1
|
Hsiao C, Huang WC, Hsueh MC, Chang CC, Liao Y, Lin KP. Can weekend catch-up sleep decrease the risk of cognitive dysfunction in older adults? Sleep Breath 2024; 28:2303-2310. [PMID: 38878158 DOI: 10.1007/s11325-024-03074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE This study investigated whether weekend catch-up sleep was related to a decreased risk of cognitive dysfunction in older Taiwanese adults by using self-reported diaries and objective accelerometer measurements. METHODS This cross-sectional study enrolled participants who were aged ≥ 65 years and had the capability to walk independently from a medical center in Taipei City, Taiwan, between September 2020 and December 2022. Self-reported sleep diaries and tri-axial accelerometers were used to record and measure sleep-related data for 7 consecutive nights. Weekend catch-up sleep was defined as the mean of weekend sleep time minus the mean of weekdays sleep time. Mini-Mental State Examination (MMSE) was evaluated the risk of cognitive dysfunction. The association between weekend catch-up sleep and the MMSE score was examined using a binary logistic regression model. RESULTS A total of 215 older adults (53.0% female; 80.5 ± 7.1 years old; 11.6% at risk of cognitive dysfunction) were included. In the adjusted model (adjusted for sex, education level, moderate-to-vigorous physical activity and total accelerometer wear time), both the self-reported sleep diaries (odds ratio [OR] = 0.26, 95% confidence interval [CI] = 0.09-0.69, P = 0.007) and the accelerometer data (OR = 0.27, 95% CI = 0.10-0.70, P = 0.007) indicated that weekend catch-up sleep could decrease the risk of cognitive dysfunction by 73-74%. CONCLUSION The study findings suggest that there is an association between weekend catch-up sleep and lower risk for cognitive decline. The causal relationship between weekend catch-up sleep and cognitive function in older adults should be further investigated in a study with longitudinal design.
Collapse
Affiliation(s)
- Chi Hsiao
- Department of Health Promotion and Health Education, College of Education, National Taiwan Normal University, Taipei, Taiwan
| | - Wan-Chi Huang
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Ming-Chun Hsueh
- Graduate Institute of Sport Pedagogy, University of Taipei, Taipei, Taiwan
| | - Chih-Ching Chang
- Department of Health Promotion and Health Education, College of Education, National Taiwan Normal University, Taipei, Taiwan
| | - Yung Liao
- Graduate Institute of Sport, Leisure and Hospitality Management, National Taiwan Normal University, Taipei, Taiwan
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Kun-Pei Lin
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, No.1, Changde St., Zhongzheng Dist, 10048, Taipei City, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Cocuzza CV, Sanchez-Romero R, Ito T, Mill RD, Keane BP, Cole MW. Distributed network flows generate localized category selectivity in human visual cortex. PLoS Comput Biol 2024; 20:e1012507. [PMID: 39436929 PMCID: PMC11530028 DOI: 10.1371/journal.pcbi.1012507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/01/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating - in a highly empirically constrained manner - the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region's unique intrinsic "connectivity fingerprint" was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain's intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses.
Collapse
Affiliation(s)
- Carrisa V. Cocuzza
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
- Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, New Jersey, United States of America
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Takuya Ito
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ravi D. Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Brian P. Keane
- Department of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Department of Brain and Cognitive Science, University of Rochester, Rochester, New York, United States of America
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
3
|
Huang S, De Brigard F, Cabeza R, Davis SW. Connectivity analyses for task-based fMRI. Phys Life Rev 2024; 49:139-156. [PMID: 38728902 PMCID: PMC11116041 DOI: 10.1016/j.plrev.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Functional connectivity is conventionally defined by measuring the similarity between brain signals from two regions. The technique has become widely adopted in the analysis of functional magnetic resonance imaging (fMRI) data, where it has provided cognitive neuroscientists with abundant information on how brain regions interact to support complex cognition. However, in the past decade the notion of "connectivity" has expanded in both the complexity and heterogeneity of its application to cognitive neuroscience, resulting in greater difficulty of interpretation, replication, and cross-study comparisons. In this paper, we begin with the canonical notions of functional connectivity and then introduce recent methodological developments that either estimate some alternative form of connectivity or extend the analytical framework, with the hope of bringing better clarity for cognitive neuroscience researchers.
Collapse
Affiliation(s)
- Shenyang Huang
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.
| | - Felipe De Brigard
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States; Department of Philosophy, Duke University, Durham, NC 27708, United States
| | - Roberto Cabeza
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Simon W Davis
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Department of Philosophy, Duke University, Durham, NC 27708, United States; Department of Neurology, Duke University School of Medicine, Durham, NC 27708, United States
| |
Collapse
|
4
|
Grob AM, Heinbockel H, Milivojevic B, Doeller CF, Schwabe L. Causal role of the angular gyrus in insight-driven memory reconfiguration. eLife 2024; 12:RP91033. [PMID: 38407185 PMCID: PMC10942625 DOI: 10.7554/elife.91033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Maintaining an accurate model of the world relies on our ability to update memory representations in light of new information. Previous research on the integration of new information into memory mainly focused on the hippocampus. Here, we hypothesized that the angular gyrus, known to be involved in episodic memory and imagination, plays a pivotal role in the insight-driven reconfiguration of memory representations. To test this hypothesis, participants received continuous theta burst stimulation (cTBS) over the left angular gyrus or sham stimulation before gaining insight into the relationship between previously separate life-like animated events in a narrative-insight task. During this task, participants also underwent EEG recording and their memory for linked and non-linked events was assessed shortly thereafter. Our results show that cTBS to the angular gyrus decreased memory for the linking events and reduced the memory advantage for linked relative to non-linked events. At the neural level, cTBS targeting the angular gyrus reduced centro-temporal coupling with frontal regions and abolished insight-induced neural representational changes for events linked via imagination, indicating impaired memory reconfiguration. Further, the cTBS group showed representational changes for non-linked events that resembled the patterns observed in the sham group for the linked events, suggesting failed pruning of the narrative in memory. Together, our findings demonstrate a causal role of the left angular gyrus in insight-related memory reconfigurations.
Collapse
Affiliation(s)
- Anna-Maria Grob
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| | - Hendrik Heinbockel
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| | - Branka Milivojevic
- Radboud University, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and TechnologyTrondheimNorway
- Max-Planck-Insitute for Human Cognitive and Brain SciencesLeipzigGermany
- Wilhelm Wundt Institute of Psychology, Leipzig UniversityLeipzigGermany
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität HamburgHamburgGermany
| |
Collapse
|
5
|
Li K, Mo D, Yu Q, Feng R, Li Y. Effect of Repetitive Transcranial Magnetic Stimulation on Post-Stroke Comorbid Cognitive Impairment and Depression: A Randomized Controlled Trial. J Alzheimers Dis 2024; 101:337-352. [PMID: 39177600 DOI: 10.3233/jad-240505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background There are currently no uniform treatments for post-stroke comorbid cognitive impairment and depression (PSCCID). Objective To verify whether repetitive transcranial magnetic stimulation (rTMS) can improve PSCCID symptoms and explore the underlying roles of resting-state functional magnetic resonance imaging (rs-fMRI). Methods Thirty PSCCID patients were randomized in a 1 : 1 ratio to receive 4 weeks of rTMS (intervention group) or sham rTMS (control group) over the left dorsolateral prefrontal cortex (DLPFC). rs-fMRI was acquired to analyze the functional plasticity of brain regions at baseline and immediately after the last intervention. Results Cognition, depression status, and neural electrophysiology were improved in both intervention and control groups after treatment (p = 0.015-0.042), and the intervention group had more significant improvement than the control group. Analysis of functional connectivities (FCs) within the default mood network (DMN) showed that the connection strength of the left temporal pole/left parahippocampal cortex and right lateral temporal cortex/right retrosplenial cortex in the intervention group were enhanced compared with its pre-intervention and that in the control group after treatment (p < 0.05), and the both FC values were positively correlated with MMSE scores (p < 0.001). The intervention group had stronger FCs within the DMN compared with the control group after treatment, and some of the enhanced FCs were correlated with the P300 latency and amplitude. Conclusions rTMS over the left DLPFC is an effective treatment for improving both cognitive impairment and depression among patients with PSCCID. The enhanced FCs within the DMN may serve as a compensatory functional recombination to promote clinical recovery.
Collapse
Affiliation(s)
- Kuide Li
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Mo
- Department of Rehabilitation Medicine, the People's Hospital of Zhongjiang, Deyang, China
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongjian Feng
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Guo D, Chen G, Yang J. Effects of schema on the relationship between post-encoding brain connectivity and subsequent durable memory. Sci Rep 2023; 13:8736. [PMID: 37253795 PMCID: PMC10229577 DOI: 10.1038/s41598-023-34822-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Schemas can facilitate memory consolidation. Studies have suggested that interactions between the hippocampus and the ventromedial prefrontal cortex (vmPFC) are important for schema-related memory consolidation. However, in humans, how schema accelerates the consolidation of new information and relates to durable memory remains unclear. To address these knowledge gaps, we used a human analogue of the rodent spatial schema task and resting-state fMRI to investigate how post-encoding brain networks can predict long-term memory performance in different schema conditions. After participants were trained to obtain schema-consistent or schema-inconsistent object-location associations, they learned new object-location associations. The new associations were tested after the post-encoding rest in the scanner and 24 h later outside the scanner. The Bayesian multilevel modelling was applied to analyse the post-encoding brain networks. The results showed that during the post-encoding, stronger vmPFC- anterior hippocampal connectivity was associated with durable memory in the schema-consistent condition, whereas stronger object-selective lateral occipital cortex (LOC)-ventromedial prefrontal connectivity and weaker connectivity inside the default mode network were associated with durable memory in the schema inconsistent condition. In addition, stronger LOC-anterior hippocampal connectivity was associated with memory in both schema conditions. These results shed light on how schemas reconfigure early brain networks, especially the prefrontal-hippocampal and stimuli-relevant cortical networks and influence long-term memory performance.
Collapse
Affiliation(s)
- Dingrong Guo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behaviour and Mental Health, Peking University, Beijing, 100871, People's Republic of China
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behaviour and Mental Health, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
7
|
Reagh ZM, Ranganath C. Flexible reuse of cortico-hippocampal representations during encoding and recall of naturalistic events. Nat Commun 2023; 14:1279. [PMID: 36890146 PMCID: PMC9995562 DOI: 10.1038/s41467-023-36805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although every life event is unique, there are considerable commonalities across events. However, little is known about whether or how the brain flexibly represents information about different event components at encoding and during remembering. Here, we show that different cortico-hippocampal networks systematically represent specific components of events depicted in videos, both during online experience and during episodic memory retrieval. Regions of an Anterior Temporal Network represented information about people, generalizing across contexts, whereas regions of a Posterior Medial Network represented context information, generalizing across people. Medial prefrontal cortex generalized across videos depicting the same event schema, whereas the hippocampus maintained event-specific representations. Similar effects were seen in real-time and recall, suggesting reuse of event components across overlapping episodic memories. These representational profiles together provide a computationally optimal strategy to scaffold memory for different high-level event components, allowing efficient reuse for event comprehension, recollection, and imagination.
Collapse
Affiliation(s)
- Zachariah M Reagh
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Charan Ranganath
- UC Davis Center for Neuroscience, University of California, Davis, CA, USA.,Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Seeing the future: Connectome strength and network efficiency in visual network predict individual ability of episodic future thinking. Neuropsychologia 2023; 179:108451. [PMID: 36535422 DOI: 10.1016/j.neuropsychologia.2022.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Episodic future thinking (EFT) refers to the critical ability that enables people to construct and pre-experience the vivid mental imagery about future events, which impacts on the decision-making for individuals and group. Although EFT is generally believed to have a visual nature by theorists, little neuroscience evidence has been provided to verify this assumption. Here, by employing the approach of connectome-based predictive modeling (CPM) and graph-theoretical analysis, we analyzed resting-state functional brain image from 191 participants to predict their variability of EFT ability (leave-one-out cross-validation), and validated the results by applying different parcellation schemas and feature selection thresholds. At the connectome strength level, CPM-based analysis revealed that EFT ability could be predicted by the connectome strength of visual network. Besides, at the network level, graph-theoretical analysis showed that EFT ability could be predicted by the network efficiency of visual network. Moreover, these findings were replicated using different parcellation schemas and feature selection thresholds. These results robustly and collectively supported that the visual network might be one of the neural substrates underlying EFT ability from a comprehensive perspective of resting-state functional connectivity strength and the neural network. This study provides indications on how the function of visual network supports EFT ability, and enhances our understanding of the EFT ability from a neural basis perspective.
Collapse
|
9
|
Bellana B, Ladyka-Wojcik N, Lahan S, Moscovitch M, Grady CL. Recollection and prior knowledge recruit the left angular gyrus during recognition. Brain Struct Funct 2023; 228:197-217. [PMID: 36441240 DOI: 10.1007/s00429-022-02597-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
The human angular gyrus (AG) is implicated in recollection, or the ability to retrieve detailed memory content from a specific episode. A separate line of research examining the neural bases of more general mnemonic representations, extracted over multiple episodes, also highlights the AG as a core region of interest. To reconcile these separate views of AG function, the present fMRI experiment used a Remember-Know paradigm with famous (prior knowledge) and non-famous (no prior knowledge) faces to test whether AG activity could be modulated by both task-specific recollection and general prior knowledge within the same individuals. Increased BOLD activity in the left AG was observed during both recollection in the absence of prior knowledge (recollected > non-recollected or correctly rejected non-famous faces) and when prior knowledge was accessed in the absence of experiment-specific recollection (famous > non-famous correct rejections). This pattern was most prominent for the left AG as compared to the broader inferior parietal lobe. Recollection-related responses in the left AG increased with encoding duration and prior knowledge, despite prior knowledge being incidental to the recognition decision. Overall, the left AG appears sensitive to both task-specific recollection and the incidental access of general prior knowledge, thus broadening our notions of the kinds of mnemonic representations that drive activity in this region.
Collapse
Affiliation(s)
- Buddhika Bellana
- Department of Psychology, York University, Glendon Campus, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | | | - Shany Lahan
- Department of Human Biology, University of Toronto, Toronto, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | - Cheryl L Grady
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Jablonowski J, Rose M. The functional dissociation of posterior parietal regions during multimodal memory formation. Hum Brain Mapp 2022; 43:3469-3485. [PMID: 35397137 PMCID: PMC9248313 DOI: 10.1002/hbm.25861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 01/15/2023] Open
Abstract
The incidental acquisition of multimodal associations is a key memory function for everyday life. While the posterior parietal cortex has been frequently shown to be involved for these memory functions, ventral and dorsal regions revealed differences in their functional recruitment and the precise difference in multimodal memory processing with respect to the associative process has not been differentiated. Using an incidental multimodal learning task, we isolated the associative process during multimodal learning and recollection. The result of the present functional magnetic resonance imaging (fMRI) study demonstrated that during both learning and recollection a clear functional differentiation between ventral and dorsal posterior parietal regions was found and can be related directly to the associative process. The recruitment of a ventral region, the angular gyrus, was specific for learning and recollection of multimodal associations. In contrast, a dorsal region, the superior parietal lobule, could be attributed to memory guided attentional processing. Independent of the memory stage, we assumed a general role for the angular gyrus in the generation of associative representations and updating of fixed association, episodic memory.
Collapse
Affiliation(s)
- Julia Jablonowski
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael Rose
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Jaywant A, Dunlop K, Victoria LW, Oberlin L, Lynch CJ, Respino M, Kuceyeski A, Scult M, Hoptman MJ, Liston C, O’Dell MW, Alexopoulos GS, Perlis RH, Gunning FM. Estimated Regional White Matter Hyperintensity Burden, Resting State Functional Connectivity, and Cognitive Functions in Older Adults. Am J Geriatr Psychiatry 2022; 30:269-280. [PMID: 34412936 PMCID: PMC8799753 DOI: 10.1016/j.jagp.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE White matter hyperintensities (WMH) are linked to deficits in cognitive functioning, including cognitive control and memory; however, the structural, and functional mechanisms are largely unknown. We investigated the relationship between estimated regional disruptions to white matter fiber tracts from WMH, resting state functional connectivity (RSFC), and cognitive functions in older adults. DESIGN Cross-sectional study. SETTING Community. PARTICIPANTS Fifty-eight cognitively-healthy older adults. MEASUREMENTS Tasks of cognitive control and memory, structural MRI, and resting state fMRI. We estimated the disruption to white matter fiber tracts from WMH and its impact on gray matter regions in the cortical and subcortical frontoparietal network, default mode network, and ventral attention network by overlaying each subject's WMH mask on a normative tractogram dataset. We calculated RSFC between nodes in those same networks. We evaluated the interaction of regional WMH burden and RSFC in predicting cognitive control and memory. RESULTS The interaction of estimated regional WMH burden and RSFC in cortico-striatal regions of the default mode network and frontoparietal network was associated with delayed recall. Models predicting working memory, cognitive inhibition, and set-shifting were not significant. CONCLUSION Findings highlight the role of network-level structural and functional alterations in resting state networks that are related to WMH and impact memory in older adults.
Collapse
Affiliation(s)
- Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine,Department of Rehabilitation Medicine, Weill Cornell Medicine
| | - Katharine Dunlop
- Department of Psychiatry, Weill Cornell Medicine,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine
| | - Lindsay W. Victoria
- Department of Psychiatry, Weill Cornell Medicine,Weill Cornell Institute of Geriatric Psychiatry
| | - Lauren Oberlin
- Department of Psychiatry, Weill Cornell Medicine,Weill Cornell Institute of Geriatric Psychiatry
| | - Charles J. Lynch
- Department of Psychiatry, Weill Cornell Medicine,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine
| | - Matteo Respino
- Department of Psychiatry, Weill Cornell Medicine,Weill Cornell Institute of Geriatric Psychiatry
| | | | | | - Matthew J. Hoptman
- Nathan Kline Institute for Psychiatric Research,Department of Psychiatry, New York University School of Medicine
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine
| | | | - George S. Alexopoulos
- Department of Psychiatry, Weill Cornell Medicine,Weill Cornell Institute of Geriatric Psychiatry
| | - Roy H. Perlis
- Harvard Medical School/Massachusetts General Hospital
| | - Faith M. Gunning
- Department of Psychiatry, Weill Cornell Medicine,Weill Cornell Institute of Geriatric Psychiatry
| |
Collapse
|
12
|
Lai H, Kong X, Zhao Y, Pan N, Zhang X, He M, Wang S, Gong Q. Patterns of a structural covariance network associated with dispositional optimism during late adolescence. Neuroimage 2022; 251:119009. [PMID: 35182752 DOI: 10.1016/j.neuroimage.2022.119009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023] Open
Abstract
Dispositional optimism (hereinafter, optimism), as a vital character strength, reflects the tendency to hold generalized positive expectancies for future outcomes. A great number of studies have consistently shown the importance of optimism to a spectrum of physical and mental health outcomes. However, less attention has been given to the intrinsic neurodevelopmental patterns associated with interindividual differences in optimism. Here, we investigated this important question in a large sample comprising 231 healthy adolescents (16-20 years old) via structural magnetic resonance imaging and behavioral tests. We constructed individual structural covariance networks based on cortical gyrification using a recent novel approach combining probability density estimation and Kullback-Leibler divergence and estimated global (global efficiency, local efficiency and small-worldness) and regional (betweenness centrality) properties of these constructed networks using graph theoretical analysis. Partial correlations adjusted for age, sex and estimated total intracranial volume showed that optimism was positively related to global and local efficiency but not small-worldness. Partial least squares correlations indicated that optimism was positively linked to a pronounced betweenness centrality pattern, in which twelve cognition-, emotion-, and motivation-related regions made robust and reliable contributions. These findings remained basically consistent after additionally controlling for family socioeconomic status and showed significant correlations with optimism scores from 2.5 years before, which replicated the main findings. The current work, for the first time, delineated characteristics of the cortical gyrification covariance network associated with optimism, extending previous neurobiological understandings of optimism, which may navigate the development of interventions on a neural network level aimed at raising optimism.
Collapse
Affiliation(s)
- Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Department of Psychology, Army Medical University, Chongqing, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Jaywant A, DelPonte L, Kanellopoulos D, O'Dell MW, Gunning FM. The Structural and Functional Neuroanatomy of Post-Stroke Depression and Executive Dysfunction: A Review of Neuroimaging Findings and Implications for Treatment. J Geriatr Psychiatry Neurol 2022; 35:3-11. [PMID: 33073704 DOI: 10.1177/0891988720968270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-stroke depression and executive dysfunction co-occur and are highly debilitating. Few treatments alleviate both depression and executive dysfunction after stroke. Understanding the brain network changes underlying post-stroke depression with executive dysfunction can inform the development of targeted and efficacious treatment. In this review, we synthesize neuroimaging findings in post-stroke depression and post-stroke executive dysfunction and highlight the network commonalities that may underlie this comorbidity. Structural and functional alterations in the cognitive control network, salience network, and default mode network are associated with depression and executive dysfunction after stroke. Specifically, post-stroke depression and executive dysfunction are both linked to changes in intrinsic functional connectivity within resting state networks, functional over-connectivity between the default mode and salience/cognitive control networks, and reduced cross-hemispheric frontoparietal functional connectivity. Cognitive training and noninvasive brain stimulation targeted at these brain network abnormalities and specific clinical phenotypes may help advance treatment for post-stroke depression with executive dysfunction.
Collapse
Affiliation(s)
- Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.,Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY, USA.,NewYork-Presbyterian Hospital, New York, NY, USA
| | - Larissa DelPonte
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Dora Kanellopoulos
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.,NewYork-Presbyterian Hospital, New York, NY, USA.,Weill Cornell Institute of Geriatric Psychiatry, White Plains, NY, USA
| | - Michael W O'Dell
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY, USA.,NewYork-Presbyterian Hospital, New York, NY, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.,NewYork-Presbyterian Hospital, New York, NY, USA.,Weill Cornell Institute of Geriatric Psychiatry, White Plains, NY, USA
| |
Collapse
|
14
|
Contò F, Edwards G, Tyler S, Parrott D, Grossman E, Battelli L. Attention network modulation via tRNS correlates with attention gain. eLife 2021; 10:e63782. [PMID: 34826292 PMCID: PMC8626087 DOI: 10.7554/elife.63782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.
Collapse
Affiliation(s)
- Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
| | - Sarah Tyler
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Butte CollegeOrovilleUnited States
| | - Danielle Parrott
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Emily Grossman
- Department of Cognitive Sciences, University of California, IrvineIrvineUnited States
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di TecnologiaRoveretoItaly
- Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
- Department of Psychology, Harvard UniversityCambridgeUnited States
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel, Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
15
|
Sisakhti M, Sachdev PS, Batouli SAH. The Effect of Cognitive Load on the Retrieval of Long-Term Memory: An fMRI Study. Front Hum Neurosci 2021; 15:700146. [PMID: 34720904 PMCID: PMC8548369 DOI: 10.3389/fnhum.2021.700146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
One of the less well-understood aspects of memory function is the mechanism by which the brain responds to an increasing load of memory, either during encoding or retrieval. Identifying the brain structures which manage this increasing cognitive demand would enhance our knowledge of human memory. Despite numerous studies about the effect of cognitive loads on working memory processes, whether these can be applied to long-term memory processes is unclear. We asked 32 healthy young volunteers to memorize all possible details of 24 images over a 12-day period ending 2 days before the fMRI scan. The images were of 12 categories relevant to daily events, with each category including a high and a low load image. Behavioral assessments on a separate group of participants (#22) provided the average loads of the images. The participants had to retrieve these previously memorized images during the fMRI scan in 15 s, with their eyes closed. We observed seven brain structures showing the highest activation with increasing load of the retrieved images, viz. parahippocampus, cerebellum, superior lateral occipital, fusiform and lingual gyri, precuneus, and posterior cingulate gyrus. Some structures showed reduced activation when retrieving higher load images, such as the anterior cingulate, insula, and supramarginal and postcentral gyri. The findings of this study revealed that the mechanism by which a difficult-to-retrieve memory is handled is mainly by elevating the activation of the responsible brain areas and not by getting other brain regions involved, which is a help to better understand the LTM retrieval process in the human brain.
Collapse
Affiliation(s)
- Minoo Sisakhti
- Institute for Cognitive Sciences Studies, Tehran, Iran.,Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Su C, Zhou H, Wang C, Geng F, Hu Y. Individualized video recommendation modulates functional connectivity between large scale networks. Hum Brain Mapp 2021; 42:5288-5299. [PMID: 34363282 PMCID: PMC8519862 DOI: 10.1002/hbm.25616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
With the emergence of AI‐powered recommender systems and their extensive use in the video streaming service, questions and concerns also arise. Why can recommended video content continuously capture users' attention? What is the impact of long‐term exposure to personalized video content on one's behaviors and brain functions? To address these questions, we designed an fMRI experiment presenting participants with personally recommended videos and generally recommended ones. To examine how large‐scale networks were modulated by personalized video content, graph theory analysis was applied to investigate the interaction between seven networks, including the ventral and dorsal attention networks (VAN, DAN), frontal–parietal network (FPN), salience network (SN), and three subnetworks of default mode network (dorsal medial prefrontal (dMPFC), Core, and medial temporal lobe (MTL)). Our results showed that viewing nonpersonalized video content mainly enhanced the connectivity in the DAN‐FPN‐Core pathway, whereas viewing personalized ones increased not only the connectivity in this pathway but also the DAN‐VAN‐dMPFC pathway. In addition, both personalized and nonpersonalized short videos decreased the couplings between SN and VAN as well as between two DMN subsystems, Core and MTL. Collectively, these findings uncovered distinct patterns of network interactions in response to short videos and provided insights into potential neural mechanisms by which human behaviors are biased by personally recommended content.
Collapse
Affiliation(s)
- Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Cooper RA, Kurkela KA, Davis SW, Ritchey M. Mapping the organization and dynamics of the posterior medial network during movie watching. Neuroimage 2021; 236:118075. [PMID: 33910099 PMCID: PMC8290580 DOI: 10.1016/j.neuroimage.2021.118075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Brain regions within a posterior medial network (PMN) are characterized by sensitivity to episodic tasks, and they also demonstrate strong functional connectivity as part of the default network. Despite its cohesive structure, delineating the intranetwork organization and functional diversity of the PMN is crucial for understanding its contributions to multidimensional event cognition. Here, we probed functional connectivity of the PMN during movie watching to identify its pattern of connections and subnetwork functions in a split-sample replication of 136 participants. Consistent with prior findings of default network fractionation, we identified distinct PMN subsystems: a Ventral PM subsystem (retrosplenial cortex, parahippocampal cortex, posterior angular gyrus) and a Dorsal PM subsystem (medial prefrontal cortex, hippocampus, precuneus, posterior cingulate cortex, anterior angular gyrus). Ventral and Dorsal PM subsystems were differentiated by functional connectivity with parahippocampal cortex and precuneus and integrated by retrosplenial cortex and posterior cingulate cortex, respectively. Finally, the distinction between PMN subsystems is functionally relevant: whereas both Dorsal and Ventral PM connectivity tracked the movie content, only Ventral PM connections increased in strength at event transitions and appeared sensitive to episodic memory. Overall, these findings reveal PMN functional pathways and the distinct functional roles of intranetwork subsystems during event cognition.
Collapse
Affiliation(s)
- Rose A Cooper
- Department of Psychology and Neuroscience, Boston College, United States.
| | - Kyle A Kurkela
- Department of Psychology and Neuroscience, Boston College, United States
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, United States
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, United States
| |
Collapse
|
18
|
Barnett AJ, Reilly W, Dimsdale-Zucker HR, Mizrak E, Reagh Z, Ranganath C. Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain. PLoS Biol 2021; 19:e3001275. [PMID: 34077415 PMCID: PMC8202937 DOI: 10.1371/journal.pbio.3001275] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Episodic memory depends on interactions between the hippocampus and interconnected neocortical regions. Here, using data-driven analyses of resting-state functional magnetic resonance imaging (fMRI) data, we identified the networks that interact with the hippocampus-the default mode network (DMN) and a "medial temporal network" (MTN) that included regions in the medial temporal lobe (MTL) and precuneus. We observed that the MTN plays a critical role in connecting the visual network to the DMN and hippocampus. The DMN could be further divided into 3 subnetworks: a "posterior medial" (PM) subnetwork comprised of posterior cingulate and lateral parietal cortices; an "anterior temporal" (AT) subnetwork comprised of regions in the temporopolar and dorsomedial prefrontal cortex; and a "medial prefrontal" (MP) subnetwork comprised of regions primarily in the medial prefrontal cortex (mPFC). These networks vary in their functional connectivity (FC) along the hippocampal long axis and represent different kinds of information during memory-guided decision-making. Finally, a Neurosynth meta-analysis of fMRI studies suggests new hypotheses regarding the functions of the MTN and DMN subnetworks, providing a framework to guide future research on the neural architecture of episodic memory.
Collapse
Affiliation(s)
- Alexander J. Barnett
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| | - Walter Reilly
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| | | | - Eda Mizrak
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Zachariah Reagh
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
- Department of Neurology, University of California at Davis, Sacramento, California, United States of America
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Charan Ranganath
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
19
|
Su C, Zhou H, Gong L, Teng B, Geng F, Hu Y. Viewing personalized video clips recommended by TikTok activates default mode network and ventral tegmental area. Neuroimage 2021; 237:118136. [PMID: 33951514 DOI: 10.1016/j.neuroimage.2021.118136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Cutting-edge recommendation algorithms have been widely used by media platforms to suggest users with personalized content. While such user-specific recommendations may satisfy users' needs to obtain intended information, some users may develop a problematic use pattern manifested by addiction-like undesired behaviors. Using a popular video sharing and recommending platform (TikTok) as an example, the present study first characterized use-related undesired behaviors with a questionnaire, then investigated how personally recommended videos modulated brain activity with an fMRI experiment. We found more undesired symptoms were related to lower self-control ability among young adults, and about 5.9% of TikTok users may have significant problematic use. The fMRI results showed higher brain activations in sub-components of the default mode network (DMN), ventral tegmental area, and discrete regions including lateral prefrontal, anterior thalamus, and cerebellum when viewing personalized videos in contrast to non-personalized ones. Psychophysiological interaction analyses revealed stronger coupling between activated DMN subregions and neural pathways underlying auditory and visual processing, as well as the frontoparietal network. This study highlights the functional heterogeneity of DMN in viewing personalized videos and may shed light on the neural underpinnings of how recommendation algorithms are able to keep the user's attention to suggested contents.
Collapse
Affiliation(s)
- Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Liangyu Gong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Binyu Teng
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, College of Education, Zhejiang University, Hangzhou 310058, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
20
|
Varying demands for cognitive control reveals shared neural processes supporting semantic and episodic memory retrieval. Nat Commun 2021; 12:2134. [PMID: 33837220 PMCID: PMC8035200 DOI: 10.1038/s41467-021-22443-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
The categorisation of long-term memory into semantic and episodic systems has been an influential catalyst for research on human memory organisation. However, the impact of variable cognitive control demands on this classical distinction remains to be elucidated. Across two independent experiments, here we directly compare neural processes for the controlled versus automatic retrieval of semantic and episodic memory. In a multi-session functional magnetic resonance imaging experiment, we first identify a common cluster of cortical activity centred on the left inferior frontal gyrus and anterior insular cortex for the retrieval of both weakly-associated semantic and weakly-encoded episodic memory traces. In an independent large-scale individual difference study, we further reveal a common neural circuitry in which reduced functional interaction between the identified cluster and ventromedial prefrontal cortex, a default mode network hub, is linked to better performance across both memory types. Our results provide evidence for shared neural processes supporting the controlled retrieval of information from functionally distinct long-term memory systems. Making sense of the world around us often requires flexible access to information from both semantic and episodic memory systems. Here, the authors show that controlled retrieval from functionally distinct long-term memory stores is supported by shared neural processes in the human brain.
Collapse
|
21
|
Filbey FM, Beaton D, Prashad S. The contributions of the endocannabinoid system and stress on the neural processing of reward stimuli. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110183. [PMID: 33221340 PMCID: PMC8204292 DOI: 10.1016/j.pnpbp.2020.110183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
The brain's endocannabinoid system plays a crucial role in reward processes by mediating appetitive learning and encoding the reinforcing properties of substances. Evidence also suggests that endocannabinoids are an important constituent of neuronal substrates involved in emotional responses to stress. Thus, it is critical to understand how the endocannabinoid system and stress may affect reward processes given their importance in substance use disorders. We examined the relationship between factors that regulate endocannabinoid system signaling (i.e., cannabinoid receptor genes and prolonged cannabis exposure) and stress on fMRI BOLD response to reward cues using multivariate statistical analysis. We found that proxies for endocannabinoid system signaling (i.e., endocannabinoid genes and chronic exposure to cannabis) and stress have differential effects on neural response to cannabis cues. Specifically, a single nucleotide polymorphism (SNP) variant in the cannabinoid receptor 1 (CNR1) gene, early life stress, and current perceived stress modulated reward responsivity in long-term, heavy cannabis users, while a variant in the fatty acid amide hydrolase (FAAH) gene and current perceived stress modulated cue-elicited response in non-using controls. These associations were related to distinct neural responses to cannabis-related cues compared to natural reward cues. Understanding the contributions of endocannabinoid system factors and stress that lead to downstream effects on neural mechanisms underlying sensitivity to rewards, such as cannabis, will contribute towards a better understanding of endocannabinoid-targeted therapies as well as individual risks for cannabis use disorder.
Collapse
Affiliation(s)
- F M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, TX, USA.
| | - D Beaton
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - S Prashad
- Department of Kinesiology and Educational Psychology, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
22
|
Conti F, Irish M. Harnessing Visual Imagery and Oculomotor Behaviour to Understand Prospection. Trends Cogn Sci 2021; 25:272-283. [PMID: 33618981 DOI: 10.1016/j.tics.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Much of the rich internal world constructed by humans is derived from, and experienced through, visual mental imagery. Despite growing appreciation of visual exploration in guiding episodic memory processes, extant theories of prospection have yet to accommodate the precise role of visual mental imagery in the service of future-oriented thinking. We propose that the construction of future events relies on the assimilation of perceptual details originally experienced, and subsequently reinstantiated, predominantly in the visual domain. Individual differences in the capacity to summon discrete aspects of visual imagery can therefore account for the diversity of content generated by humans during future simulation. Our integrative framework provides a novel testbed to query alterations in future thinking in health and disease.
Collapse
Affiliation(s)
- Federica Conti
- Institut des Neurosciences de la Timone, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France; The University of Sydney, Brain and Mind Centre and School of Psychology, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre and School of Psychology, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| |
Collapse
|
23
|
Ho TC, Walker JC, Teresi GI, Kulla A, Kirshenbaum JS, Gifuni AJ, Singh MK, Gotlib IH. Default mode and salience network alterations in suicidal and non-suicidal self-injurious thoughts and behaviors in adolescents with depression. Transl Psychiatry 2021; 11:38. [PMID: 33436537 PMCID: PMC7804956 DOI: 10.1038/s41398-020-01103-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022] Open
Abstract
Suicidal ideation (SI) and non-suicidal self-injury (NSSI) are two distinct yet often co-occurring risk factors for suicide deaths in adolescents. Elucidating the neurobiological patterns that specifically characterize SI and NSSI in adolescents is needed to inform the use of these markers in intervention studies and to develop brain-based treatment targets. Here, we clinically assessed 70 adolescents-49 adolescents with depression and 21 healthy controls-to determine SI and NSSI history. Twenty-eight of the depressed adolescents had a history of SI and 29 had a history of NSSI (20 overlapping). All participants underwent a resting-state fMRI scan. We compared groups in network coherence of subdivisions of the central executive network (CEN), default mode network (DMN), and salience network (SN). We also examined group differences in between-network connectivity and explored brain-behavior correlations. Depressed adolescents with SI and with NSSI had lower coherence in the ventral DMN compared to those without SI or NSSI, respectively, and healthy controls (all ps < 0.043, uncorrected). Depressed adolescents with NSSI had lower coherence in the anterior DMN and in insula-SN (all ps < 0.030, uncorrected), and higher CEN-DMN connectivity compared to those without NSSI and healthy controls (all ps < 0.030, uncorrected). Lower network coherence in all DMN subnetworks and insula-SN were associated with higher past-month SI and NSSI (all ps < 0.001, uncorrected). Thus, in our sample, both SI and NSSI are related to brain networks associated with difficulties in self-referential processing and future planning, while NSSI specifically is related to brain networks associated with disruptions in interoceptive awareness.
Collapse
Affiliation(s)
- Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Johanna C Walker
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Giana I Teresi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Artenisa Kulla
- Department of Psychology, Stanford University, Stanford, CA, USA
| | | | - Anthony J Gifuni
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Gilmore AW, Quach A, Kalinowski SE, Gotts SJ, Schacter DL, Martin A. Dynamic Content Reactivation Supports Naturalistic Autobiographical Recall in Humans. J Neurosci 2021; 41:153-166. [PMID: 33203742 PMCID: PMC7786205 DOI: 10.1523/jneurosci.1490-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
Humans can vividly recall and re-experience events from their past, and these are commonly referred to as episodic or autobiographical memories. fMRI experiments reliably associate autobiographical event recall with activity in a network of "default" or "core" brain regions. However, as prior studies have relied on covert (silent) recall procedures, current understanding may be hampered by methodological limitations that obscure dynamic effects supporting moment-to-moment content retrieval. Here, fMRI participants (N = 40) overtly (verbally) recalled memories for ∼2 min periods. The content of spoken descriptions was categorized using a variant of the Autobiographical Interview (AI) procedure (Levine et al., 2002) and temporally re-aligned with BOLD data so activity accompanying the recall of different details could be measured. Replicating prior work, sustained effects associated with autobiographical recall periods (which are insensitive to the moment-to-moment content of retrieval) fell primarily within canonical default network regions. Spoken descriptions were rich in episodic details, frequently focusing on physical entities, their ongoing activities, and their appearances. Critically, neural activity associated with recalling specific details (e.g., those related to people or places) was transient, broadly distributed, and grounded in category-selective cortex (e.g., regions related to social cognition or scene processing). Thus, although a single network may generally support the process of vivid event reconstruction, the structures required to provide detail-related information shift in a predictable manner that respects domain-level representations across the cortex.SIGNIFICANCE STATEMENT Humans can vividly recall memories of autobiographical episodes, a process thought to involve the reconstruction of numerous distinct event details. Yet how the brain represents a complex episode as it unfolds over time remains unclear and appears inconsistent across experimental traditions. One hurdle is the use of covert (silent) in-scanner recall to study autobiographical memory, which prevents experimenter knowledge of what information is being retrieved, and when, throughout the remembering process. In this experiment, participants overtly described autobiographical memories while undergoing fMRI. Activity associated with the recall and description of specific details was transient, broadly distributed, and grounded in category-selective cortex. Thus, it appears that as events unfold mentally, structures are dynamically reactivated to support vivid recollection.
Collapse
Affiliation(s)
- Adrian W Gilmore
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Alina Quach
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah E Kalinowski
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel L Schacter
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Gaesser B. Episodic mindreading: Mentalizing guided by scene construction of imagined and remembered events. Cognition 2020; 203:104325. [DOI: 10.1016/j.cognition.2020.104325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
|
26
|
Williams AN, Ridgeway S, Postans M, Graham KS, Lawrence AD, Hodgetts CJ. The role of the pre-commissural fornix in episodic autobiographical memory and simulation. Neuropsychologia 2020; 142:107457. [PMID: 32259556 PMCID: PMC7322517 DOI: 10.1016/j.neuropsychologia.2020.107457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Neuropsychological and functional magnetic resonance imaging evidence suggests that the ability to vividly remember our personal past, and imagine future scenarios, involves two closely connected regions: the hippocampus and ventromedial prefrontal cortex (vmPFC). Despite evidence of a direct anatomical connection from hippocampus to vmPFC, it is unknown whether hippocampal-vmPFC structural connectivity supports both past- and future-oriented episodic thinking. To address this, we applied a novel deterministic tractography protocol to diffusion-weighted magnetic resonance imaging (dMRI) data from a group of healthy young adult humans who undertook an adapted past-future autobiographical interview (portions of this data were published in Hodgetts et al., 2017a). This tractography protocol enabled distinct subdivisions of the fornix, detected previously in axonal tracer studies, to be reconstructed in vivo, namely the pre-commissural (connecting the hippocampus to vmPFC) and post-commissural (linking the hippocampus and medial diencephalon) fornix. As predicted, we found that inter-individual differences in pre-commissural - but not post-commissural - fornix microstructure (fractional anisotropy) were significantly correlated with the episodic richness of both past and future autobiographical narratives. Notably, these results held when controlling for non-episodic narrative content, verbal fluency, and grey matter volumes of the hippocampus and vmPFC. This study provides novel evidence that reconstructing events from one's personal past, and constructing possible future events, involves a distinct, structurally-instantiated hippocampal-vmPFC pathway.
Collapse
Affiliation(s)
- Angharad N Williams
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom; Max Planck Research Group Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Samuel Ridgeway
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Mark Postans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom
| |
Collapse
|
27
|
Ritchey M, Cooper RA. Deconstructing the Posterior Medial Episodic Network. Trends Cogn Sci 2020; 24:451-465. [PMID: 32340798 DOI: 10.1016/j.tics.2020.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/12/2023]
Abstract
Our ability to remember or imagine specific events involves the construction of complex mental representations, a process that engages cortical and hippocampal regions in a core posterior medial (PM) brain network. Existing theoretical approaches have described the overarching contributions of the PM network, but less is known about how episodic content is represented and transformed throughout this system. Here, we review evidence of key functional interactions among PM regions and their relation to the core cognitive operations and representations supporting episodic construction. Recent demonstrations of intranetwork functional diversity are integrated with existing accounts to inform a network-based model of episodic construction, in which PM regions flexibly share and manipulate event information to support the variable phenomenology of episodic memory and simulation.
Collapse
Affiliation(s)
- Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, 300 McGuinn Hall, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA.
| | - Rose A Cooper
- Department of Psychology and Neuroscience, Boston College, 300 McGuinn Hall, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
28
|
Müller N, Dresler M, Janzen G, Beckmann C, Fernández G, Kohn N. Medial prefrontal decoupling from the default mode network benefits memory. Neuroimage 2020; 210:116543. [DOI: 10.1016/j.neuroimage.2020.116543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
|
29
|
Provenzano D, Washington SD, Baraniuk JN. A Machine Learning Approach to the Differentiation of Functional Magnetic Resonance Imaging Data of Chronic Fatigue Syndrome (CFS) From a Sedentary Control. Front Comput Neurosci 2020; 14:2. [PMID: 32063839 PMCID: PMC7000378 DOI: 10.3389/fncom.2020.00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic Fatigue Syndrome (CFS) is a debilitating condition estimated to impact at least 1 million individuals in the United States, however there persists controversy about its existence. Machine learning algorithms have become a powerful methodology for evaluating multi-regional areas of fMRI activation that can classify disease phenotype from sedentary control. Uncovering objective biomarkers such as an fMRI pattern is important for lending credibility to diagnosis of CFS. fMRI scans were evaluated for 69 patients (38 CFS and 31 Control) taken before (Day 1) and after (Day 2) a submaximal exercise test while undergoing the n-back memory paradigm. A predictive model was created by grouping fMRI voxels into the Automated Anatomical Labeling (AAL) atlas, splitting the data into a training and testing dataset, and feeding these inputs into a logistic regression to evaluate differences between CFS and control. Model results were cross-validated 10 times to ensure accuracy. Model results were able to differentiate CFS from sedentary controls at a 80% accuracy on Day 1 and 76% accuracy on Day 2 (Table 3). Recursive features selection identified 29 ROI's that significantly distinguished CFS from control on Day 1 and 28 ROI's on Day 2 with 10 regions of overlap shared with Day 1 (Figure 3). These 10 shared regions included the putamen, inferior frontal gyrus, orbital (F3O), supramarginal gyrus (SMG), temporal pole; superior temporal gyrus (T1P) and caudate ROIs. This study was able to uncover a pattern of activated neurological regions that differentiated CFS from Control. This pattern provides a first step toward developing fMRI as a diagnostic biomarker and suggests this methodology could be emulated for other disorders. We concluded that a logistic regression model performed on fMRI data significantly differentiated CFS from Control.
Collapse
Affiliation(s)
| | | | - James N. Baraniuk
- Baraniuk Lab, Department of Medicine, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
30
|
Zhang RT, Yang ZY, Wang YM, Wang Y, Yang TX, Cheung EFC, Martin EA, Chan RCK. Affective forecasting in individuals with social anhedonia: The role of social components in anticipated emotion, prospection and neural activation. Schizophr Res 2020; 215:322-329. [PMID: 31611042 DOI: 10.1016/j.schres.2019.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Affective forecasting, or the ability to forecast emotional responses to future events, is essential to everyday life adaption. Previous research suggests that individuals with social anhedonia exhibit deficits in affective forecasting, but the pattern of these deficits and their neural correlates are not known. METHODS Individuals with social anhedonia (n = 40) and healthy controls (n = 46) completed a social affective forecasting task and underwent resting-state fMRI scanning. RESULTS Compared with healthy controls, social anhedonia individuals anticipated reduced pleasure especially in social conditions and their prospection contained less visualization, voice, taste, self-referential thoughts, other-referential thoughts and language communication. Moreover, anticipated pleasure (valence and arousal for positive events) was positively associated with effort level, especially in social conditions. The social anhedonia group also exhibited stronger functional connectivity between the retrosplenial cortex and the insula and reduced functional connectivity between the hippocampal formation and the parahippocampus. These altered functional connectivities were correlated with anticipated valence in social, but not non-social, conditions. CONCLUSIONS These findings suggest that individuals with social anhedonia anticipate less pleasure predominately in social conditions and impaired prospection may contribute to the reduced anticipated pleasure. Reduced anticipated pleasure may be a target to improve social motivation in social anhedonia individuals.
Collapse
Affiliation(s)
- Rui-Ting Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhuo-Ya Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing, 101407, China; Sino-Danish Center for Education and Research, 380 Huaibei Zhuang, Huairou District, Beijing, 101407, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China
| | - Tian-Xiao Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Eric F C Cheung
- Castle Peak Hospital, 15 Tsing Chung Koon Road, Tuen Mun, N.T, Hong Kong, China
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, 4201 Social and Behavioral Sciences Gateway, Irvine, CA, USA
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing, 101407, China.
| |
Collapse
|
31
|
Warren KN, Hermiller MS, Nilakantan AS, Voss JL. Stimulating the hippocampal posterior-medial network enhances task-dependent connectivity and memory. eLife 2019; 8:e49458. [PMID: 31724946 PMCID: PMC6855798 DOI: 10.7554/elife.49458] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022] Open
Abstract
Successful episodic memory involves dynamic increases in activity across distributed hippocampal networks, including the posterior-medial (PMN) and the anterior-temporal (ATN) networks. We tested whether this up-regulation of functional connectivity during memory processing can be enhanced within hippocampal networks by noninvasive stimulation, and whether such task-dependent connectivity enhancement predicts memory improvement. Participants received stimulation targeting the PMN or an out-of-network control location. We compared the effects of stimulation on fMRI connectivity during an autobiographical retrieval task versus during rest within the PMN and the ATN. PMN-targeted stimulation significantly increased connectivity during autobiographical retrieval versus rest within the PMN. This effect was not observed in the ATN, or in either network following control stimulation. Task-dependent increases in connectivity within the medial temporal lobe predicted improved performance of a separate episodic memory test. It is therefore possible to enhance the task-dependent regulation of hippocampal network connectivity that supports memory processing using noninvasive stimulation.
Collapse
Affiliation(s)
- Kristen N Warren
- Interdepartmental Neuroscience Program, Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Department of Psychiatry and Behavioral SciencesFeinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Molly S Hermiller
- Interdepartmental Neuroscience Program, Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Department of Psychiatry and Behavioral SciencesFeinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Aneesha S Nilakantan
- Interdepartmental Neuroscience Program, Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Department of Psychiatry and Behavioral SciencesFeinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Joel L Voss
- Interdepartmental Neuroscience Program, Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, and Department of Psychiatry and Behavioral SciencesFeinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
32
|
Denkova E, Nomi JS, Uddin LQ, Jha AP. Dynamic brain network configurations during rest and an attention task with frequent occurrence of mind wandering. Hum Brain Mapp 2019; 40:4564-4576. [PMID: 31379120 PMCID: PMC6865814 DOI: 10.1002/hbm.24721] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 02/04/2023] Open
Abstract
Mind wandering (MW) has become a prominent topic of neuroscientific investigation due to the importance of understanding attentional processes in our day-to-day experiences. Emerging evidence suggests a critical role for three large-scale brain networks in MW: the default network (DN), the central executive network (CEN), and the salience network (SN). Advances in analytical methods for neuroimaging data (i.e., dynamic functional connectivity, DFC) demonstrate that the interactions between these networks are not static but dynamically fluctuate over time (Chang & Glover, 2010, NeuroImage, 50(1), 81-98). While the bulk of the evidence comes from studies involving resting-state functional MRI, a few studies have investigated DFC during a task. Direct comparison of DFC during rest and task with frequent MW is scarce. The present study applies the DFC method to neuroimaging data collected from 30 participants who completed a resting-state run followed by two runs of sustained attention to response task (SART) with embedded probes indicating a high prevalence of MW. The analysis identified five DFC states. Differences between rest and task were noted in the frequency of three DFC states. One DFC state characterized by negative DN-CEN/SN connectivity along with positive CEN-SN connectivity was more frequently observed during task vs. rest. Two DFC states, one of which was characterized by weaker connectivity between networks, were more frequently observed during rest than task. These findings suggest that the dynamic relationships between brain networks may vary as a function of whether ongoing cognitive activity unfolds in an "unconstrained" manner during rest or is "constrained" by task demands.
Collapse
Affiliation(s)
| | - Jason S. Nomi
- Department of PsychologyUniversity of MiamiCoral GablesFlorida
| | - Lucina Q. Uddin
- Department of PsychologyUniversity of MiamiCoral GablesFlorida
| | - Amishi P. Jha
- Department of PsychologyUniversity of MiamiCoral GablesFlorida
| |
Collapse
|
33
|
Stillman PE, Wilson JD, Denny MJ, Desmarais BA, Cranmer SJ, Lu ZL. A consistent organizational structure across multiple functional subnetworks of the human brain. Neuroimage 2019; 197:24-36. [PMID: 30928689 DOI: 10.1016/j.neuroimage.2019.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022] Open
Abstract
A recurrent theme of both cognitive and network neuroscience is that the brain has a consistent subnetwork structure that maps onto functional specialization for different cognitive tasks, such as vision, motor skills, and attention. Understanding how regions in these subnetworks relate is thus crucial to understanding the emergence of cognitive processes. However, the organizing principles that guide how regions within subnetworks communicate, and whether there is a common set of principles across subnetworks, remains unclear. This is partly due to available tools not being suited to precisely quantify the role that different organizational principles play in the organization of a subnetwork. Here, we apply a joint modeling technique - the correlation generalized exponential random graph model (cGERGM) - to more completely quantify subnetwork structure. The cGERGM models a correlation network, such as those given in functional connectivity, as a function of activation motifs - consistent patterns of coactivation (i.e., connectivity) between collections of nodes that describe how the regions within a network are organized (e.g., clustering) - and anatomical properties - relationships between the regions that are dictated by anatomy (e.g., Euclidean distance). By jointly modeling all features simultaneously, the cGERGM models the unique variance accounted for by each feature, as well as a point estimate and standard error for each, allowing for significance tests against a random graph and between graphs. Across eight functional subnetworks, we find remarkably consistent organizational properties guiding subnetwork architecture, suggesting a fundamental organizational basis for subnetwork communication. Specifically, all subnetworks displayed greater clustering than would be expected by chance, but lower preferential attachment (i.e., hub use). These findings suggest that human functional subnetworks follow a segregated highway structure, in which tightly clustered subcommunities develop their own channels of communication rather than relying on hubs.
Collapse
Affiliation(s)
| | - James D Wilson
- University of San Francisco, San Francisco, CA, 94117, USA
| | | | | | | | - Zhong-Lin Lu
- The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
34
|
Elton A, Stanger C, James GA, Ryan-Pettes S, Budney A, Kilts CD. Intertemporal decision-making-related brain states predict adolescent drug abuse intervention responses. Neuroimage Clin 2019; 24:101968. [PMID: 31404876 PMCID: PMC6699467 DOI: 10.1016/j.nicl.2019.101968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022]
Abstract
Adolescent drug misuse represents a major risk factor for long-term drug use disorders. However, wide individual differences in responses to first-line behavioral therapies targeting adolescent drug misuse limit critical early intervention. Identifying the neural signatures of those adolescents most likely to respond to an intervention would potentially guide personalized strategies for reducing drug misuse. Prior to a 14-week evidence-based intervention involving combinations of contingency management, motivational enhancement, and cognitive behavioral therapy, thirty adolescent alcohol and/or cannabis users underwent fMRI while performing a reward delay discounting (DD) task tapping an addiction-related cognition. Intervention responses were longitudinally characterized by both urinalysis and self-report measures of the percentage of days used during treatment and in post-treatment follow-up. Group independent component analysis (ICA) of task fMRI data identified neural processing networks related to DD task performance. Separate measures of wholesale recruitment during immediate reward choices and within-network functional connectivity among selective networks significantly predicted intervention-related changes in drug misuse frequency. Specifically, heightened pre-intervention engagement of a temporal lobe "reward motivation" network for impulsive choices on the DD task predicted poorer intervention outcomes, while modes of functional connectivity within the reward motivation network, a prospection network, and a posterior insula network demonstrated robust associations with intervention outcomes. Finally, the pre-intervention functional organization of the prospection network also predicted post-intervention drug use behaviors for up to 6 months of follow-up. Multiple functional variations in the neural processing networks supporting preference for immediate and future rewards signal individual differences in readiness to benefit from an effective behavioral therapy for reducing adolescent drug misuse. The implications for efforts to boost therapy responses are discussed.
Collapse
Affiliation(s)
- Amanda Elton
- University of North Carolina at Chapel Hill, USA.
| | | | | | | | - Alan Budney
- Geisel School of Medicine at Dartmouth College, USA
| | | |
Collapse
|
35
|
Costigan AG, Umla-Runge K, Evans CJ, Hodgetts CJ, Lawrence AD, Graham KS. Neurochemical correlates of scene processing in the precuneus/posterior cingulate cortex: A multimodal fMRI and 1 H-MRS study. Hum Brain Mapp 2019; 40:2884-2898. [PMID: 30865358 PMCID: PMC6563468 DOI: 10.1002/hbm.24566] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Precuneus/posterior cingulate cortex (PCu/PCC) are key components of a midline network, activated during rest but also in tasks that involve construction of scene or situation models. Despite growing interest in PCu/PCC functional alterations in disease and disease risk, the underlying neurochemical modulators of PCu/PCC's task‐evoked activity are largely unstudied. Here, a multimodal imaging approach was applied to investigate whether interindividual differences in PCu/PCC fMRI activity, elicited during perceptual discrimination of scene stimuli, were correlated with local brain metabolite levels, measured during resting‐state 1H‐MRS. Forty healthy young adult participants completed an fMRI perceptual odd‐one‐out task for scenes, objects and faces. 1H‐MRS metabolites N‐acetyl‐aspartate (tNAA), glutamate (Glx) and γ‐amino‐butyric acid (GABA+) were quantified via PRESS and MEGA‐PRESS scans in a PCu/PCC voxel and an occipital (OCC) control voxel. Whole brain fMRI revealed a cluster in right dorsal PCu/PCC that showed a greater BOLD response to scenes versus faces and objects. When extracted from an independently defined PCu/PCC region of interest, scene activity (vs. faces and objects and also vs. baseline) was positively correlated with PCu/PCC, but not OCC, tNAA. A voxel‐wise regression analysis restricted to the PCu/PCC 1H‐MRS voxel area identified a significant PCu/PCC cluster, confirming the positive correlation between scene‐related BOLD activity and PCu/PCC tNAA. There were no correlations between PCu/PCC activity and Glx or GABA+ levels. These results demonstrate, for the first time, that scene activity in PCu/PCC is linked to local tNAA levels, identifying a neurochemical influence on interindividual differences in the task‐driven activity of a key brain hub.
Collapse
Affiliation(s)
- Alison G Costigan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Katja Umla-Runge
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - C John Evans
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| |
Collapse
|
36
|
Bréchet L, Grivaz P, Gauthier B, Blanke O. Common Recruitment of Angular Gyrus in Episodic Autobiographical Memory and Bodily Self-Consciousness. Front Behav Neurosci 2018; 12:270. [PMID: 30487740 PMCID: PMC6246737 DOI: 10.3389/fnbeh.2018.00270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022] Open
Abstract
Parietal cortex and adjacent parts of the temporal cortex have recently been associated with bodily self-consciousness (BSC). Similarly, growing evidence suggests that the lateral parietal cortex is crucial for the subjective aspects of episodic autobiographical memory (EAM), which is based on the conscious experience of reliving past events. However, the neuroanatomical relationship between both fundamental aspects remains currently unexplored. Moreover, despite the wealth of neuroimaging data on EAM, only few neuroimaging studies have examined BSC and even fewer examined those aspects of BSC that are most closely related to EAM. Here, we investigated whether regions in the inferior parietal lobule (IPL) that have been involved in spatial aspects of BSC (self-location and first-person perspective), as described by Ionta et al. (2011) are also active in studies investigating autobiographical memory. To examine this relation, we thus compared the regions indicated in the study by Ionta et al. (2011) based on data in healthy participants and neurological patients, with the results from a meta-analytical study we performed based on functional neuroimaging studies on EAM and semantic autobiographical memory (SAM). We report an anatomical overlap bilaterally in the angular gyrus (AG), but not in other parietal or temporal lobe structures between BSC and EAM. Moreover, there was no overlap between BSC and SAM. These preliminary data suggest that the bilateral AG may be a key structure for the conscious re-experiencing of past life episodes (EAM) and the conscious on-line experience of being located and experiencing the world in first-person (BSC).
Collapse
Affiliation(s)
- Lucie Bréchet
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland.,Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland
| | - Petr Grivaz
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland.,Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland.,Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland.,Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Geneva, Switzerland.,Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
37
|
Cabeza R, Stanley ML, Moscovitch M. Process-Specific Alliances (PSAs) in Cognitive Neuroscience. Trends Cogn Sci 2018; 22:996-1010. [PMID: 30224232 PMCID: PMC6657801 DOI: 10.1016/j.tics.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/19/2018] [Accepted: 08/19/2018] [Indexed: 10/28/2022]
Abstract
Most cognitive neuroscience theories have focused on the functions of individual brain regions, but cognitive abilities depend also on functional interactions among multiple regions. Many recent studies on these interactions have examined large-scale, resting-state networks, but these networks are difficult to link to theories about specific cognitive processes. Cognitive theories are easier to link to the mini-networks we call process specific alliances (PSAs). A PSA is a small team of brain regions that rapidly assemble to mediate a cognitive process in response to task demands but quickly disassemble when the process is no longer needed. We compare PSAs to resting-state networks and to other connectivity-based, task-related networks, and we characterize the advantages and disadvantages of each type of network.
Collapse
Affiliation(s)
- Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| | - Matthew L Stanley
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Centre for Geriatric Care, North York, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Warren KN, Hermiller MS, Nilakantan AS, O'Neil J, Palumbo RT, Voss JL. Increased fMRI activity correlations in autobiographical memory versus resting states. Hum Brain Mapp 2018; 39:4312-4321. [PMID: 29956403 PMCID: PMC6314301 DOI: 10.1002/hbm.24248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022] Open
Abstract
Autobiographical memory retrieval is associated with activity of a distributed network that is similar to the default-mode network (DMN) identified via activity correlations measured during rest. We tested whether activity correlations could be used to identify the autobiographical network during extended bouts of retrieval. Global-correlativity analysis identified regions with activity correlation differences between autobiographical-retrieval and resting states. Increased correlations were identified for retrieval versus resting states within a distributed network that included regions prototypical for autobiographical memory. This network segregated into two subnetworks comprised of regions related to memory versus cognitive control, suggesting greater functional segregation during autobiographical retrieval than rest. DMN regions were important drivers of these effects, with increased correlations between DMN and non-DMN regions and segregation of the DMN into distinct subnetworks during retrieval. Thus, the autobiographical network can be robustly identified via activity correlations and retrieval is associated with network functional organization distinct from rest.
Collapse
Affiliation(s)
- Kristen N. Warren
- Department of Medical Social Sciences and Interdepartmental Neuroscience Program, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Molly S. Hermiller
- Department of Medical Social Sciences and Interdepartmental Neuroscience Program, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Aneesha S. Nilakantan
- Department of Medical Social Sciences and Interdepartmental Neuroscience Program, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Jonathan O'Neil
- Department of Medical Social Sciences and Interdepartmental Neuroscience Program, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Robert T. Palumbo
- Department of Medical Social Sciences and Interdepartmental Neuroscience Program, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Joel L. Voss
- Department of Medical Social Sciences and Interdepartmental Neuroscience Program, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| |
Collapse
|
39
|
Sekeres MJ, Winocur G, Moscovitch M. The hippocampus and related neocortical structures in memory transformation. Neurosci Lett 2018; 680:39-53. [DOI: 10.1016/j.neulet.2018.05.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
|
40
|
Brunec IK, Bellana B, Ozubko JD, Man V, Robin J, Liu ZX, Grady C, Rosenbaum RS, Winocur G, Barense MD, Moscovitch M. Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans. Curr Biol 2018; 28:2129-2135.e6. [PMID: 29937352 DOI: 10.1016/j.cub.2018.05.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/21/2018] [Accepted: 05/08/2018] [Indexed: 01/12/2023]
Abstract
The ability to represent the world accurately relies on simultaneous coarse and fine-grained neural information coding, capturing both gist and detail of an experience. The longitudinal axis of the hippocampus may provide a gradient of representational granularity in spatial and episodic memory in rodents and humans [1-8]. Rodent place cells in the ventral hippocampus exhibit significantly larger place fields and greater autocorrelation than those in the dorsal hippocampus [1, 9-11], which may underlie a coarser and slower changing representation of space [10, 12]. Recent evidence suggests that properties of cellular dynamics in rodents can be captured with fMRI in humans during spatial navigation [13] and conceptual learning [14]. Similarly, mechanisms supporting granularity along the long axis may also be extrapolated to the scale of fMRI signal. Here, we provide the first evidence for separable scales of representation along the human hippocampal anteroposterior axis during navigation and rest by showing (1) greater similarity among voxel time courses and (2) higher temporal autocorrelation in anterior hippocampus (aHPC), relative to posterior hippocampus (pHPC), the human homologs of ventral and dorsal rodent hippocampus. aHPC voxels exhibited more similar activity at each time point and slower signal change over time than voxels in pHPC, consistent with place field organization in rodents. Importantly, similarity between voxels was related to navigational strategy and episodic memory. These findings provide evidence that the human hippocampus supports an anterior-to-posterior gradient of coarse-to-fine spatiotemporal representations, suggesting the existence of a cross-species mechanism, whereby lower neural similarity supports more complex coding of experience.
Collapse
Affiliation(s)
- Iva K Brunec
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada.
| | - Buddhika Bellana
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada.
| | - Jason D Ozubko
- Department of Psychology, SUNY Geneseo, Bailey 133, 1 College Circle, Geneseo, NY 14454, USA
| | - Vincent Man
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Jessica Robin
- Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| | - Zhong-Xu Liu
- Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| | - Cheryl Grady
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8(th) Floor, Toronto, ON M5T 1R8, Canada
| | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, York University, 4700 Keele Street, North York, ON M3J 1P3, Canada
| | - Gordon Winocur
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, Trent University, Life and Health Sciences, DNA C104, Peterborough, ON K9J 7B8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8(th) Floor, Toronto, ON M5T 1R8, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada.
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada.
| |
Collapse
|
41
|
Cooper RA, Richter FR, Bays PM, Plaisted-Grant KC, Baron-Cohen S, Simons JS. Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism. Cereb Cortex 2018; 27:888-902. [PMID: 28057726 PMCID: PMC5390398 DOI: 10.1093/cercor/bhw417] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023] Open
Abstract
Increasing recent research has sought to understand the recollection impairments experienced by individuals with autism spectrum disorder (ASD). Here, we tested whether these memory deficits reflect a reduction in the probability of retrieval success or in the precision of memory representations. We also used functional magnetic resonance imaging (fMRI) to study the neural mechanisms underlying memory encoding and retrieval in ASD, focusing particularly on the functional connectivity of core episodic memory networks. Adults with ASD and typical control participants completed a memory task that involved studying visual displays and subsequently using a continuous dial to recreate their appearance. The ASD group exhibited reduced retrieval success, but there was no evidence of a difference in retrieval precision. fMRI data revealed similar patterns of brain activity and functional connectivity during memory encoding in the 2 groups, though encoding-related lateral frontal activity predicted subsequent retrieval success only in the control group. During memory retrieval, the ASD group exhibited attenuated lateral frontal activity and substantially reduced hippocampal connectivity, particularly between hippocampus and regions of the fronto-parietal control network. These findings demonstrate notable differences in brain function during episodic memory retrieval in ASD and highlight the importance of functional connectivity to understanding recollection-related retrieval deficits in this population.
Collapse
Affiliation(s)
- Rose A Cooper
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | - Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
42
|
Kawagoe T, Onoda K, Yamaguchi S. Different pre-scanning instructions induce distinct psychological and resting brain states during functional magnetic resonance imaging. Eur J Neurosci 2017; 47:77-82. [PMID: 29205574 DOI: 10.1111/ejn.13787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/16/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate functional brain network connectivity during rest or when the subject is not performing an explicit task. In the standard procedure, subjects are instructed to 'let your mind wander' or 'think of nothing'. While these instructions appear appropriate to induce a 'resting-state', they could induce distinct psychological and physiological states during the scan. In this study, we investigated whether different instructions affect mental state and functional connectivity (FC) (i.e. induce distinct 'resting states') during rs-fMRI scanning. Thirty healthy subjects were subjected to two rs-fMRI scans differing only in pre-scan instructions: think of nothing (TN) and mind-wandering (MW) conditions. Self-reports confirmed that subjects spent the majority of the scanning time in the appropriate mental state. Independent component analysis extracted 19 independent components (ICs) of interest and functional network connectivity analyses indicated several conditional differences in FCs among those ICs, especially characterised by stronger FC in the MW condition than in the TN condition, between default mode network and salience/visual/frontal network. Complementary correlation analysis indicated that some of the network FCs were significantly correlated with their self-reported data on how often they had the TN condition during the scans. The present results provide evidence that the pre-scan instruction has a significant influence on resting-state FC and its relationship with mental activities.
Collapse
Affiliation(s)
- Toshikazu Kawagoe
- Faculty of Medicine, Department of Neurology, Shimane University, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Keiichi Onoda
- Faculty of Medicine, Department of Neurology, Shimane University, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Shuhei Yamaguchi
- Faculty of Medicine, Department of Neurology, Shimane University, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
43
|
Axelrod V, Rees G, Bar M. The default network and the combination of cognitive processes that mediate self-generated thought. Nat Hum Behav 2017; 1:896-910. [PMID: 30035236 DOI: 10.1038/s41562-017-0244-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Self-generated cognitions, such as recalling personal memories or empathizing with others, are ubiquitous and essential for our lives. Such internal mental processing is ascribed to the Default Mode Network, a large network of the human brain, though the underlying neural and cognitive mechanisms remain poorly understood. Here, we tested the hypothesis that our mental experience is mediated by a combination of activities of multiple cognitive processes. Our study included four functional MRI experiments with the same participants and a wide range of cognitive tasks, as well as an analytical approach that afforded the identification of cognitive processes during self-generated cognition. We showed that several cognitive processes functioned simultaneously during self-generated mental activity. The processes had specific and localized neural representations, suggesting that they support different aspects of internal processing. Overall, we demonstrate that internally directed experience may be achieved by pooling over multiple cognitive processes.
Collapse
Affiliation(s)
- Vadim Axelrod
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel. .,Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Geraint Rees
- Institute of Cognitive Neuroscience, University College London, London, UK.,Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Moshe Bar
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
44
|
Stillman PE, Wilson JD, Denny MJ, Desmarais BA, Bhamidi S, Cranmer SJ, Lu ZL. Statistical Modeling of the Default Mode Brain Network Reveals a Segregated Highway Structure. Sci Rep 2017; 7:11694. [PMID: 28916779 PMCID: PMC5601943 DOI: 10.1038/s41598-017-09896-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 01/07/2023] Open
Abstract
We investigate the functional organization of the Default Mode Network (DMN) - an important subnetwork within the brain associated with a wide range of higher-order cognitive functions. While past work has shown the whole-brain network of functional connectivity follows small-world organizational principles, subnetwork structure is less well understood. Current statistical tools, however, are not suited to quantifying the operating characteristics of functional networks as they often require threshold censoring of information and do not allow for inferential testing of the role that local processes play in determining network structure. Here, we develop the correlation Generalized Exponential Random Graph Model (cGERGM) - a statistical network model that uses local processes to capture the emergent structural properties of correlation networks without loss of information. Examining the DMN with the cGERGM, we show that, rather than demonstrating small-world properties, the DMN appears to be organized according to principles of a segregated highway - suggesting it is optimized for function-specific coordination between brain regions as opposed to information integration across the DMN. We further validate our findings through assessing the power and accuracy of the cGERGM on a testbed of simulated networks representing various commonly observed brain architectures.
Collapse
Affiliation(s)
- Paul E Stillman
- The Ohio State University, Department of Psychology, Columbus, OH, 43210, USA.
| | - James D Wilson
- University of San Francisco, Department of Mathematics and Statistics, San Francisco, CA, 94117, USA
| | - Matthew J Denny
- The Pennsylvania State University, Department of Political Science, University Park, PA, 16802, USA
| | - Bruce A Desmarais
- The Pennsylvania State University, Department of Political Science, University Park, PA, 16802, USA
| | - Shankar Bhamidi
- University of North Carolina at Chapel Hill, Department of Statistics and Operations Research, Chapel Hill, NC, 27599, USA
| | - Skyler J Cranmer
- The Ohio State University, Department of Political Science, Columbus, OH 43210, USA
| | - Zhong-Lin Lu
- The Ohio State University, Department of Psychology, Columbus, OH, 43210, USA
| |
Collapse
|
45
|
Kucyi A. Just a thought: How mind-wandering is represented in dynamic brain connectivity. Neuroimage 2017; 180:505-514. [PMID: 28684334 DOI: 10.1016/j.neuroimage.2017.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 01/24/2023] Open
Abstract
The neuroscience of mind-wandering has begun to flourish, with roles of brain regions and networks being defined for various components of spontaneous thought. However, most of brain activity does not represent immediately occurring thoughts. Instead, spontaneous, organized network activity largely reflects "intrinsic" functions that are unrelated to the current experience. There remains no consensus on how brain networks represent mind-wandering in parallel to functioning in other ongoing, predominantly unconscious processes. Commonly, in network analysis of functional neuroimaging data, functional connectivity (FC; correlated time series) between remote brain regions is considered over several minutes or longer. In contrast, dynamic functional connectivity (dFC) is a new, promising approach to characterizing spontaneous changes in neural network communication on the faster time-scale at which intra-individual fluctuations in thought contents may occur. Here I describe how a potential relationship between mind-wandering and FC has traditionally been considered in the literature, and I review methods and results pertaining to the study of the dFC-mind-wandering relationship. While acknowledging challenges to the dFC approach and to behaviorally capturing fluctuations in inner experiences, I describe a framework for describing spontaneous thoughts in terms of brain-network activity patterns that are comprised of connections weighted by time-varying relevance to conscious and unconscious processing. This perspective suggests preferential roles of certain anatomical communication avenues (e.g., via the default mode network) in mind-wandering, while also implying that a region's connectivity fluctuates over time in its immediate degree of relevance to conscious contents, ultimately allowing novelty and diversity of thought.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States.
| |
Collapse
|
46
|
Abstract
Episodic future thinking refers to the capacity to imagine or simulate experiences that might occur in one's personal future. Cognitive, neuropsychological, and neuroimaging research concerning episodic future thinking has accelerated during recent years. This article discusses research that has delineated cognitive and neural mechanisms that support episodic future thinking as well as the functions that episodic future thinking serves. Studies focused on mechanisms have identified a core brain network that underlies episodic future thinking and have begun to tease apart the relative contributions of particular regions in this network, and the specific cognitive processes that they support. Studies concerned with functions have identified several domains in which episodic future thinking produces performance benefits, including decision making, emotion regulation, prospective memory, and spatial navigation.
Collapse
|
47
|
Davis SW, Stanley ML, Moscovitch M, Cabeza R. Resting-state networks do not determine cognitive function networks: a commentary on Campbell and Schacter (2016). LANGUAGE, COGNITION AND NEUROSCIENCE 2016; 32:669-673. [PMID: 28989941 PMCID: PMC5629978 DOI: 10.1080/23273798.2016.1252847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 05/12/2023]
Affiliation(s)
- Simon W Davis
- Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Matthew L Stanley
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | | | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|