1
|
Duncan SJ, Marques K, Fawkes J, Smith LJ, Wilkinson DT. Galvanic vestibular stimulation modulates EEG markers of voluntary movement in Parkinson's disease. Neuroscience 2024; 555:178-183. [PMID: 39074577 DOI: 10.1016/j.neuroscience.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
We recently showed that vestibular stimulation can produce a long-lasting alleviation of motor features in Parkinson's disease. Here we investigated whether components of the motor related cortical response that are commonly compromised in Parkinson's - the Bereitschaftspotential and mu-rhythm event-related desynchronization - are modulated by concurrent, low frequency galvanic vestibular stimulation (GVS) during repetitive limb movement amongst 17 individuals with idiopathic Parkinson's disease. Relative to sham, GVS was favourably associated with higher amplitudes during the late and movement phases of the Bereitschaftspotential and with a more pronounced decrease in spectral power within the mu-rhythm range during finger-tapping. These data increase understanding of how GVS interacts with the preparation and execution of voluntary movement and give added impetus to explore its therapeutic effects on Parkinsonian motor features.
Collapse
Affiliation(s)
- Shelley J Duncan
- Department of Sport and Health, Solent University, Southampton SO14 OYN, UK; School of Psychology, University of Kent, Canterbury, UK.
| | - Kamyla Marques
- School of Psychology, University of Kent, Canterbury, UK
| | - Jade Fawkes
- School of Psychology, University of Kent, Canterbury, UK
| | - Laura J Smith
- School of Psychology, University of Kent, Canterbury, UK; Wolfson Institute of Population Health, Queen Mary University of London, UK
| | | |
Collapse
|
2
|
Yang W, Bai X, Guan X, Zhou C, Guo T, Wu J, Xu X, Zhang M, Zhang B, Pu J, Tian J. The longitudinal volumetric and shape changes of subcortical nuclei in Parkinson's disease. Sci Rep 2024; 14:7494. [PMID: 38553518 PMCID: PMC10980751 DOI: 10.1038/s41598-024-58187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Brain structural changes in Parkinson's disease (PD) are progressive throughout the disease course. Changes in surface morphology with disease progression remain unclear. This study aimed to assess the volumetric and shape changes of the subcortical nuclei during disease progression and explore their association with clinical symptoms. Thirty-four patients and 32 healthy controls were enrolled. The global volume and shape of the subcortical nuclei were compared between patients and controls at baseline. The volume and shape changes of the subcortical nuclei were also explored between baseline and 2 years of follow-up. Association analysis was performed between the volume of subcortical structures and clinical symptoms. In patients with PD, there were significantly atrophied areas in the left pallidum and left putamen, while in healthy controls, the right putamen was dilated compared to baseline. The local morphology of the left pallidum was correlated with Mini Mental State Examination scores. The left putamen shape variation was negatively correlated with changes in Unified Parkinson's Disease Rating Scale PART III scores. Local morphological atrophy of the putamen and pallidum is an important pathophysiological change in the development of PD, and is associated with motor symptoms and cognitive status in patients with PD.
Collapse
Affiliation(s)
- Wenyi Yang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xueqin Bai
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jingjing Wu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Quattrone A, Latorre A, Magrinelli F, Mulroy E, Rajan R, Neo RJ, Quattrone A, Rothwell JC, Bhatia KP. A Reflection on Motor Overflow, Mirror Phenomena, Synkinesia and Entrainment. Mov Disord Clin Pract 2023; 10:1243-1252. [PMID: 37772299 PMCID: PMC10525069 DOI: 10.1002/mdc3.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 09/30/2023] Open
Abstract
In patients with movement disorders, voluntary movements can sometimes be accompanied by unintentional muscle contractions in other body regions. In this review, we discuss clinical and pathophysiological aspects of several motor phenomena including mirror movements, dystonic overflow, synkinesia, entrainment and mirror dystonia, focusing on their similarities and differences. These phenomena share some common clinical and pathophysiological features, which often leads to confusion in their definition. However, they differ in several aspects, such as the body part showing the undesired movement, the type of this movement (identical or not to the intentional movement), the underlying neurological condition, and the role of primary motor areas, descending pathways and inhibitory circuits involved, suggesting that these are distinct phenomena. We summarize the main features of these fascinating clinical signs aiming to improve the clinical recognition and standardize the terminology in research studies. We also suggest that the term "mirror dystonia" may be not appropriate to describe this peculiar phenomenon which may be closer to dystonic overflow rather than to the classical mirror movements.
Collapse
Affiliation(s)
- Andrea Quattrone
- Institute of NeurologyUniversity “Magna Graecia”CatanzaroItaly
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Roopa Rajan
- Department of NeurologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Ray Jen Neo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of NeurologyHospital Kuala LumpurKuala LumpurMalaysia
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
4
|
Kumari R, Gibson H, Jarjees M, Turner C, Purcell M, Vučković A. The predictive value of cortical activity during motor imagery for subacute spinal cord injury-induced neuropathic pain. Clin Neurophysiol 2023; 148:32-43. [PMID: 36796284 DOI: 10.1016/j.clinph.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The aim of this study is to explore whether cortical activation and its lateralization during motor imagery (MI) in subacute spinal cord injury (SCI) are indicative of existing or upcoming central neuropathic pain (CNP). METHODS Multichannel electroencephalogram was recorded during MI of both hands in four groups of participants: able-bodied (N = 10), SCI and CNP (N = 11), SCI who developed CNP within 6 months of EEG recording (N = 10), and SCI who remained CNP-free (N = 10). Source activations and its lateralization were derived in four frequency bands in 20 regions spanning sensorimotor cortex and pain matrix. RESULTS Statistically significant differences in lateralization were found in the theta band in premotor cortex (upcoming vs existing CNP, p = 0.036), in the alpha band at the insula (healthy vs upcoming CNP, p = 0.012), and in the higher beta band at the somatosensory association cortex (no CNP vs upcoming CNP, p = 0.042). People with upcoming CNP had stronger activation compared to those with no CNP in the higher beta band for MI of both hands. CONCLUSIONS Activation intensity and lateralization during MI in pain-related areas might hold a predictive value for CNP. SIGNIFICANCE The study increases understanding of the mechanisms underlying transition from asymptomatic to symptomatic early CNP in SCI.
Collapse
Affiliation(s)
- Radha Kumari
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hannah Gibson
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mohammed Jarjees
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK; Medical Instrumentation Techniques Engineering Department, Northern Technical University, Mosul 41002, Iraq
| | - Christopher Turner
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mariel Purcell
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Aleksandra Vučković
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
5
|
Yassine S, Gschwandtner U, Auffret M, Achard S, Verin M, Fuhr P, Hassan M. Functional Brain Dysconnectivity in Parkinson's Disease: A 5-Year Longitudinal Study. Mov Disord 2022; 37:1444-1453. [PMID: 35420713 PMCID: PMC9543227 DOI: 10.1002/mds.29026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background Tracking longitudinal functional brain dysconnectivity in Parkinson's disease (PD) is a key element to decoding the underlying physiopathology and understanding PD progression. Objectives The objectives of this follow‐up study were to explore, for the first time, the longitudinal changes in the functional brain networks of PD patients over 5 years and to associate them with their cognitive performance and the lateralization of motor symptoms. Methods We used a 5‐year longitudinal cohort of PD patients (n = 35) who completed motor and non‐motor assessments and sequent resting state (RS) high‐density electroencephalography (HD‐EEG) recordings at three timepoints: baseline (BL), 3 years follow‐up (3YFU) and 5 years follow‐up (5YFU). We assessed disruptions in frequency‐dependent functional networks over the course of the disease and explored their relation to clinical symptomatology. Results In contrast with HC (n = 32), PD patients showed a gradual connectivity impairment in α2 (10‐13 Hz) and β (13–30 Hz) frequency bands. The deterioration in the global cognitive assessment was strongly correlated with the disconnected networks. These disconnected networks were also associated with the lateralization of motor symptoms, revealing a dominance of the right hemisphere in terms of impaired connections in the left‐affected PD patients in contrast to dominance of the left hemisphere in the right‐affected PD patients. Conclusions Taken together, our findings suggest that with disease progression, dysconnectivity in the brain networks in PD can reflect the deterioration of global cognitive deficits and the lateralization of motor symptoms. RS HD‐EEG may be an early biomarker of PD motor and non‐motor progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Sahar Yassine
- Univ Rennes, Inserm, LTSI - U1099, Rennes, F-35000, France.,NeuroKyma, Rennes, F-35000, France
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Manon Auffret
- Comportement et noyaux gris centraux, EA 4712, CHU Rennes, Rennes, France
| | - Sophie Achard
- CNRS, Grenoble INP, GIPSA-Lab, University of Grenoble Alpes, Grenoble, France
| | - Marc Verin
- Univ Rennes, Inserm, LTSI - U1099, Rennes, F-35000, France.,Comportement et noyaux gris centraux, EA 4712, CHU Rennes, Rennes, France.,Movement Disorders Unit, Neurology Department, Pontchaillou University Hospital, Rennes, France.,Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
| | - Peter Fuhr
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Mahmoud Hassan
- MINDig, Rennes, F-35000, France.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
6
|
Deep Transfer Learning for Parkinson’s Disease Monitoring by Image-Based Representation of Resting-State EEG Using Directional Connectivity. ALGORITHMS 2021. [DOI: 10.3390/a15010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson’s disease (PD) is characterized by abnormal brain oscillations that can change rapidly. Tracking neural alternations with high temporal resolution electrophysiological monitoring methods such as EEG can lead to valuable information about alterations observed in PD. Concomitantly, there have been advances in the high-accuracy performance of deep neural networks (DNNs) using few-patient data. In this study, we propose a method to transform resting-state EEG data into a deep latent space to classify PD subjects from healthy cases. We first used a general orthogonalized directed coherence (gOPDC) method to compute directional connectivity (DC) between all pairwise EEG channels in four frequency bands (Theta, Alpha, Beta, and Gamma) and then converted the DC maps into 2D images. We then used the VGG-16 architecture (trained on the ImageNet dataset) as our pre-trained model, enlisted weights of convolutional layers as initial weights, and fine-tuned all layer weights with our data. After training, the classification achieved 99.62% accuracy, 100% precision, 99.17% recall, 0.9958 F1 score, and 0.9958 AUC averaged for 10 random repetitions of training/evaluating on the proposed deep transfer learning (DTL) network. Using the latent features learned by the network and employing LASSO regression, we found that latent features (as opposed to the raw DC values) were significantly correlated with five clinical indices routinely measured: left and right finger tapping, left and right tremor, and body bradykinesia. Our results demonstrate the power of transfer learning and latent space derivation for the development of oscillatory biomarkers in PD.
Collapse
|
7
|
Landelle C, Lungu O, Vahdat S, Kavounoudias A, Marchand-Pauvert V, De Leener B, Doyon J. Investigating the human spinal sensorimotor pathways through functional magnetic resonance imaging. Neuroimage 2021; 245:118684. [PMID: 34732324 DOI: 10.1016/j.neuroimage.2021.118684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023] Open
Abstract
Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms. By cross-referencing these human neuroimaging findings with knowledge acquired through neurophysiological recordings, our review demonstrates that spinal fMRI is a powerful tool for exploring, in vivo, the human spinal cord pathways. We report strong cross-validation between task-related and resting-state fMRI in accordance with well-known hemicord, postero-anterior and rostro-caudal organization of these pathways. We also highlight the specific advantages of using spinal fMRI in clinical settings to characterize better spinal-related impairments, predict disease progression, and guide the implementation of therapeutic interventions.
Collapse
Affiliation(s)
- Caroline Landelle
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Ovidiu Lungu
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Anne Kavounoudias
- CNRS, UMR7291, Laboratory of Cognitive Neurosciences, Aix-Marseille University, Marseille, France
| | | | - Benjamin De Leener
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada; CHU Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Liu P, Yuan Y, Zhang N, Liu X, Yu L, Luo B. Mirror Movements in Acquired Neurological Disorders: A Mini-Review. Front Neurol 2021; 12:736115. [PMID: 34616356 PMCID: PMC8488104 DOI: 10.3389/fneur.2021.736115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Mirror movements (MMs) are specifically defined as involuntary movements occurring on one side of homologous muscles when performing unilateral movements with the contralateral limb. MMs have been considered a kind of soft neurological signs, and the persistence or reappearance of MMs in adults is usually pathologic. In addition to some congenital syndrome, MMs have been also described in age-related neurological diseases including pyramidal system diseases (e.g., stroke, amyotrophic lateral sclerosis) and extrapyramidal disorders (e.g., Parkinson's disease, essential tremor). With the advances in instrumentation and detection means, subtle or subclinical MMs have been deeply studied. Furthermore, the underlying mechanism is also being further elucidated. In this mini-review, we firstly discuss the MM examination means, and then review the literature regarding MMs in individuals with acquired neurological disorders, in order to further understand the pathogenesis of MMs.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhang
- Department of Neurology, Pujiang People's Hospital, Jinhua, China
| | - Xiaoyan Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Yu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Association between the Degree of Pre-Synaptic Dopaminergic Pathway Degeneration and Motor Unit Firing Behavior in Parkinson's Disease Patients. SENSORS 2021; 21:s21196615. [PMID: 34640935 PMCID: PMC8512333 DOI: 10.3390/s21196615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022]
Abstract
The relationship between motor unit (MU) firing behavior and the severity of neurodegeneration in Parkinson’s disease (PD) is not clear. This study aimed to elucidate the association between degeneration with dopaminergic pathways and MU firing behavior in people with PD. Fourteen females with PD (age, 72.6 ± 7.2 years, disease duration, 3.5 ± 2.1 years) were enrolled in this study. All participants performed a submaximal, isometric knee extension ramp-up contraction from 0% to 80% of their maximal voluntary contraction strength. We used high-density surface electromyography with 64 electrodes to record the muscle activity of the vastus lateralis muscle and decomposed the signals with the convolution kernel compensation technique to extract the signals of individual MUs. We calculated the degree of degeneration of the central lesion-specific binding ratio by dopamine transporter single-photon emission computed tomography. The primary, novel results were as follows: (1) moderate-to-strong correlations were observed between the degree of degeneration of the central lesion and MU firing behavior; (2) a moderate correlation was observed between clinical measures of disease severity and MU firing behavior; and (3) the methods of predicting central nervous system degeneration from MU firing behavior abnormalities had a high detection accuracy with an area under the curve >0.83. These findings suggest that abnormalities in MU activity can be used to predict central nervous system degeneration following PD.
Collapse
|
10
|
Bowen Z, Changlian T, Qian L, Wanrong P, Huihui Y, Zhaoxia L, Feng L, Jinyu L, Xiongzhao Z, Mingtian Z. Gray Matter Abnormalities of Orbitofrontal Cortex and Striatum in Drug-Naïve Adult Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:674568. [PMID: 34168582 PMCID: PMC8217443 DOI: 10.3389/fpsyt.2021.674568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study examined whether obsessive-compulsive disorder (OCD) patients have gray matter abnormalities in regions related to executive function, and whether such abnormalities are associated with impaired executive function. Methods: Multiple scales were administered to 27 first-episode drug-naïve OCD patients and 29 healthy controls. Comprehensive brain morphometric indicators of orbitofrontal cortex (OFC) and three striatum areas (caudate, putamen, and pallidum) were determined. Hemisphere lateralization index was calculated for each region of interest. Correlations between lateralization index and psychological variables were examined in OCD group. Results: The OCD group had greater local gyrification index for the right OFC and greater gray matter volumes of the bilateral putamen and left pallidum than healthy controls. They also had weaker left hemisphere superiority for local gyrification index of the OFC and gray matter volume of the putamen, but stronger left hemisphere superiority for gray matter volume of the pallidum. Patients' lateralization index for local gyrification index of the OFC correlated negatively with Yale-Brown Obsessive Compulsive Scale and Dysexecutive Questionnaire scores, respectively. Conclusion: Structural abnormalities of the bilateral putamen, left pallidum, and right OFC may underlie OCD pathology. Abnormal lateralization in OCD may contribute to the onset of obsessive-compulsive symptoms and impaired executive function.
Collapse
Affiliation(s)
- Zhang Bowen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Tan Changlian
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Qian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Peng Wanrong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huihui
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Zhaoxia
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Liu Jinyu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhu Xiongzhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- Medical Psychological Institute, Central South University, Changsha, China
| | - Zhong Mingtian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Herz DM, Meder D, Camilleri JA, Eickhoff SB, Siebner HR. Brain Motor Network Changes in Parkinson's Disease: Evidence from Meta-Analytic Modeling. Mov Disord 2021; 36:1180-1190. [PMID: 33427336 PMCID: PMC8127399 DOI: 10.1002/mds.28468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Motor‐related brain activity in Parkinson's disease has been investigated in a multitude of functional neuroimaging studies, which often yielded apparently conflicting results. Our previous meta‐analysis did not resolve inconsistencies regarding cortical activation differences in Parkinson's disease, which might be related to the limited number of studies that could be included. Therefore, we conducted a revised meta‐analysis including a larger number of studies. The objectives of this study were to elucidate brain areas that consistently show abnormal motor‐related activation in Parkinson's disease and to reveal their functional connectivity profiles using meta‐analytic approaches. Methods We applied a quantitative meta‐analysis of functional neuroimaging studies testing limb movements in Parkinson's disease comprising data from 39 studies, of which 15 studies (285 of 571 individual patients) were published after the previous meta‐analysis. We also conducted meta‐analytic connectivity modeling to elucidate the connectivity profiles of areas showing abnormal activation. Results We found consistent motor‐related underactivation of bilateral posterior putamen and cerebellum in Parkinson's disease. Primary motor cortex and the supplementary motor area also showed deficient activation, whereas cortical regions localized directly anterior to these areas expressed overactivation. Connectivity modeling revealed that areas showing decreased activation shared a common pathway through the posterior putamen, whereas areas showing increased activation were connected to the anterior putamen. Conclusions Despite conflicting results in individual neuroimaging studies, this revised meta‐analytic approach identified consistent patterns of abnormal motor‐related activation in Parkinson's disease. The distinct patterns of decreased and increased activity might be determined by their connectivity with different subregions of the putamen. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Julia A Camilleri
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Simon B Eickhoff
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation. Neurobiol Dis 2020; 147:105159. [PMID: 33152506 DOI: 10.1016/j.nbd.2020.105159] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Movement abnormalities of Parkinson's disease (PD) arise from disordered neural activity in multiple interconnected brain structures. The planning and execution of movement requires recruitment of a heterogeneous collection of pyramidal projection neurons in the primary motor cortex (M1). The neural representations of movement in M1 single-cell and field potential recordings are directly and indirectly influenced by the midbrain dopaminergic neurons that degenerate in PD. This review examines M1 functional alterations in PD as uncovered by electrophysiological recordings and neurostimulation studies in patients and experimental animal models. Dysfunction of the parkinsonian M1 depends on the severity and/or duration of dopamine-depletion and the species examined, and is expressed as alterations in movement-related firing dynamics; functional reorganisation of local circuits; and changes in field potential beta oscillations. Neurostimulation methods that modulate M1 activity directly (e.g., transcranial magnetic stimulation) or indirectly (subthalamic nucleus deep brain stimulation) improve motor function in PD patients, showing that targeted neuromodulation of M1 is a realistic therapy. We argue that the therapeutic profile of M1 neurostimulation is likely to be greatly enhanced with alternative technologies that permit cell-type specific control and incorporate feedback from electrophysiological biomarkers measured locally.
Collapse
|
13
|
Shang S, Wu J, Zhang H, Chen H, Cao Z, Chen YC, Yin X. Motor asymmetry related cerebral perfusion patterns in Parkinson's disease: An arterial spin labeling study. Hum Brain Mapp 2020; 42:298-309. [PMID: 33017507 PMCID: PMC7775999 DOI: 10.1002/hbm.25223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
Persisting asymmetry of motor symptoms are characteristic of Parkinson's disease (PD). We investigated the possible lateralized effects on regional cerebral blood flow (CBF), CBF‐connectivity, and laterality index (LI) among PD subtypes using arterial spin labeling (ASL). Forty‐four left‐sided symptom dominance patients (PDL), forty‐eight right‐sided symptom dominance patients (PDR), and forty‐five matched HCs were included. Group comparisons were performed for the regional normalized CBF, CBF‐connectivity and LI of basal ganglia (BA) subregions. The PDL patients had lower CBF in right calcarine sulcus and right supramarginal gyrus compared to the PDR and the HC subjects. Regional perfusion alterations seemed more extensive in the PDL than in the PDR group. In the PDL, correlations were identified between right thalamus and motor severity, between right fusiform gyrus and global cognitive performance. None of correlations survived after multiple comparisons correction. The significantly altered CBF‐connectivity among the three groups included: unilateral putamen, unilateral globus pallidus, and right thalamus. LI score in the putamen was significantly different among groups. Motor‐symptom laterality in PD may exhibit asymmetric regional and interregional abnormalities of CBF properties, particularly in PDL patients. This preliminary study underlines the necessity of classifying PD subgroups based on asymmetric motor symptoms and the potential application of CBF properties underlying neuropathology in PD.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingtao Wu
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongri Chen
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengye Cao
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Wu J, Guo T, Zhou C, Gao T, Guan X, Xuan M, Gu Q, Huang P, Song Z, Xu X, Zhang M. Disrupted interhemispheric coordination with unaffected lateralization of global eigenvector centrality characterizes hemiparkinsonism. Brain Res 2020; 1742:146888. [PMID: 32439342 DOI: 10.1016/j.brainres.2020.146888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/12/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The motor dysfunctions always affect hemi-body first in Parkinson's disease (PD). However, the interhemispheric relationships in patients with only unilateral motor impairment were barely known to date. We aimed to investigate the interhemispheric functions using resting-state functional Magnetic resonance imaging (RS-fMRI) for further understanding the pathogenesis of PD. METHODS Forty-three unilateral-symptomatic PD patients (UPD, Hoehn-Yahr staging scale, H-Y: 1-1.5), and 54 age-, gender-, education-matched normal controls (NC) were recruited. All subjects underwent MRI scanning and clinical evaluations. The interhemispheric coordination (Voxel-Mirrored Homotopic Connectivity, VMHC) and hemispheric dominance pattern (laterality index of eigenvector centrality mapping, LI-ECM) were calculated. Afterwards, correlation analyses and receiver operating characteristic (ROC) curve analysis were employed. RESULTS Compared with NC, UPD group showed significantly decreased VMHC in bilateral sensorimotor regions which was negatively correlated with the motor score. Furthermore, at the cut-off homotopic connectivity of 0.604, statistically significant ability of VMHC to discriminate UPD from NC with area under ROC curve (AUC) = 0.759, p < 0.001; specificity = 74.4%; sensitivity = 68.5% was observed. No difference was detected in UPD patients as for ECM and LI-ECM. CONCLUSIONS The disrupted interhemispheric coordination in bilateral sensorimotor regions may have significant implications for elucidating the mechanisms underlying the hemiparkinsonism and enabling the uncovering of complex mechanisms of PD.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China.
| |
Collapse
|
15
|
Li Y, Guo T, Guan X, Gao T, Sheng W, Zhou C, Wu J, Xuan M, Gu Q, Zhang M, Yang Y, Huang P. Fixel-based analysis reveals fiber-specific alterations during the progression of Parkinson's disease. Neuroimage Clin 2020; 27:102355. [PMID: 32736325 PMCID: PMC7394754 DOI: 10.1016/j.nicl.2020.102355] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Disruption of brain circuits is one of the core mechanisms of Parkinson's disease (PD). Understanding structural connection alterations in PD is important for effective treatment. However, due to methodological limitations, most studies were unable to account for confounding factors such as crossing fibers and were unable to identify damages to specific fiber tracts. In the present study, we aimed to demonstrate tract-specific white matter structural changes in PD patients and their relationship with clinical symptoms. Ninety-eight PD patients, divided into early (ES) and middle stage (MS) groups, and 76 healthy controls (HCs) underwent brain magnetic resonance imaging scans and clinical assessments. Fixel-based analysis was used to investigate fiber tract alterations in PD patients. Compared to HCs, the PD patients showed decreased fiber density (FD) in the corpus callosum (CC), increased FD in the cortical spinal tract (CST), and increased fiber-bundle cross-section (FC, log-transformed: log-FC) in the superior cerebellar peduncle (SCP). Analysis of variance (ANOVA) revealed significant differences in FD in the CST and log-FC in the SCP among the three groups. Post-hoc analysis revealed that the mean FD values of the CST were higher in ES and MS patient groups compared to HCs, and the mean log-FC values of the SCP were higher in ES and MS patient groups compared to HCs. Additionally, the FD values of the CC in PD patients were negatively correlated with the Unified Parkinson's Disease Rating Scale part-III (UPDRS-III) scores (r = -0.257, p = 0.032), Hamilton Depression Rating Scale 17 Items (HAMD-17) scores (r = -0.230, p = 0.033), and Hamilton Anxiety Scale (HAMA) scores (r = -0.248, p = 0.032). Moreover, log-FC values of the SCP (r = 0.274, p = 0.028) and FD values of the CST (r = 0.384, p < 0.001) were positively correlated with the UPDRS-III scores. We concluded that PD patients had both decreased and increased white matter integrity within specific fiber bundles. Additionally, these white matter alterations were different across disease stages, suggesting the occurrence of complex pathological and compensatory changes during the development of PD.
Collapse
Affiliation(s)
- Yanxuan Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Wenshuang Sheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China.
| | - Peiyu Huang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China; Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, China.
| |
Collapse
|
16
|
Li K, Zhao H, Li CM, Ma XX, Chen M, Li SH, Wang R, Lou BH, Chen HB, Su W. The Relationship between Side of Onset and Cerebral Regional Homogeneity in Parkinson's Disease: A Resting-State fMRI Study. PARKINSON'S DISEASE 2020; 2020:5146253. [PMID: 32676180 PMCID: PMC7336244 DOI: 10.1155/2020/5146253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Motor symptoms are usually asymmetric in Parkinson's disease (PD), and asymmetry in PD may involve widespread brain areas. We sought to evaluate the effect of asymmetry on the whole brain spontaneous activity using the measure regional homogeneity (ReHo) through resting-state functional MRI. METHODS We recruited 30 PD patients with left onset (LPD), 27 with right side (RPD), and 32 controls with satisfactory data. Their demographic, clinical, and neuropsychological information were obtained. Resting-state functional MRI was performed, and ReHo was used to determine the brain activity. ANCOVA was utilized to analyze between-group differences in ReHo and the associations between abnormal ReHo, and various clinical and neuropsychological variables were explored by Spearman's correlation. RESULTS LPD patients had higher ReHo in the right temporal pole than the controls. RPD patients had increased ReHo in the right temporal pole and decreased ReHo in the primary motor cortex and premotor area, compared with the controls. Directly comparing LPD and RPD patients did not show a significant difference in ReHo. ReHo of the right temporal pole was significantly correlated with depression and anxiety in RPD patients. CONCLUSIONS Both LPD and RPD have increased brain activity synchronization in the right temporal pole, and only RPD has decreased brain activity synchronization in the right frontal motor areas. The changed brain activity in the right temporal pole may play a compensatory role for depression and anxiety in PD, and the altered cerebral function in the right frontal motor area in RPD may represent the reorganization of the motor system in RPD.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Hong Zhao
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Chun-Mei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Xin-Xin Ma
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Shu-Hua Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Rui Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Bao-Hui Lou
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Hai-Bo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Wen Su
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| |
Collapse
|
17
|
Jiang S, Zhong D, Yan Y, Zhu Q, Wang C, Bai X, Cao T, Wu B. Mirror movements induced by hemiballism due to putamen infarction: a case report and literature review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:19. [PMID: 32055610 DOI: 10.21037/atm.2019.10.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mirror movements (MMs), which are involuntary movements of one limb that synchronously mirror voluntary movements of the contralateral limb, are a relatively uncommon complication of strokes. Here we report what appears to be the first case of putamen infarction manifesting as MMs in one side of the body induced by contralateral hemiballism. MMs and hemiballism were nearly entirely eliminated after one week of clonazepam and haloperidol therapy. During the subsequent one year of standard ischemic stroke prevention measures, no further episodes of involuntary movement occurred. Our case and literature review highlight that acute stroke can manifest as hemiballism and MMs, which should be recognized as soon as possible to ensure timely management.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Neurology, The Third People's Hospital of Chengdu, Chengdu 610015, China
| | - Di Zhong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuying Yan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiange Zhu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changyi Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueling Bai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Jastrzębowska MA, Marquis R, Melie-García L, Lutti A, Kherif F, Herzog MH, Draganski B. Dopaminergic modulation of motor network compensatory mechanisms in Parkinson's disease. Hum Brain Mapp 2019; 40:4397-4416. [PMID: 31291039 DOI: 10.1002/hbm.24710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
The dopaminergic system has a unique gating function in the initiation and execution of movements. When the interhemispheric imbalance of dopamine inherent to the healthy brain is disrupted, as in Parkinson's disease (PD), compensatory mechanisms act to stave off behavioral changes. It has been proposed that two such compensatory mechanisms may be (a) a decrease in motor lateralization, observed in drug-naïve PD patients and (b) reduced inhibition - increased facilitation. Seeking to investigate the differential effect of dopamine depletion and subsequent substitution on compensatory mechanisms in non-drug-naïve PD, we studied 10 PD patients and 16 healthy controls, with patients undergoing two test sessions - "ON" and "OFF" medication. Using a simple visually-cued motor response task and fMRI, we investigated cortical motor activation - in terms of laterality, contra- and ipsilateral percent BOLD signal change and effective connectivity in the parametric empirical Bayes framework. We found that decreased motor lateralization persists in non-drug-naïve PD and is concurrent with decreased contralateral activation in the cortical motor network. Normal lateralization is not reinstated by dopamine substitution. In terms of effective connectivity, disease-related changes primarily affect ipsilaterally-lateralized homotopic cortical motor connections, while medication-related changes affect contralaterally-lateralized homotopic connections. Our findings suggest that, in non-drug-naïve PD, decreased lateralization is no longer an adaptive cortical mechanism, but rather the result of maladaptive changes, related to disease progression and long-term dopamine replacement. These findings highlight the need for the development of noninvasive therapies, which would promote the adaptive mechanisms of the PD brain.
Collapse
Affiliation(s)
- Maya A Jastrzębowska
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Renaud Marquis
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- EEG and Epilepsy Unit, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Lester Melie-García
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging (LREN), Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
19
|
Rios A, Soma S, Yoshida J, Nonomura S, Kawabata M, Sakai Y, Isomura Y. Differential Changes in the Lateralized Activity of Identified Projection Neurons of Motor Cortex in Hemiparkinsonian Rats. eNeuro 2019; 6:ENEURO.0110-19.2019. [PMID: 31235466 PMCID: PMC6620387 DOI: 10.1523/eneuro.0110-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
In the parkinsonian state, the motor cortex and basal ganglia (BG) undergo dynamic remodeling of movement representation. One such change is the loss of the normal contralateral lateralized activity pattern. The increase in the number of movement-related neurons responding to ipsilateral or bilateral limb movements may cause motor problems, including impaired balance, reduced bimanual coordination, and abnormal mirror movements. However, it remains unknown how individual types of motor cortical neurons organize this reconstruction. To explore the effect of dopamine depletion on lateralized activity in the parkinsonian state, we used a partial hemiparkinsonian model [6-hydroxydopamine (6-OHDA) lesion] in Long-Evans rats performing unilateral movements in a right-left pedal task, while recording from primary (M1) and secondary motor cortex (M2). The lesion decreased contralateral preferred activity in both M1 and M2. In addition, this change differed among identified intratelencephalic (IT) and pyramidal tract (PT) cortical projection neurons, depending on the cortical area. We detected a decrease in lateralized activity only in PT neurons in M1, whereas in M2, this change was observed in IT neurons, with no change in the PT population. Our results suggest a differential effect of dopamine depletion in the lateralized activity of the motor cortex, and suggest possible compensatory changes in the contralateral hemisphere.
Collapse
Affiliation(s)
- Alain Rios
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shogo Soma
- Department of Anatomy and Neurobiology. University of California, Irvine, Irvine, CA 92697
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Satoshi Nonomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masanori Kawabata
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
| | - Yoshikazu Isomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
20
|
Howard A, Powell JL, Gibson J, Hawkes D, Kemp GJ, Frostick SP. A functional Magnetic Resonance Imaging study of patients with Polar Type II/III complex shoulder instability. Sci Rep 2019; 9:6271. [PMID: 31000752 PMCID: PMC6472426 DOI: 10.1038/s41598-019-42754-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of Stanmore Classification Polar type II/III shoulder instability is not well understood. Functional Magnetic Resonance Imaging was used to measure brain activity in response to forward flexion and abduction in 16 patients with Polar Type II/III shoulder instability and 16 age-matched controls. When a cluster level correction was applied patients showed significantly greater brain activity than controls in primary motor cortex (BA4), supramarginal gyrus (BA40), inferior frontal gyrus (BA44), precentral gyrus (BA6) and middle frontal gyrus (BA6): the latter region is considered premotor cortex. Using voxel level correction within these five regions a unique activation was found in the primary motor cortex (BA4) at MNI coordinates -38 -26 56. Activation was greater in controls compared to patients in the parahippocampal gyrus (BA27) and perirhinal cortex (BA36). These findings show, for the first time, neural differences in patients with complex shoulder instability, and suggest that patients are in some sense working harder or differently to maintain shoulder stability, with brain activity similar to early stage motor sequence learning. It will help to understand the condition, design better therapies and improve treatment of this group; avoiding the common clinical misconception that their recurrent shoulder dislocations are a form of attention-seeking.
Collapse
Affiliation(s)
- Anthony Howard
- Trauma & Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, UK.
| | - Joanne L Powell
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Jo Gibson
- Physiotherapy Department, Royal Liverpool University Hospital, Liverpool, UK
| | - David Hawkes
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Graham J Kemp
- Department of Musculoskeletal Biology and Liverpool Magnetic Resonance Imaging Centre (LiMRIC), University of Liverpool, Liverpool, UK
| | - Simon P Frostick
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Braunlich K, Seger CA, Jentink KG, Buard I, Kluger BM, Thaut MH. Rhythmic auditory cues shape neural network recruitment in Parkinson's disease during repetitive motor behavior. Eur J Neurosci 2018; 49:849-858. [PMID: 30375083 DOI: 10.1111/ejn.14227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/01/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022]
Abstract
It is well established clinically that rhythmic auditory cues can improve gait and other motor behaviors in Parkinson's disease (PD) and other disorders. However, the neural systems underlying this therapeutic effect are largely unknown. To investigate this question we scanned people with PD and age-matched healthy controls using functional magnetic resonance imaging (fMRI). All subjects performed a rhythmic motor behavior (right hand finger tapping) with and without simultaneous auditory rhythmic cues at two different speeds (1 and 4 Hz). We used spatial independent component analysis (ICA) and regression to identify task-related functional connectivity networks and assessed differences between groups in intra- and inter-network connectivity. Overall, the control group showed greater intra-network connectivity in perceptual and motor related networks during motor tapping both with and without rhythmic cues. The PD group showed greater inter-network connectivity between the auditory network and the executive control network, and between the executive control network and the motor/cerebellar network associated with the motor task performance. We interpret our results as indicating that the temporal rhythmic auditory information may assist compensatory mechanisms through network-level effects, reflected in increased interaction between auditory and executive networks that in turn modulate activity in cortico-cerebellar networks.
Collapse
Affiliation(s)
- Kurt Braunlich
- Department of Psychology and Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, USA.,Department of Experimental Psychology, University College London, London, UK
| | - Carol A Seger
- Department of Psychology and Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, USA.,Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Kade G Jentink
- Department of Psychology and Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Isabelle Buard
- Department of Neurology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Benzi M Kluger
- Department of Neurology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Michael H Thaut
- Faculty of Music, Collaborative Programs in Neuroscience, Rehabilitation Science Institute, and Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON, M5S2C5, Canada
| |
Collapse
|
22
|
AuYong N, Malekmohammadi M, Ricks-Oddie J, Pouratian N. Movement-Modulation of Local Power and Phase Amplitude Coupling in Bilateral Globus Pallidus Interna in Parkinson Disease. Front Hum Neurosci 2018; 12:270. [PMID: 30038563 PMCID: PMC6046436 DOI: 10.3389/fnhum.2018.00270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/11/2018] [Indexed: 12/01/2022] Open
Abstract
There is converging evidence that bilateral basal ganglia motor networks jointly support normal movement behaviors including unilateral movements. The extent and manner in which these networks interact during lateralized movement remains unclear. In this study, simultaneously recorded bilateral Globus Pallidus interna (GPi) local field potentials (LFP) were examined from 19 subjects with idiopathic Parkinson disease (PD), while undergoing awake deep brain stimulation (DBS) implantation. Recordings were carried out during two behavioral states; rest and cued left hand movement (finger tapping). The state-dependent effects on α- β oscillatory power and β phase-encoded phase amplitude coupling (PAC), including symmetrical and assymetrical changes between hemispheres, were identified. Unilateral hand movement resulted in symmetrical oscillatory power suppression within bilateral GPi at α (8-12 Hz) and high β (21-35 Hz) and increase in power of high frequency oscillations (HFO, 200-300 Hz) frequency bands. Asymmetrical attenuation was also observed at both low β (13-20 Hz) and low γ (40-80 Hz) bands within the contralateral GPi (P = 0.009). In addition, unilateral movement effects on PAC were confined to the contralateral GPi with attenuation of both low β-low γ and β-HFO PAC (P < 0.05). Further analysis showed that the lateralized attenuation of low β and low γ power did not correlate with low β-low γ PAC changes. The overall coherence between bilateral GPi was not significantly altered with unilateral movement, however the preferred phase difference in the high β range increased from 0.23 (±1.31) radians during rest to 1.99 (±0.78) radians during movement execution. Together, the present results suggest that unilateral motor control involves bilateral basal ganglia networks with movement features differentially encoded by distinct frequency bands. The lateralization of low β and low γ attenuation with movement suggests that these frequency bands are specific to the motor act whereas symmetrical expression of α, high β, and HFO oscillations best correspond to motor state. The restriction of movement-related PAC modulation to the contralateral GPi indicates that cross-frequency interactions appear to be associated with lateralized movements. Despite no significant movement-related changes in the interhemispheric coherence, the increase in phase difference suggests that the communication between bilateral GPi is altered with unilateral movement.
Collapse
Affiliation(s)
- Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joni Ricks-Oddie
- Institute for Digital Research and Education, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Riederer P, Jellinger KA, Kolber P, Hipp G, Sian-Hülsmann J, Krüger R. Lateralisation in Parkinson disease. Cell Tissue Res 2018; 373:297-312. [PMID: 29656343 DOI: 10.1007/s00441-018-2832-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/21/2018] [Indexed: 01/11/2023]
Abstract
Asymmetry of dopaminergic neurodegeneration and subsequent lateralisation of motor symptoms are distinctive features of Parkinson's disease compared to other forms of neurodegenerative or symptomatic parkinsonism. Even 200 years after the first description of the disease, the underlying causes for this striking clinicopathological feature are not yet fully understood. There is increasing evidence that lateralisation of disease is due to a complex interplay of hereditary and environmental factors that are reflected not only in the concept of dominant hemispheres and handedness but also in specific susceptibilities of neuronal subpopulations within the substantia nigra. As a consequence, not only the obvious lateralisation of motor symptoms occurs but also patterns of associated non-motor signs are defined, which include cognitive functions, sleep behaviour or olfaction. Better understanding of the mechanisms contributing to lateralisation of neurodegeneration and the resulting patterns of clinical phenotypes based on bilateral post-mortem brain analyses and clinical studies focusing on right/left hemispheric symptom origin will help to develop more targeted therapeutic approaches, taking into account subtypes of PD as a heterogeneous disorder.
Collapse
Affiliation(s)
- P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Psychiatry Department of Clinical Research, University of Southern Denmark, Odense University Hospital, J.B. Winsløws Vej 18, Indgang 220 A, DK-5000, Odense C, Denmark.
| | - K A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria
| | - P Kolber
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - G Hipp
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, PO Box 30197, Nairobi, 00100, Kenya
| | - R Krüger
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
24
|
Abstract
In Parkinson’s disease (PD) the prevalence of apraxia increases with disease severity implying that patients in early stages may already have subclinical deficits. The aim of this exploratory fMRI study was to investigate if subclinical aberrations of the praxis network are already present in patients with early PD. In previous functional imaging literature only data on basal motor functions in PD exists. Thirteen patients with mild parkinsonian symptoms and without clinically diagnosed apraxia and 14 healthy controls entered this study. During fMRI participants performed a pantomime task in which they imitated the use of visually presented objects. Patients were measured ON and OFF dopaminergic therapy to evaluate a potential medication effect on praxis abilities and related brain functions. Although none of the patients was apraxic according to De Renzi ideomotor scores (range 62–72), patients OFF showed significantly lower praxis scores than controls. Patients exhibited significant hyperactivation in left fronto-parietal core areas of the praxis network. Frontal activations were clearly dominant in patients and were correlated with lower individual praxis scores. We conclude that early PD patients already show characteristic signs of praxis network dysfunctions and rely on specific hyperactivations to avoid clinically evident apraxic symptoms. Subclinical apraxic deficits were shown to correlate with an activation shift from left parietal to left frontal areas implying a prospective individual imaging marker for incipient apraxia.
Collapse
|
25
|
Alterations in Functional Cortical Hierarchy in Hemiparkinsonian Rats. J Neurosci 2017; 37:7669-7681. [PMID: 28687605 DOI: 10.1523/jneurosci.3257-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease and experimentally induced hemiparkinsonism are characterized by increased beta synchronization between cortical and subcortical areas. This change in beta connectivity might reflect either a symmetric increase in interareal influences or asymmetric changes in directed influences among brain areas. We assessed patterns of functional and directed connectivity within and between striatum and six cortical sites in each hemisphere of the hemiparkinsonian rat model. LFPs were recorded in resting and walking states, before and after unilateral 6-hydroxydopamine lesion. The hemiparkinsonian state was characterized by increased oscillatory activity in the 20-40 Hz range in resting and walking states, and increased interhemispheric coupling (phase lag index) that was more widespread at rest than during walking. Spectral Granger-causality analysis revealed that the change in symmetric functional connectivity comprised profound reorganization of hierarchical organization and directed influence patterns. First, in the lesioned hemisphere, the more anterior, nonprimary motor areas located at the top of the cortical hierarchy (i.e., receiving many directed influences) tended to increase their directed influence onto the posterior primary motor and somatosensory areas. This enhanced influence of "higher" areas may be related to the loss of motor control due to the 6-OHDA lesion. Second, the drive from the nonlesioned toward the lesioned hemisphere (in particular to striatum) increased, most prominently during walking. The nature of these adaptations (disturbed signaling or compensation) is discussed. The present study demonstrates that hemiparkinsonism is associated with a profound reorganization of the hierarchical organization of directed influence patterns among brain areas, perhaps reflecting compensatory processes.SIGNIFICANCE STATEMENT Parkinson's disease classically first becomes manifest in one hemibody before affecting both sides, suggesting that degeneration is asymmetrical. Our results suggest that asymmetrical degeneration of the dopaminergic system induces an increased drive from the nonlesioned toward the lesioned hemisphere and a profound reorganization of functional cortical hierarchical organization, leading to a stronger directed influence of hierarchically higher placed cortical areas over primary motor and somatosensory cortices. These changes may represent a compensatory mechanism for loss of motor control as a consequence of dopamine depletion.
Collapse
|
26
|
Rahayel S, Postuma RB, Montplaisir J, Bedetti C, Brambati S, Carrier J, Monchi O, Bourgouin PA, Gaubert M, Gagnon JF. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features. Cereb Cortex 2017; 28:658-671. [DOI: 10.1093/cercor/bhx137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shady Rahayel
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec H2X 3P2, Canada
| | - Ronald B Postuma
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Neurology, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - Jacques Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Christophe Bedetti
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec H3W 1W5, Canada
| | - Simona Brambati
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec H3W 1W5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec H3W 1W5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Oury Monchi
- Department of Neurology, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec H3W 1W5, Canada
- Department of Radiology, Radio-Oncology, and Nuclear Medicine, Université de Montréal, Montreal, Quebec H3T 1A4, Canada
- Departments of Clinical Neurosciences and Radiology, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Pierre-Alexandre Bourgouin
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec H2X 3P2, Canada
| | - Malo Gaubert
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec H2X 3P2, Canada
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec H2X 3P2, Canada
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Quebec H3W 1W5, Canada
| |
Collapse
|
27
|
Patil AL, Sood SK, Goyal V, Kochhar KP. Cortical Potentials Prior to Movement in Parkinson's Disease. J Clin Diagn Res 2017; 11:CC13-CC16. [PMID: 28511378 DOI: 10.7860/jcdr/2017/25520.9598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Recording cortical potentials prior to movement (bereitschaftspotentials, BP) offer a good non invasive method for studying activity of motor related cortices in Parkinson's Disease (PD). Dopaminergic medications provide some symptomatic relief in advanced stages but they do not stop the progression of the disease. Assessing BP may be a good idea to see the response of anti PD drugs. It remains unclear whether the anti PD medications also improve cortical activity prior to movement even in advanced stages of the disease. AIM In this study we recorded scalp BP in patients with varying grades of severity to study the relationship between disease severity and various components of BP. MATERIALS AND METHODS We successfully recorded BP at Cz, C3 and C4 sites during self-initiated 100 right wrist movements in 12 male patients with PD having severity Hoehn and Yahn (H&Y) scale 4 (PD3 group). These potentials were compared with age matched patients with H&Y scale 2 (PD1) and scale 3 (PD2) and also with age matched healthy controls. RESULTS We found flatter waveforms with increasing severity of disease. Amplitude is first to be affected in mild severity as compared to controls (p=0.011); while with increasing severity early as well as late part of potentials is affected. Such changes are prominently seen at Cz site across the groups. CONCLUSION These findings imply that there is increasing defect in cortical activity during movement especially in supplementary motor area with increasing severity in PD in spite of dopaminergic medications. This dynamic nature of dysfunction in supplementary motor cortices must be taken in account while treating advanced cases using newer stimulation techniques.
Collapse
Affiliation(s)
- Ashlesh Laxman Patil
- Senior Resident, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Kumar Sood
- Professor, Department of Physiology, RAK College of Medical Sciences (RAKMHSU), Ras Al Khaimah, United Arab Emirates
| | - Vinay Goyal
- Professor, Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanwal Preet Kochhar
- Professor, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
The cortical signature of symptom laterality in Parkinson's disease. NEUROIMAGE-CLINICAL 2017; 14:433-440. [PMID: 28271041 PMCID: PMC5322212 DOI: 10.1016/j.nicl.2017.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 02/11/2017] [Indexed: 01/16/2023]
Abstract
Patients with Parkinson's disease (PD) often present with unilateral motor symptoms that eventually spread to the other side. This symptom lateralization is diagnostically important, as it serves to distinguish PD from other motor disorders with overlapping symptom profiles. Further, recent studies have shown that the side of symptom onset is important for prognosis, as there are differences in the rate of disease progression and the incidence of secondary symptoms between right- and left-dominant (RD, LD) patients. Physiologically, previous studies have shown asymmetrical decline in structure and metabolism throughout the basal ganglia, although connecting this directly to motor function has been difficult. To identify the neurophysiological basis of symptom laterality in PD, we recorded magnetoencephalography (MEG) during left- and right-hand movement paradigms in patients with PD who exhibited either RD or LD symptomatology. The beta oscillations serving these movements were then imaged using beamforming methods, and we extracted the time series of the peak voxel in the left and right primary motor cortices for each movement. In addition, each patient's symptom asymmetry was quantitated using the Unified Parkinson's Disease Rating Scale (UPDRS), which allowed the relationship between symptom asymmetry and neural asymmetry to be assessed. We found that LD patients had stronger beta suppression during movement, as well as greater post-movement beta rebound compared to patients with RD symptoms, independent of the hand that was moved. Interestingly, the asymmetry of beta activity during right-hand movement uniquely correlated with symptom asymmetry, such that the more LD the symptom profile, the more left-lateralized (i.e., contralateral to movement) the beta response; conversely, the more RD the symptom profile, the more right-lateralized (i.e., ipsilateral to movement) the beta response. This study is the first to directly probe the relationship between symptom asymmetry and the laterality of neural activity during movement in patients with PD, and suggests that LD patients have a fundamentally different and more “healthy” oscillatory pattern relative to RD patients. Right-dominant expression of Parkinson's has been connected to faster progression. Linkage between symptom asymmetry and cortical physiology remains unknown. Cortical motor activity was measured in patients with left/right-dominant symptoms. Patients with left-dominant symptoms had “healthier” pattern of motor responses. Laterality of cortical activity during movement was related to symptom laterality.
Collapse
|
29
|
Santos MCA, Campos LS, Guimarães RP, Piccinin CC, Azevedo PC, Piovesana LG, De Campos BM, Scarparo Amato-Filho AC, Cendes F, D'Abreu A. Does Side of Onset Influence the Pattern of Cerebral Atrophy in Parkinson's Disease? Front Neurol 2016; 7:145. [PMID: 27672378 PMCID: PMC5018632 DOI: 10.3389/fneur.2016.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Background Imaging studies have revealed widespread neurodegeneration in Parkinson’s disease (PD), but only a few considered the issue of asymmetrical clinical presentations. Objective To investigate if the side of onset influences the pattern of gray matter (GM) atrophy in PD. Methods Sixty patients (57.87 ± 10.27 years) diagnosed with idiopathic PD according to the U.K. Brain Bank criteria, 26 with right-sided disease onset (RDO) and 34 with left-sided disease onset (LDO), were compared to 80 healthy controls (HC) (57.1 ± 9.47 years). We acquired T1-weighted images on a 3 T scanner. Images were processed and analyzed with VBM8 (SPM8/Dartel) on Matlab R2012b platform. Statistic assessments included a two-sample test (family-wise error p < 0.05) with extent threshold of 20 voxels. Results Compared to HC, LDO patients had GM atrophy in the insula, putamen, anterior cingulate, frontotemporal cortex, and right caudate, while the RDO group showed atrophy at the anterior cingulate, insula, frontotemporal, and occipital cortex. Conclusion This study revealed widespread GM atrophy in PD, predominantly in the left hemisphere, regardless of the side of onset. Future investigations should also consider handedness and side of onset to better characterize cerebral involvement and its progression in PD.
Collapse
Affiliation(s)
- Maria C A Santos
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| | - Lidiane S Campos
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| | - Rachel P Guimarães
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| | - Camila C Piccinin
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| | - Paula C Azevedo
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| | - Luiza G Piovesana
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| | - Brunno Machado De Campos
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| | | | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| | - Anelyssa D'Abreu
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas - UNICAMP , Campinas , São Paulo, Brazil
| |
Collapse
|
30
|
Chatterjee P, Banerjee R, Choudhury S, Mondal B, Kulsum MU, Chatterjee K, Kumar H. Mirror movements in Parkinson's disease: An under-appreciated clinical sign. J Neurol Sci 2016; 366:171-176. [DOI: 10.1016/j.jns.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
31
|
Song X, Hu X, Zhou S, Xu Y, Zhang Y, Yuan Y, Liu Y, Zhu H, Liu W, Gao JH. Association of specific frequency bands of functional MRI signal oscillations with motor symptoms and depression in Parkinson's disease. Sci Rep 2015; 5:16376. [PMID: 26574049 PMCID: PMC4648086 DOI: 10.1038/srep16376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/13/2015] [Indexed: 12/03/2022] Open
Abstract
A novel empirical mode decomposition method was adopted to investigate the dissociative or interactive neural impact of depression and motor impairments in Parkinson’s disease (PD). Resting-state fMRI data of 59 PD subjects were first decomposed into characteristic frequency bands, and the main effects of motor severity and depression and their interaction on the energy of blood-oxygen-level-dependent signal oscillation in specific frequency bands were then evaluated. The results show that the severity of motor symptoms is negatively correlated with the energy in the frequency band of 0.10–0.25 Hz in the bilateral thalamus, but positively correlated with 0.01–0.027 Hz band energy in the bilateral postcentral gyrus. The severity of depression, on the other hand, is positively correlated with the energy of 0.10–0.25 Hz but negatively with 0.01–0.027 Hz in the bilateral subgenual gyrus. Notably, the interaction between motor and depressive symptoms is negatively correlated with the energy of 0.10–0.25 Hz in the substantia nigra, hippocampus, inferior orbitofrontal cortex, and temporoparietal junction, but positively correlated with 0.02–0.05 Hz in the same regions. These findings indicate unique associations of fMRI band signals with motor and depressive symptoms in PD in specific brain regions, which may underscore the neural impact of the comorbidity and the differentiation between the two PD-related disorders.
Collapse
Affiliation(s)
- Xiaopeng Song
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiao Hu
- Department of Neurology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Shuqin Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yuanyuan Xu
- Department of Neurology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Yi Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Yonggui Yuan
- Department of Psychiatry and Psychosomatics, Affiliated ZhongDa Hospital of Southeast University, Institute of Neuropsychiatry of Southeast University, Nanjing 210009, China
| | - Yijun Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Huaiqiu Zhu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Weiguo Liu
- Department of Neurology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Jia-Hong Gao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.,Center for MRI Research, Beijing City Key Lab for Medical Physics and Engineering, McGovern Institution for Brain Research, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
Simioni AC, Dagher A, Fellows LK. Compensatory striatal-cerebellar connectivity in mild-moderate Parkinson's disease. NEUROIMAGE-CLINICAL 2015; 10:54-62. [PMID: 26702396 PMCID: PMC4669533 DOI: 10.1016/j.nicl.2015.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Abstract
Dopamine depletion in the putamen is associated with altered motor network functional connectivity in people with Parkinson's disease (PD), but the functional significance of these changes remains unclear, attributed to either pathological or compensatory mechanisms in different studies. Here, we examined the effects of PD on dorsal caudal putamen functional connectivity, off and on dopamine replacement therapy (DRT), using resting state fMRI. Motor performance was assessed with the Purdue pegboard task. Twenty-one patients with mild–moderate Parkinson's disease were studied twice, once after an overnight DRT washout and once after the administration of a standard dose of levodopa (Sinemet), and compared to 20 demographically-matched healthy control participants. PD patients off DRT showed increased putamen functional connectivity with both the cerebellum (lobule V) and primary motor cortex (M1), relative to healthy controls. Greater putamen–cerebellar functional connectivity was significantly correlated with better motor performance, whereas greater putamen–M1 functional connectivity was predictive of poorer motor performance. The administration of levodopa improved motor performance in the PD group, as expected, and reduced putamen–cerebellar connectivity to levels comparable to the healthy control group. The strength of putamen–cerebellar functional connectivity continued to predict motor performance in the PD group while on levodopa. These findings argue that increased putamen–M1 functional connectivity reflects a pathological change, deleterious to motor performance. In contrast, increased putamen–cerebellar connectivity reflects a compensatory mechanism. We examined the functional significance of altered motor networks in Parkinson's. Patients showed greater putamen–cerebellar and –motor cortex connectivity. Greater putamen–cerebellar connectivity correlated with better motor performance. Greater putamen–motor cortex connectivity correlated with worse motor performance. l-Dopa normalized putamen–cerebellar connectivity and improved motor performance.
Collapse
Affiliation(s)
- Alison C Simioni
- Montreal Neurological Institute, McGill University, 3801 University Street, Rm 276, Montreal, QC H3A 2B4, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, 3801 University Street, Rm 276, Montreal, QC H3A 2B4, Canada
| | - Lesley K Fellows
- Montreal Neurological Institute, McGill University, 3801 University Street, Rm 276, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
33
|
Caronni A, Sciumé L, Ferpozzi V, Blasi V, Castellano A, Falini A, Perucca L, Cerri G. Mirror Movements After Stroke Suggest Facilitation From Nonprimary Motor Cortex: A Case Presentation. PM R 2015; 8:479-83. [PMID: 26514789 DOI: 10.1016/j.pmrj.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/12/2015] [Accepted: 10/18/2015] [Indexed: 11/29/2022]
Abstract
When stroke occurs in adulthood, mirror movements (MMs; involuntary movements occurring in 1 hand when performing unilateral movements with the contralateral hand) in the paretic hand rarely occur. We present a case of an apparently healthy 54-year-old man presenting with MMs in his left (nondominant) hand. Further evaluation revealed diminished strength and dexterity in left hand, increased spinal excitability, decreased corticospinal excitability, occurrence of ipsilateral motor responses, enlarged cortical motor representation, and imaging findings consistent with a previously undiagnosed right-subcortical stroke. MMs and ipsilateral motor responses may reflect the increased spinal motor neurons' excitability sustained by the spared nonprimary ipsilesional motor areas.
Collapse
Affiliation(s)
- Antonio Caronni
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Via Dezza 48, 20144 Milan, Italy(∗).
| | - Luciana Sciumé
- Residency Program in Physical and Rehabilitation Medicine, Università degli Studi di Milano, Milan, Italy(†)
| | - Valentina Ferpozzi
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy(‡)
| | - Valeria Blasi
- Scientific Institute and University, Ospedale San Raffaele, Neuroradiology, CERMAC, Milano, Italy(§)
| | - Antonella Castellano
- Scientific Institute and University, Ospedale San Raffaele, Neuroradiology, CERMAC, Milano, Italy(‖)
| | - Andrea Falini
- Scientific Institute and University, Ospedale San Raffaele, Neuroradiology, CERMAC, Milano, Italy(¶)
| | - Laura Perucca
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Italy; Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Milano, Italy(#)
| | - Gabriella Cerri
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy(∗∗)
| |
Collapse
|