexander Storch
- Department of Neurology; Division for Neurodegenerative Diseases; Dresden University of Technology; Dresden Germany
- German Center for Neurodegenerative Diseases (DZNE); Dresden Germany
- Department of Neurology; University Medical Center Rostock; Rostock Germany
| | - Frank Hanisch
- Department of Neurology; Evangelisches Krankenhaus Königin Elisabeth Herzberge; Berlin Germany
| | - Stephan Zierz
- Department of Neurology; University of Halle; Halle Germany
| | - Gabriele Nagel
- Institute for Epidemiology and Medical Biometry; University of Ulm; Ulm Germany
| | - Jan Kassubek
- Department of Neurology; University of Ulm; Ulm Germany
| | - Patrick Weydt
- Department of Neurology; University of Ulm; Ulm Germany
| | | | | | | | | |
Collapse
|
48
|
Papma JM, Jiskoot LC, Panman JL, Dopper EG, den Heijer T, Donker Kaat L, Pijnenburg YA, Meeter LH, van Minkelen R, Rombouts SA, van Swieten JC. Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion. Neurology 2017; 89:1256-1264. [DOI: 10.1212/wnl.0000000000004393] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/29/2017] [Indexed: 11/15/2022] Open
Abstract
Objective:To investigate cognitive function, gray matter volume, and white matter integrity in the presymptomatic stage of chromosome 9 open reading frame 72 repeat expansion (C9orf72RE).Methods:Presymptomatic C9orf72RE carriers (n = 18) and first-degree family members without a pathogenic expansion (healthy controls [HC], n = 15) underwent a standardized protocol of neuropsychological tests, T1-weighted MRI, and diffusion tensor imaging within our cohort study of autosomal dominant frontotemporal dementia (FTD). We investigated group differences in cognitive function, gray matter volume through voxel-based morphometry, and white matter integrity by means of tract-based spatial statistics. We correlated cognitive change with underlying gray or white matter.Results:Our data demonstrate lower scores on letter fluency, Stroop card I, and Stroop card III, accompanied by white matter integrity loss in tracts connecting the frontal lobe, the thalamic radiation, and tracts associated with motor functioning in presymptomatic C9orf72RE compared with HC. In a subgroup of C9orf72RE carriers above 40 years of age, we found gray matter volume loss in the thalamus, cerebellum, and parietal and temporal cortex. We found no significant relationship between subtle cognitive decline and underlying gray or white matter.Conclusions:This study demonstrates that a decline in cognitive functioning, white matter integrity, and gray matter volumes are present in presymptomatic C9orf72RE carriers. These findings suggest that neuropsychological assessment, T1-weighted MRI, and diffusion tensor imaging might be useful to identify early biomarkers in the presymptomatic stage of FTD or amyotrophic lateral sclerosis.
Collapse
|
49
|
Ferraro PM, Agosta F, Riva N, Copetti M, Spinelli EG, Falzone Y, Sorarù G, Comi G, Chiò A, Filippi M. Multimodal structural MRI in the diagnosis of motor neuron diseases. NEUROIMAGE-CLINICAL 2017; 16:240-247. [PMID: 28794983 PMCID: PMC5545829 DOI: 10.1016/j.nicl.2017.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023]
Abstract
This prospective study developed an MRI-based method for identification of individual motor neuron disease (MND) patients and test its accuracy at the individual patient level in an independent sample compared with mimic disorders. 123 patients with amyotrophic lateral sclerosis (ALS), 44 patients with predominantly upper motor neuron disease (PUMN), 20 patients with ALS-mimic disorders, and 78 healthy controls were studied. The diagnostic accuracy of precentral cortical thickness and diffusion tensor (DT) MRI metrics of corticospinal and motor callosal tracts were assessed in a training cohort and externally proved in a validation cohort using a random forest analysis. In the training set, precentral cortical thickness showed 0.86 and 0.89 accuracy in differentiating ALS and PUMN patients from controls, while DT MRI distinguished the two groups from controls with 0.78 and 0.92 accuracy. In ALS vs controls, the combination of cortical thickness and DT MRI metrics (combined model) improved the classification pattern (0.91 accuracy). In the validation cohort, the best accuracy was reached by DT MRI (0.87 and 0.95 accuracy in ALS and PUMN vs mimic disorders). The combined model distinguished ALS and PUMN patients from mimic syndromes with 0.87 and 0.94 accuracy. A multimodal MRI approach that incorporates motor cortical and white matter alterations yields statistically significant improvement in accuracy over using each modality separately in the individual MND patient classification. DT MRI represents the most powerful tool to distinguish MND from mimic disorders. Motor cortical and white matter alterations yield high accuracy in the individual MND patient classification. DT MRI represents the most powerful tool to distinguish MND from mimic disorders. The most pronounced damage in MND patients relative to mimic subjects was found in the motor callosal fibers.
Collapse
Affiliation(s)
- Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Falzone
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Gianni Sorarù
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Adriano Chiò
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
50
|
Agosta F, Ferraro PM, Riva N, Spinelli EG, Domi T, Carrera P, Copetti M, Falzone Y, Ferrari M, Lunetta C, Comi G, Falini A, Quattrini A, Filippi M. Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiol Aging 2017; 57:206-219. [PMID: 28666709 DOI: 10.1016/j.neurobiolaging.2017.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, Italy; Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, Foggia, Italy
| | - Yuri Falzone
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, Italy; Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroradiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|