1
|
Miranda GG, Gonen C, Kraft JN, Rodrigue KM, Kennedy KM. Lifespan longitudinal changes in mesocortical thickness and executive function: Role of dopaminergic genetic predisposition. Neurobiol Aging 2025; 146:58-73. [PMID: 39613505 DOI: 10.1016/j.neurobiolaging.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive aging, especially in prefrontal-parietal and fronto-striatal networks. Single nucleotide polymorphisms associated with dopamine regulation, COMTVal158Met and DRD2C957T, stand to exert influence on executive function performance via neural properties. The current study investigated whether longitudinal thinning of mesocortical regions is related to COMT and DRD2 genetic predisposition and associated with decline in executive function over four-years. N=235 healthy adults aged 20-94 years were recruited, with n=124 returning 4-years later. Latent mixed effects modeling revealed dopamine-related thinning in several frontal, parietal, and cingulate regions as well as decline in verbal fluency category switching across 4-years. Mesocortical thinning was also related to switching performance. Greater cortical thinning interacted with DA-genotype risk for lower DA-availability to predict poorer switching performance in parietal and posterior cingulate cortex. These findings lend support to the notion that early-life factors, such as genetic influence on neurotransmitter function, play a role in cognitive and brain aging and their linked association.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Chen Gonen
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Jessica N Kraft
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Karen M Rodrigue
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Kristen M Kennedy
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States.
| |
Collapse
|
2
|
Tajerian A. Longitudinal study investigating the influence of COMT gene polymorphism on cortical thickness changes in Parkinson's disease over four years. Sci Rep 2024; 14:9920. [PMID: 38689006 PMCID: PMC11061119 DOI: 10.1038/s41598-024-60828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/27/2024] [Indexed: 05/02/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting over 3% of those over 65. It's caused by reduced dopaminergic neurons and Lewy bodies, leading to motor and non-motor symptoms. The relationship between COMT gene polymorphisms and PD is complex and not fully elucidated. Some studies have reported associations between certain COMT gene variants and PD risk, while others have not found significant associations. This study investigates how COMT gene variations impact cortical thickness changes in PD patients over time, aiming to link genetic factors, especially COMT gene variations, with PD progression. This study analyzed data from 44 PD patients with complete 4-year imaging follow-up from the Parkinson Progression Marker Initiative (PPMI) database. Magnetic resonance imaging (MRI) scans were acquired using consistent methods across 9 different MRI scanners. COMT single-nucleotide polymorphisms (SNPs) were assessed based on whole genome sequencing data. Longitudinal image analysis was conducted using FreeSurfer's processing pipeline. Linear mixed-effect models were employed to examine the interaction effect of genetic variations and time on cortical thickness, while controlling for covariates and subject-specific variations. The rs165599 SNP stands out as a potential contributor to alterations in cortical thickness, showing a significant reduction in overall mean cortical thickness in both hemispheres in homozygotes (Left: P = 0.023, Right: P = 0.028). The supramarginal, precentral, and superior frontal regions demonstrated significant bilateral alterations linked to rs165599. Our findings suggest that the rs165599 variant leads to earlier manifestation of cortical thinning during the course of the disease. However, it does not result in more severe cortical thinning outcomes over time. There is a need for larger cohorts and control groups to validate these findings and consider genetic variant interactions and clinical features to elucidate the specific mechanisms underlying COMT-related neurodegenerative processes in PD.
Collapse
Affiliation(s)
- Amin Tajerian
- School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
3
|
Miranda GG, Rodrigue KM, Kennedy KM. Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan. Brain Struct Funct 2021; 226:121-136. [PMID: 33179159 PMCID: PMC7855542 DOI: 10.1007/s00429-020-02169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive performance. Aging is accompanied by a change in the strength of this signaling, with a loss of striatal and extrastriatal D2 binding potential. The reduction in dopamine modulation with age negatively influences various aspects of cognition. DRD2 C957T (rs6277) impacts DA D2 receptor density and availability, with C homozygotes linked to lower striatal DA availability and reduced executive functioning (EF), but also high extrastriatal binding potential. Here, we investigated in 176 participants aged 20-94 years whether: (1) DRD2 C carriers differ from T carriers in cortical thickness or subcortical volume in areas of high concentrations of D2 receptors that receive projections from mesocortical or nigrostriatal dopaminergic pathways; (2) whether the DRD2*COMT relationship has any synergistic effects on cortical thickness; (3) whether the effect of DRD2 on brain structure depends upon age; and (4) whether DRD2-related regional thinning affects executive function performance. We show that DRD2 impacts cortical thickness in the superior parietal lobule, precuneus, and anterior cingulate (marginal after FDR correction), while statistically controlling sex, age, and COMT genotype. Specifically, C homozygotes demonstrated thinner cortices than both heterozygotes and/or T homozygotes in an age-invariant manner. Additionally, DRD2 predicted executive function performance via cortical thickness. The results highlight that genetic influences on dopamine availability impact cognitive performance via the contribution of brain structure in cortical regions influenced by DRD2.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA.
| |
Collapse
|
4
|
Jung M, Mizuno Y, Fujisawa TX, Takiguchi S, Kong J, Kosaka H, Tomoda A. The Effects of COMT Polymorphism on Cortical Thickness and Surface Area Abnormalities in Children with ADHD. Cereb Cortex 2020; 29:3902-3911. [PMID: 30508034 DOI: 10.1093/cercor/bhy269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Indexed: 11/12/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) gene is associated with frontal cortex development and the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, how the COMT gene impacts brain structure and behavior in ADHD remains unknown. In the present study, we identify the effect of COMT on cortical thickness and surface area in children with ADHD and children with typically developing (TD) using a machine learning approach. In a sample of 39 children with ADHD and 34 age- and IQ-matched TD children, we found that cortical thickness and surface area differences were predominantly observed in the frontal cortex. Furthermore, a path analysis revealed that a COMT genotype affected abnormal development of the frontal cortex in terms of both cortical thickness and surface area and was associated with working memory changes in children with ADHD. Our study confirms that the role of COMT in ADHD is not restricted to the development of behavior but may also affect the cortical thickness and surface area. Thus, our findings may help to improve the understanding of the neuroanatomic basis for the relationship between the COMT genotype and ADHD pathogenesis.
Collapse
Affiliation(s)
- Minyoung Jung
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Yoshifumi Mizuno
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Shinichiro Takiguchi
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.,Department of Neuropsychiatry, University of Fukui, University of Fukui, Eiheiji, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
5
|
Nascimento T, Yang N, Salman D, Jassar H, Kaciroti N, Bellile E, Danciu T, Koeppe R, Stohler C, Zubieta J, Ellingrod V, DaSilva A. µ-Opioid Activity in Chronic TMD Pain Is Associated with COMT Polymorphism. J Dent Res 2019; 98:1324-1331. [PMID: 31490699 PMCID: PMC6806132 DOI: 10.1177/0022034519871938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clinicians have the dilemma of prescribing opioid or nonopioid analgesics to chronic pain patients; however, the impact of pain on our endogenous µ-opioid system and how our genetic profile (specifically catechol-O-methyltransferase [COMT] polymorphisms) impacts its activation are currently unknown. Twelve chronic temporomandibular disorder (TMD) patients and 12 healthy controls (HCs) were scanned using positron emission tomography (PET) with [11C]carfentanil, a selective radioligand for µ-opioid receptors (µORs). The first 45 min of each PET measured the µOR nondisplaceable binding potential (BPND) at resting state, and the last 45 min consisted of a 20-min masseteric pain challenge with an injection of 5% hypertonic saline. Participants were also genotyped for different COMT alleles. There were no group differences in µOR BPND at resting state (early phase). However, during the masseteric pain challenge (late phase), TMD patients exhibited significant reductions in µOR BPND (decreased [11C]carfentanil binding) in the contralateral parahippocampus (P = 0.002) compared to HCs. The µOR BPND was also significantly lower in TMD patients with longer pain chronicity (P < 0.001). When considering COMT genotype and chronic pain suffering, TMD patients with the COMT158Met substitution had higher pain sensitivity and longer pain chronicity with a 5-y threshold for µOR BPND changes to occur in the parahippocampus. Together, the TMD diagnosis, COMT158Met substitution, and pain chronicity explained 52% of µOR BPND variance in the parahippocampus (cumulative R2 = 52%, P < 0.003, and HC vs. TMD Cohen's effect size d = 1.33 SD). There is strong evidence of dysregulation of our main analgesic and limbic systems in chronic TMD pain. The data also support precision medicine by helping identify TMD patients who may be more susceptible to chronic pain sensitivity and opioid dysfunction based on their genetic profile.
Collapse
Affiliation(s)
- T.D. Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.),
Biologic and Materials Sciences Department, University of Michigan School of Dentistry, Ann
Arbor, MI, USA
| | - N. Yang
- Headache and Orofacial Pain Effort (H.O.P.E.),
Biologic and Materials Sciences Department, University of Michigan School of Dentistry, Ann
Arbor, MI, USA
| | - D. Salman
- Headache and Orofacial Pain Effort (H.O.P.E.),
Biologic and Materials Sciences Department, University of Michigan School of Dentistry, Ann
Arbor, MI, USA
| | - H. Jassar
- Headache and Orofacial Pain Effort (H.O.P.E.),
Biologic and Materials Sciences Department, University of Michigan School of Dentistry, Ann
Arbor, MI, USA
| | - N. Kaciroti
- Department of Biostatistics, University of
Michigan, Ann Arbor, MI, USA
- Center for Human Growth and Development,
University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and
Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - E. Bellile
- Department of Biostatistics, University of
Michigan, Ann Arbor, MI, USA
| | - T. Danciu
- Department of Periodontics and Oral Medicine,
University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - R. Koeppe
- PET Physics Section, Division of Nuclear
Medicine, Radiology Department, University of Michigan, Ann Arbor, MI, USA
| | - C. Stohler
- College of Dental Medicine, Columbia
University, New York, NY, USA
| | - J.K. Zubieta
- Department of Psychiatry and Behavioral
Health, Stony Brook University, Stony Brook, NY, USA
| | - V. Ellingrod
- College of Pharmacy, University of Michigan,
Ann Arbor, MI, USA
| | - A.F. DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.),
Biologic and Materials Sciences Department, University of Michigan School of Dentistry, Ann
Arbor, MI, USA
- Center for Human Growth and Development,
University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Zhao L, Matloff W, Ning K, Kim H, Dinov ID, Toga AW. Age-Related Differences in Brain Morphology and the Modifiers in Middle-Aged and Older Adults. Cereb Cortex 2019; 29:4169-4193. [PMID: 30535294 PMCID: PMC6931275 DOI: 10.1093/cercor/bhy300] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Brain structural morphology differs with age. This study examined age-differences in surface-based morphometric measures of cortical thickness, volume, and surface area in a well-defined sample of 8137 generally healthy UK Biobank participants aged 45-79 years. We illustrate that the complexity of age-related brain morphological differences may be related to the laminar organization and regional evolutionary history of the cortex, and age of about 60 is a break point for increasing negative associations between age and brain morphology in Alzheimer's disease (AD)-prone areas. We also report novel relationships of age-related cortical differences with individual factors of sex, cognitive functions of fluid intelligence, reaction time and prospective memory, cigarette smoking, alcohol consumption, sleep disruption, genetic markers of apolipoprotein E, brain-derived neurotrophic factor, catechol-O-methyltransferase, and several genome-wide association study loci for AD and further reveal joint effects of cognitive functions, lifestyle behaviors, and education on age-related cortical differences. These findings provide one of the most extensive characterizations of age associations with major brain morphological measures and improve our understanding of normal structural brain aging and its potential modifiers.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - William Matloff
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Kaida Ning
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Hosung Kim
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Ivo D Dinov
- Statistics Online Computational Resource, HBBS, University of Michigan, Ann Arbor, MI 48109-2003, USA
- Michigan Institute for Data Science, HBBS, University of Michigan, Ann Arbor, MI 48109-1042, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Impact of COMT haplotypes on functional connectivity density and its association with the gene expression of dopamine receptors. Brain Struct Funct 2019; 224:2619-2630. [PMID: 31332515 DOI: 10.1007/s00429-019-01924-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Catechol-O-methyltransferase (COMT) affects brain connectivity via modulating the dopamine system, with an expected greater effect of haplotypes than single-nucleotide polymorphism (SNP). The action pathway from COMT to dopamine to connectivity is theoretically dependent on the gene expression of dopamine receptors. Here, we aimed to investigate the impact of COMT haplotypes on brain functional connectivity density (FCD) in hundreds of healthy young subjects, and to disclose the association between the COMT-FCD statistical map and the spatial expression of the dopamine receptor genes. We found an inverted U-shaped modulation of COMT haplotypes on FCD in the left inferior parietal lobule that is mainly connected to the frontal and parietal cortices, with APS homozygotes exhibiting greater FCD than the other five groups. However, we failed to identify any significant effect of any SNP on FCD. Utilizing gene expression data collected from Allen human brain atlas, we found the COMT-FCD statistical map was significantly associated with the expression patterns of the dopamine receptor genes. Our results suggest that COMT haplotypes have greater impact on functional connectivity than a single genetic variation and that the association between COMT and functional connectivity may be dependent on the gene expression of dopamine receptors.
Collapse
|
8
|
Miranda GG, Rodrigue KM, Kennedy KM. Frontoparietal cortical thickness mediates the effect of COMT Val 158Met polymorphism on age-associated executive function. Neurobiol Aging 2019; 73:104-114. [PMID: 30342271 PMCID: PMC6251730 DOI: 10.1016/j.neurobiolaging.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Proper dopamine (DA) signaling is likely necessary for maintaining optimal cognitive performance as we age, particularly in prefrontal-parietal networks and in fronto-striatal networks. Thus, reduced DA availability is a salient risk factor for accelerated cognitive aging. A common polymorphism that affects DA D1 receptor dopamine availability, COMT Val158Met (rs4680), influences enzymatic breakdown of DA, with COMT Val carriers having a 3- to 4-fold reduction in synaptic DA compared to COMT Met carriers. Furthermore, dopamine receptors and postsynaptic availability are drastically reduced with aging, as is executive function performance that ostensibly relies on these pathways. Here, we investigated in 176 individuals aged 20-94 years whether: (1) COMT Val carriers differ from their Met counterparts in thickness of regional cortices receiving D1 receptor pathways: prefrontal, parietal, cingulate cortices; (2) this gene-brain association differs across the adult lifespan; and (3) COMT-related regional thinning evidences cognitive consequences. We found that COMT Val carriers evidenced thinner cortex in prefrontal, parietal, and posterior cingulate cortices than COMT Met carriers and this effect was not age-dependent. Further, we demonstrate that thickness of these regions significantly mediates the effect of COMT genotype on an executive function composite measure. These results suggest that poorer executive function performance is due partly to thinner association cortex in dopaminergic-rich regions, and particularly so in individuals who are genetically predisposed to lower postsynaptic dopamine availability, regardless of age.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
9
|
Lee A, Shen M, Qiu A. Psychiatric polygenic risk associates with cortical morphology and functional organization in aging. Transl Psychiatry 2017; 7:1276. [PMID: 29225336 PMCID: PMC5802582 DOI: 10.1038/s41398-017-0036-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/04/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
Common brain abnormalities in cortical morphology and functional organization are observed in psychiatric disorders and aging, reflecting shared genetic influences. This preliminary study aimed to examine the contribution of a polygenetic risk for psychiatric disorders (PRScross) to aging brain and to identify molecular mechanisms through the use of multimodal brain images, genotypes, and transcriptome data. We showed age-related cortical thinning in bilateral inferior frontal cortex (IFC) and superior temporal gyrus and alterations in the functional connectivity between bilateral IFC and between right IFC and right inferior parietal lobe as a function of PRScross. Interestingly, the genes in PRScross, that contributed most to aging neurodegeneration, were expressed in the functioanlly connected cortical regions. Especially, genes identified through the genotype-functional connectivity association analysis were commonly expressed in both cortical regions and formed strong gene networks with biological processes related to neural plasticity and synaptogenesis, regulated by glutamatergic and GABAergic transmission, neurotrophin signaling, and metabolism. This study suggested integrating genotype and transcriptome with neuroimage data sheds new light on the mechanisms of aging brain.
Collapse
Affiliation(s)
- Annie Lee
- 0000 0001 2180 6431grid.4280.eDepartment of Biomedical Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Mojun Shen
- 0000 0004 0637 0221grid.185448.4Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, 117609 Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore. .,Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, 117609, Singapore. .,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
10
|
Cherkasova MV, Faridi N, Casey KF, Larcher K, O'Driscoll GA, Hechtman L, Joober R, Baker GB, Palmer J, Evans AC, Dagher A, Benkelfat C, Leyton M. Differential Associations between Cortical Thickness and Striatal Dopamine in Treatment-Naïve Adults with ADHD vs. Healthy Controls. Front Hum Neurosci 2017; 11:421. [PMID: 28878639 PMCID: PMC5572420 DOI: 10.3389/fnhum.2017.00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Alterations in catecholamine signaling and cortical morphology have both been implicated in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). However, possible links between the two remain unstudied. Here, we report exploratory analyses of cortical thickness and its relation to striatal dopamine transmission in treatment-naïve adults with ADHD and matched healthy controls. All participants had one magnetic resonance imaging (MRI) and two [11C]raclopride positron emission tomography scans. Associations between frontal cortical thickness and the magnitude of d-amphetamine-induced [11C]raclopride binding changes were observed that were divergent in the two groups. In the healthy controls, a thicker cortex was associated with less dopamine release; in the ADHD participants the converse was seen. The same divergence was seen for baseline D2/3 receptor availability. In healthy volunteers, lower D2/3 receptor availability was associated with a thicker cortex, while in the ADHD group lower baseline D2/3 receptor availability was associated with a thinner cortex. Individual differences in cortical thickness in these regions correlated with ADHD symptom severity. Together, these findings add to the evidence of associations between dopamine transmission and cortical morphology, and suggest that these relationships are altered in treatment-naïve adults with ADHD.
Collapse
Affiliation(s)
- Mariya V Cherkasova
- Division of Neurology, Department of Medicine, University of British ColumbiaVancouver, BC, Canada
| | - Nazlie Faridi
- Department of Medicine, Stanford UniversityStanford, CA, United States
| | - Kevin F Casey
- Centre Hospitalier Universitaire Sainte-JustineMontréal, QC, Canada
| | - Kevin Larcher
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Gillian A O'Driscoll
- Department of Psychology, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | - Lily Hechtman
- Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | | | - Glen B Baker
- Department of Psychiatry, University of AlbertaMontréal, QC, Canada
| | | | - Alan C Evans
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Chawki Benkelfat
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | - Marco Leyton
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada.,Department of Psychology, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada.,Center for Studies in Behavioral Neurobiology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
11
|
Vai B, Riberto M, Poletti S, Bollettini I, Lorenzi C, Colombo C, Benedetti F. Catechol-O-methyltransferase Val(108/158)Met polymorphism affects fronto-limbic connectivity during emotional processing in bipolar disorder. Eur Psychiatry 2017; 41:53-59. [PMID: 28049082 DOI: 10.1016/j.eurpsy.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/23/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) inactivates catecholamines, Val/Val genotype was associated to an increased amygdala (Amy) response to negative stimuli and can influence the symptoms severity and the outcome of bipolar disorder, probably mediated by the COMT polymorphism (rs4680) interaction between cortical and subcortical dopaminergic neurotransmission. The aim of this study is to explore how rs4680 and implicit emotional processing of negative emotional stimuli could interact in affecting the Amy connectivity in bipolar depression. Forty-five BD patients (34 Met carriers vs. 11 Val/Val) underwent fMRI scanning during implicit processing of fearful and angry faces. We explore the effect of rs4680 on the strength of functional connectivity from the amygdalae to whole brain. Val/Val and Met carriers significantly differed for the connectivity between Amy and dorsolateral prefrontal cortex (DLPFC) and supramarginal gyrus. Val/Val patients showed a significant positive connectivity for all of these areas, where Met carriers presented a significant negative one for the connection between DLPFC and Amy. Our findings reveal a COMT genotype-dependent difference in corticolimbic connectivity during affective regulation, possibly identifying a neurobiological underpinning of clinical and prognostic outcome of BD. Specifically, a worse antidepressant recovery and clinical outcome previously detected in Val/Val patients could be associated to a specific increased sensitivity to negative emotional stimuli.
Collapse
Affiliation(s)
- B Vai
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; CERMAC (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy; Department of Human Studies, Libera Università Maria Ss. Assunta, Roma, Italy.
| | - M Riberto
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - S Poletti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; CERMAC (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - I Bollettini
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; CERMAC (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - C Lorenzi
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - C Colombo
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - F Benedetti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; CERMAC (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
12
|
Raz N, Daugherty AM, Sethi SK, Arshad M, Haacke EM. Age differences in arterial and venous extra-cerebral blood flow in healthy adults: contributions of vascular risk factors and genetic variants. Brain Struct Funct 2017; 222:2641-2653. [PMID: 28120105 DOI: 10.1007/s00429-016-1362-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/24/2016] [Indexed: 01/01/2023]
Abstract
Sufficient cerebral blood flow (CBF) and venous drainage are critical for normal brain function, and their alterations can affect brain aging. However, to date, most studies focused on arterial CBF (inflow) with little attention paid to the age differences in venous outflow. We measured extra-cerebral arterial and venous blood flow rates with phase-contrast MRI and assessed the influence of vascular risk factors and genetic polymorphisms (ACE insertion/deletion, COMT val158met, and APOEε4) in 73 adults (age 18-74 years). Advanced age, elevated vascular risk, ACE Deletion, and COMT met alleles were linked to lower in- and outflow, with no effects of APOE ε4 noted. Lower age-related CBF rate was unrelated to brain volume and was observed only in val homozygotes of COMTval158met. Thus, in a disease-free population, age differences in CBF may be notable only in persons with high vascular risk and carriers of genetic variants associated with vasoconstriction and lower dopamine availability. It remains to be established if treatments targeting alleviation of the mutable factors can improve the course of cerebrovascular aging in spite of the immutable genetic influence.
Collapse
Affiliation(s)
- Naftali Raz
- Institute of Gerontology, Wayne State University, 87 E Ferry St. 226 Knapp Bldg., Detroit, MI, 48202, USA. .,Department of Psychology, Wayne State University, 5057 Woodward Ave., Detroit, MI, 48202, USA.
| | - Ana M Daugherty
- Institute of Gerontology, Wayne State University, 87 E Ferry St. 226 Knapp Bldg., Detroit, MI, 48202, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N Matthews Ave., Urbana, IL, 61801, USA
| | - Sean K Sethi
- The MRI Institute of Biomedical Research, 440 E Ferry St., Detroit, MI, 48202, USA
| | - Muzamil Arshad
- Institute of Gerontology, Wayne State University, 87 E Ferry St. 226 Knapp Bldg., Detroit, MI, 48202, USA.,Department of Psychiatry and Behavioral Sciences, Wayne State University, 3990 John R, Detroit, MI, 48201, USA
| | - E Mark Haacke
- The MRI Institute of Biomedical Research, 440 E Ferry St., Detroit, MI, 48202, USA.,Department of Radiology, Wayne State University, 3990 John R, Detroit, MI, 48201, USA
| |
Collapse
|