1
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee JT, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2024; 121:e2400420121. [PMID: 39106304 PMCID: PMC11331084 DOI: 10.1073/pnas.2400420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1β2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Neurosurgery, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jesus J. Campagna
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Barbara Jagodzinska
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Dongwook Wi
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Whitaker Cohn
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jessica T. Lee
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Chunni Zhu
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Christine S. Huang
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu Mureş540485, Romania
| | - Carolyn R. Houser
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Varghese John
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Physiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
2
|
Topchiy I, Mohbat J, Folorunso OO, Wang ZZ, Lazcano-Etchebarne C, Engin E. GABA system as the cause and effect in early development. Neurosci Biobehav Rev 2024; 161:105651. [PMID: 38579901 PMCID: PMC11081854 DOI: 10.1016/j.neubiorev.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.
Collapse
Affiliation(s)
- Irina Topchiy
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Mohbat
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | - Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Ziyi Zephyr Wang
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Elif Engin
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Khayretdinova M, Zakharov I, Pshonkovskaya P, Adamovich T, Kiryasov A, Zhdanov A, Shovkun A. Prediction of brain sex from EEG: using large-scale heterogeneous dataset for developing a highly accurate and interpretable ML model. Neuroimage 2024; 285:120495. [PMID: 38092156 DOI: 10.1016/j.neuroimage.2023.120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
This study presents a comprehensive examination of sex-related differences in resting-state electroencephalogram (EEG) data, leveraging two different types of machine learning models to predict an individual's sex. We utilized data from the Two Decades-Brainclinics Research Archive for Insights in Neurophysiology (TDBRAIN) EEG study, affirming that gender prediction can be attained with noteworthy accuracy. The best performing model achieved an accuracy of 85% and an ROC AUC of 89%, surpassing all prior benchmarks set using EEG data and rivaling the top-tier results derived from fMRI studies. A comparative analysis of LightGBM and Deep Convolutional Neural Network (DCNN) models revealed DCNN's superior performance, attributed to its ability to learn complex spatial-temporal patterns in the EEG data and handle large volumes of data effectively. Despite this, interpretability remained a challenge for the DCNN model. The LightGBM interpretability analysis revealed that the most important EEG features for accurate sex prediction were related to left fronto-central and parietal EEG connectivity. We also showed the role of both low (delta and theta) and high (beta and gamma) activity in the accurate sex prediction. These results, however, have to be approached with caution, because it was obtained from a dataset comprised largely of participants with various mental health conditions, which limits the generalizability of the results and necessitates further validation in future studies. . Overall, the study illuminates the potential of interpretable machine learning for sex prediction, alongside highlighting the importance of considering individual differences in prediction sex from brain activity.
Collapse
|
4
|
Kaltsouni E, Schmidt F, Zsido RG, Eriksson A, Sacher J, Sundström-Poromaa I, Sumner RL, Comasco E. Electroencephalography findings in menstrually-related mood disorders: A critical review. Front Neuroendocrinol 2024; 72:101120. [PMID: 38176542 DOI: 10.1016/j.yfrne.2023.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
The female reproductive years are characterized by fluctuations in ovarian hormones across the menstrual cycle, which have the potential to modulate neurophysiological and behavioral dynamics. Menstrually-related mood disorders (MRMDs) comprise cognitive-affective or somatic symptoms that are thought to be triggered by the rapid fluctuations in ovarian hormones in the luteal phase of the menstrual cycle. MRMDs include premenstrual syndrome (PMS), premenstrual dysphoric disorder (PMDD), and premenstrual exacerbation (PME) of other psychiatric disorders. Electroencephalography (EEG) non-invasively records in vivo synchronous activity from populations of neurons with high temporal resolution. The present overview sought to systematically review the current state of task-related and resting-state EEG investigations on MRMDs. Preliminary evidence indicates lower alpha asymmetry at rest being associated with MRMDs, while one study points to the effect being luteal-phase specific. Moreover, higher luteal spontaneous frontal brain activity (slow/fast wave ratio as measured by the delta/beta power ratio) has been observed in persons with MRMDs, while sleep architecture results point to potential circadian rhythm disturbances. In this review, we discuss the quality of study designs as well as future perspectives and challenges of supplementing the diagnostic and scientific toolbox for MRMDs with EEG.
Collapse
Affiliation(s)
- Elisavet Kaltsouni
- Department of Womeńs and Childreńs Health, Science for Life Laboratory, Uppsala University, Sweden
| | - Felix Schmidt
- Department of Womeńs and Childreńs Health, Science for Life Laboratory, Uppsala University, Sweden; Centre for Women's Mental Health during the Reproductive Lifespan, Uppsala University, 751 85 Uppsala, Sweden
| | - Rachel G Zsido
- Cognitive Neuroendocrinology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Department of Psychiatry, Clinical Neuroscience Laboratory for Sex Differences in the Brain, Massachusetts General Hospital, Harvard Medical School, USA
| | - Allison Eriksson
- Centre for Women's Mental Health during the Reproductive Lifespan, Uppsala University, 751 85 Uppsala, Sweden; Department of Womeńs and Childreńs Health, Uppsala University, Sweden
| | - Julia Sacher
- Cognitive Neuroendocrinology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Clinic of Cognitive Neurology, University of Leipzig, Germany
| | | | | | - Erika Comasco
- Department of Womeńs and Childreńs Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
5
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee J, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule lead enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569994. [PMID: 38106006 PMCID: PMC10723366 DOI: 10.1101/2023.12.04.569994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1β2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
|
6
|
Murphy RJ, Sumner R, Evans W, Ponton R, Ram S, Godfrey K, Forsyth A, Cavadino A, Krishnamurthy Naga V, Smith T, Hoeh NR, Menkes DB, Muthukumaraswamy S. Acute Mood-Elevating Properties of Microdosed Lysergic Acid Diethylamide in Healthy Volunteers: A Home-Administered Randomized Controlled Trial. Biol Psychiatry 2023; 94:511-521. [PMID: 36997080 DOI: 10.1016/j.biopsych.2023.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Microdosing psychedelic drugs is a widespread social phenomenon with diverse benefits claimed for mood and cognition. Randomized controlled trials have failed to support these claims, but the laboratory-based dosing in trials conducted to date may have limited ecological validity. METHODS Healthy male volunteers were randomized into lysergic acid diethylamide (LSD) (n = 40) and placebo (n = 40) groups and received 14 doses of either 10 μg LSD or an inactive placebo every 3 days for 6 weeks. First doses were given in a supervised laboratory setting, with other doses self-administered in a naturalistic setting. Results of safety data, blinding, daily questionnaires, expectancy, and pre-/postintervention psychometrics and cognitive tasks are presented here. RESULTS The most notable reported adverse event was treatment-related anxiety, which prompted the withdrawal of 4 participants from the LSD group. Daily questionnaires showed credible evidence (>99% posterior probability) of improved ratings of creativity, connectedness, energy, happiness, irritability, and wellness on dose days compared with nondose days, and these effects remained when controlling for preintervention expectancy. No questionnaire or cognitive task showed a credible change between baseline and 6-week assessment time points. CONCLUSIONS Microdosing LSD appears to be relatively safe in healthy adult men, notwithstanding a risk of anxiety. While microdosing elicited transient increases in scales associated with mood-elevating effects, it was not sufficient to promote enduring changes to overall mood or cognition in healthy adults. Future microdosing trials in clinical populations will require the use of active placebos to control for placebo effects and dose titration to adjust for interindividual variability in drug response.
Collapse
Affiliation(s)
- Robin J Murphy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rachael Sumner
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Rhys Ponton
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sanya Ram
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kate Godfrey
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Centre for Psychedelic Research, Department of Psychiatry, Imperial College London, London, England, UK
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alana Cavadino
- Epidemiology and Biostatistics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Venkat Krishnamurthy Naga
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Nicholas R Hoeh
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - David B Menkes
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Mockevičius A, Šveistytė K, Griškova-Bulanova I. Individual/Peak Gamma Frequency: What Do We Know? Brain Sci 2023; 13:792. [PMID: 37239264 PMCID: PMC10216206 DOI: 10.3390/brainsci13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the concept of individualized measures of electroencephalographic (EEG) activity has emerged. Gamma-band activity plays an important role in many sensory and cognitive processes. Thus, peak frequency in the gamma range has received considerable attention. However, peak or individual gamma frequency (IGF) is rarely used as a primary measure of interest; consequently, little is known about its nature and functional significance. With this review, we attempt to comprehensively overview available information on the functional properties of peak gamma frequency, addressing its relationship with certain processes and/or modulation by various factors. Here, we show that IGFs seem to be related to various endogenous and exogenous factors. Broad functional aspects that are related to IGF might point to the differences in underlying mechanisms. Therefore, research utilizing different types of stimulation for IGF estimation and covering several functional aspects in the same population is required. Moreover, IGFs span a wide range of frequencies (30-100 Hz). This could be partly due to the variability of methods used to extract the measures of IGF. In order to overcome this issue, further studies aiming at the optimization of IGF extraction would be greatly beneficial.
Collapse
Affiliation(s)
| | | | - Inga Griškova-Bulanova
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Altered visual cortex excitability in premenstrual dysphoric disorder: Evidence from magnetoencephalographic gamma oscillations and perceptual suppression. PLoS One 2022; 17:e0279868. [PMID: 36584199 PMCID: PMC9803314 DOI: 10.1371/journal.pone.0279868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by extreme mood shifts during the luteal phase of the menstrual cycle (MC) due to abnormal sensitivity to neurosteroids and unbalanced neural excitation/inhibition (E/I) ratio. We hypothesized that in women with PMDD in the luteal phase, these factors would alter the frequency of magnetoencephalographic visual gamma oscillations, affect modulation of their power by excitatory drive, and decrease perceptual spatial suppression. Women with PMDD and control women were examined twice-during the follicular and luteal phases of their MC. We recorded visual gamma response (GR) while modulating the excitatory drive by increasing the drift rate of the high-contrast grating (static, 'slow', 'medium', and 'fast'). Contrary to our expectations, GR frequency was not affected in women with PMDD in either phase of the MC. GR power suppression, which is normally associated with a switch from the 'optimal' for GR slow drift rate to the medium drift rate, was reduced in women with PMDD and was the only GR parameter that distinguished them from control participants specifically in the luteal phase and predicted severity of their premenstrual symptoms. Over and above the atypical luteal GR suppression, in both phases of the MC women with PMDD had abnormally strong GR facilitation caused by a switch from the 'suboptimal' static to the 'optimal' slow drift rate. Perceptual spatial suppression did not differ between the groups but decreased from the follicular to the luteal phase only in PMDD women. The atypical modulation of GR power suggests that neuronal excitability in the visual cortex is constitutively elevated in PMDD and that this E/I imbalance is further exacerbated during the luteal phase. However, the unaltered GR frequency does not support the hypothesis of inhibitory neuron dysfunction in PMDD.
Collapse
|
9
|
Gilfarb RA, Leuner B. GABA System Modifications During Periods of Hormonal Flux Across the Female Lifespan. Front Behav Neurosci 2022; 16:802530. [PMID: 35783228 PMCID: PMC9245048 DOI: 10.3389/fnbeh.2022.802530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The female lifespan is marked by periods of dramatic hormonal fluctuation. Changes in the ovarian hormones estradiol and progesterone, in addition to the progesterone metabolite allopregnanolone, are among the most significant and have been shown to have widespread effects on the brain. This review summarizes current understanding of alterations that occur within the GABA system during the major hormonal transition periods of puberty, the ovarian cycle, pregnancy and the postpartum period, as well as reproductive aging. The functional impacts of altered inhibitory activity during these times are also discussed. Lastly, avenues for future research are identified, which, if pursued, can broaden understanding of the GABA system in the female brain and potentially lead to better treatments for women experiencing changes in brain function at each of these hormonal transition periods.
Collapse
Affiliation(s)
- Rachel A. Gilfarb
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- *Correspondence: Benedetta Leuner,
| |
Collapse
|
10
|
Hepschke JL, Seymour RA, He W, Etchell A, Sowman PF, Fraser CL. Cortical oscillatory dysrhythmias in visual snow syndrome: a magnetoencephalography study. Brain Commun 2021; 4:fcab296. [PMID: 35169699 PMCID: PMC8833316 DOI: 10.1093/braincomms/fcab296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Visual snow refers to the persistent visual experience of static in the whole visual field of both eyes. It is often reported by patients with migraine and co-occurs with conditions such as tinnitus and tremor. The underlying pathophysiology of the condition is poorly understood. Previously, we hypothesized that visual snow syndrome may be characterized by disruptions to rhythmical activity within the visual system. To test this, data from 18 patients diagnosed with visual snow syndrome, and 16 matched controls, were acquired using magnetoencephalography. Participants were presented with visual grating stimuli, known to elicit decreases in alpha-band (8–13 Hz) power and increases in gamma-band power (40–70 Hz). Data were mapped to source-space using a beamformer. Across both groups, decreased alpha power and increased gamma power localized to early visual cortex. Data from the primary visual cortex were compared between groups. No differences were found in either alpha or gamma peak frequency or the magnitude of alpha power, p > 0.05. However, compared with controls, our visual snow syndrome cohort displayed significantly increased primary visual cortex gamma power, p = 0.035. This new electromagnetic finding concurs with previous functional MRI and PET findings, suggesting that in visual snow syndrome, the visual cortex is hyperexcitable. The coupling of alpha-phase to gamma amplitude within the primary visual cortex was also quantified. Compared with controls, the visual snow syndrome group had significantly reduced alpha–gamma phase–amplitude coupling, p < 0.05, indicating a potential excitation–inhibition imbalance in visual snow syndrome, as well as a potential disruption to top-down ‘noise-cancellation’ mechanisms. Overall, these results suggest that rhythmical brain activity in the primary visual cortex is both hyperexcitable and disorganized in visual snow syndrome, consistent with this being a condition of thalamocortical dysrhythmia.
Collapse
Affiliation(s)
- Jenny L. Hepschke
- Save Sight Institute, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Department of Ophthalmology, Prince of Wales Hospital, High Street, Randwick, NSW, Australia
| | - Robert A. Seymour
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Wei He
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Andrew Etchell
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Paul F. Sowman
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Clare L. Fraser
- Save Sight Institute, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Macquarie Ophthalmology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
11
|
Saxena N, Muthukumaraswamy SD, Richmond L, Babic A, Singh KD, Hall JE, Wise RG, Shaw AD. A comparison of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation on visual and motor cortical oscillations, using magnetoencephalography. Neuroimage 2021; 245:118659. [PMID: 34767940 PMCID: PMC9227747 DOI: 10.1016/j.neuroimage.2021.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, an α2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propofol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields (VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi-sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects and may be used to explore mechanisms of other anaesthetic drugs on human consciousness.
Collapse
Affiliation(s)
- Neeraj Saxena
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Anaesthetics, Intensive Care and Pain Medicine, Cwm Taf Morgannwg University Health Board, Llantrisant CF72 8XR, United Kingdom.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand; School of Psychology, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand
| | - Lewys Richmond
- Department of Anaesthetics, Morriston Hospital, Swansea, SA6 6NL, United Kingdom
| | - Adele Babic
- Department of Anaesthetics, Royal Gwent Hospital, Newport, NP20 2UB, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Judith E Hall
- Department of Anaesthetics, Intensive Care and Pain Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XW, United Kingdom
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Institute for Advanced Biomedical Technologies, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy
| | - Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Psychology, University of Exeter, United Kingdom
| |
Collapse
|
12
|
Effects of Ketamine and Midazolam on Simultaneous EEG/fMRI Data During Working Memory Processes. Brain Topogr 2021; 34:863-880. [PMID: 34642836 DOI: 10.1007/s10548-021-00876-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
Reliable measures of cognitive brain activity from functional neuroimaging techniques may provide early indications of efficacy in clinical trials. Functional magnetic resonance imaging and electroencephalography provide complementary spatiotemporal information and simultaneous recording of these two modalities can remove inter-session drug response and environment variability. We sought to assess the effects of ketamine and midazolam on simultaneous electrophysiological and hemodynamic recordings during working memory (WM) processes. Thirty participants were included in a placebo-controlled, three-way crossover design with ketamine and midazolam. Compared to placebo, ketamine administration attenuated theta power increases and alpha power decreases and midazolam attenuated low beta band decreases to increasing WM load. Additionally, ketamine caused larger blood-oxygen-dependent (BOLD) signal increases in the supplementary motor area and angular gyrus, and weaker deactivations of the default mode network (DMN), whereas no difference was found between midazolam and placebo. Ketamine administration caused positive temporal correlations between frontal-midline theta (fm-theta) power and the BOLD signal to disappear and attenuated negative correlations. However, the relationship between fm-theta and the BOLD signal from DMN areas was maintained in some participants during ketamine administration, as increasing theta strength was associated with stronger BOLD signal reductions in these areas. The presence of, and ability to manipulate, both positive and negative associations between the BOLD signal and fm-theta suggest the presence of multiple fm-theta components involved in WM processes, with ketamine administration disrupting one or more of these theta-linked WM strategies.
Collapse
|
13
|
Xie J, Lu Y, Li J, Zhang W. Alpha neural oscillation of females in the luteal phase is sensitive to high risk during sequential risk decisions. Behav Brain Res 2021; 413:113427. [PMID: 34182010 DOI: 10.1016/j.bbr.2021.113427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/27/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Risk taking is a non-negligible component in decision-making. Previous behavioral studies have demonstrated that female's risk decisions vary along with their menstrual cycle phases. However, little is known how females' neural processes of risk stimuli change in different menstrual cycle phases. To address this, the present study adopted a sequential economic risk-taking task and EEG technique. Thirty eligible female participants completed the task twice with EEG recordings, once in the late follicular phase and once in the midluteal phase, separately. We found that the risk stimuli induced an evident frontal N1 in the early time window of 90-180 ms. The results on N1 showed no significant difference between two phases for low- and medium-risk stimuli; whereas, for high-risk stimuli, females in midluteal phase exhibited a significantly larger N1 than that in late follicular phase. Further, by exploiting time-frequency transformation, we observed a pronounced low alpha (∼8 Hz) activity in frontal area from stimuli onset to 175 ms. The results indicated that, only for high-risk stimuli, the alpha power was significantly greater in midluteal phase than that in late follicular phase. Our neural results demonstrated a stronger early neural response to high-risk stimuli of females in midluteal phase, which suggests women are more sensitive to high risk in midluteal than in late follicular phase.
Collapse
Affiliation(s)
- Jiajia Xie
- School of Psychology and Cognitive Science, East China Normal University, China
| | - Yang Lu
- School of Psychology and Cognitive Science, East China Normal University, China
| | - Jianhua Li
- Department of Psychology, Faculty of Social Science, University of Macau, China
| | - Weidong Zhang
- School of Psychology and Cognitive Science, East China Normal University, China.
| |
Collapse
|
14
|
Giddey T, Thomas N, Hudaib AR, Thomas EH, Le J, Gray P, Gurvich C. Peak saccadic eye velocity across menstrual phases in naturally cycling women; A pilot study. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2020; 4:100009. [PMID: 35755630 PMCID: PMC9216255 DOI: 10.1016/j.cpnec.2020.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022] Open
Abstract
Peak saccadic eye velocity (pSEV) has been investigated in studies that characterise the pathophysiology of menstrual cycle related mood disorders, such as premenstrual dysphoric disorder (PMDD). pSEV is a stable and sensitive measure of gamma-aminobutyric acid A (GABAA) receptor function. Dysregulation of the GABA pathway has been associated with the onset of PMDD. Despite a growing number of studies utilising pSEV as an outcome measure in interventional drug studies for menstrual cycle related mood disorders, there are no reported studies that have investigated whether pSEV is sensitive to hormone fluctuations across the natural menstrual cycle. To address this gap, this pilot study aimed to characterise pSEV in women across the menstrual cycle. Participants were monitored across two menstrual cycles and saccadic eye movements were measured in both luteal and follicular phases. Seven participants completed the full study and were included in the final analysis. Results revealed luteal phase pSEV was significantly less than follicular phase pSEV. This finding is novel and forms a stepping-stone for further understanding the associations between menstrual hormone profiles and GABAA receptors. Peak saccadic eye velocity is used as a proxy measure of GABAA function. Peak saccadic eye velocity was measured in the follicular and luteal phases of the menstrual cycle. Median peak saccadic eye velocity was significantly lower in luteal phase. Saccadic eye velocity is sensitive to hormone fluctuations across menstrual cycle.
Collapse
|
15
|
Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone - Friend or foe? Front Neuroendocrinol 2020; 59:100856. [PMID: 32730861 DOI: 10.1016/j.yfrne.2020.100856] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Estradiol is the "prototypic" sex hormone of women. Yet, women have another sex hormone, which is often disregarded: Progesterone. The goal of this article is to provide a comprehensive review on progesterone, and its metabolite allopregnanolone, emphasizing three key areas: biological properties, main functions, and effects on mood in women. Recent years of intensive research on progesterone and allopregnanolone have paved the way for new treatment of postpartum depression. However, treatment for premenstrual syndrome and premenstrual dysphoric disorder as well as contraception that women can use without risking mental health problems are still needed. As far as progesterone is concerned, we might be dealing with a two-edged sword: while its metabolite allopregnanolone has been proven useful for treatment of PPD, it may trigger negative symptoms in women with PMS and PMDD. Overall, our current knowledge on the beneficial and harmful effects of progesterone is limited and further research is imperative.
Collapse
Affiliation(s)
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Eileen Luders
- School of Psychology, University of Auckland, New Zealand; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
16
|
Murty DV, Manikandan K, Santosh Kumar W, Garani Ramesh R, Purokayastha S, Javali M, Prahalada Rao N, Ray S. Gamma oscillations weaken with age in healthy elderly in human EEG. Neuroimage 2020. [PMID: 32276055 PMCID: PMC7299665 DOI: 10.1016/j.neuroimage.2020.11682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gamma rhythms (~20-70 Hz) are abnormal in mental disorders such as autism and schizophrenia in humans, and Alzheimer's disease (AD) models in rodents. However, the effect of normal aging on these oscillations is unknown, especially for elderly subjects in whom AD is most prevalent. In a first large-scale (236 subjects; 104 females) electroencephalogram (EEG) study on gamma oscillations in elderly subjects (aged 50-88 years), we presented full-screen visual Cartesian gratings that induced two distinct gamma oscillations (slow: 20-34 Hz and fast: 36-66 Hz). Power decreased with age for gamma, but not alpha (8-12 Hz). Reduction was more salient for fast gamma than slow. Center frequency also decreased with age for both gamma rhythms. The results were independent of microsaccades, pupillary reactivity to stimulus, and variations in power spectral density with age. Steady-state visual evoked potentials (SSVEPs) at 32 Hz also reduced with age. These results are crucial for developing gamma/SSVEP-based biomarkers of cognitive decline in elderly.
Collapse
Affiliation(s)
| | | | | | | | - Simran Purokayastha
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Mahendra Javali
- MS Ramaiah Medical College & Memorial Hospital, Bangalore, 560054, India
| | - Naren Prahalada Rao
- National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India,Corresponding author. (S. Ray)
| |
Collapse
|
17
|
Murty DV, Manikandan K, Kumar WS, Ramesh RG, Purokayastha S, Javali M, Rao NP, Ray S. Gamma oscillations weaken with age in healthy elderly in human EEG. Neuroimage 2020; 215:116826. [DOI: 10.1016/j.neuroimage.2020.116826] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022] Open
|
18
|
Hill RM, Boto E, Rea M, Holmes N, Leggett J, Coles LA, Papastavrou M, Everton SK, Hunt BAE, Sims D, Osborne J, Shah V, Bowtell R, Brookes MJ. Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 2020; 219:116995. [PMID: 32480036 PMCID: PMC8274815 DOI: 10.1016/j.neuroimage.2020.116995] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
Magnetoencephalography (MEG) is a powerful technique for functional
neuroimaging, offering a non-invasive window on brain electrophysiology. MEG
systems have traditionally been based on cryogenic sensors which detect the
small extracranial magnetic fields generated by synchronised current in neuronal
assemblies, however, such systems have fundamental limitations. In recent years,
non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers
(OPMs), in combination with novel techniques for accurate background magnetic
field control, have promised to lift those restrictions offering an adaptable,
motion-robust MEG system, with improved data quality, at reduced cost. However,
OPM-MEG remains a nascent technology, and whilst viable systems exist, most
employ small numbers of sensors sited above targeted brain regions. Here,
building on previous work, we construct a wearable OPM-MEG system with
‘whole-head’ coverage based upon commercially available OPMs, and
test its capabilities to measure alpha, beta and gamma oscillations. We design
two methods for OPM mounting; a flexible (EEG-like) cap and rigid
(additively-manufactured) helmet. Whilst both designs allow for high quality
data to be collected, we argue that the rigid helmet offers a more robust option
with significant advantages for reconstruction of field data into 3D images of
changes in neuronal current. Using repeat measurements in two participants, we
show signal detection for our device to be highly robust. Moreover, via
application of source-space modelling, we show that, despite having 5 times
fewer sensors, our system exhibits comparable performance to an established
cryogenic MEG device. While significant challenges still remain, these
developments provide further evidence that OPM-MEG is likely to facilitate a
step change for functional neuroimaging.
Collapse
Affiliation(s)
- Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Laurence A Coles
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Manolis Papastavrou
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Sarah K Everton
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Benjamin A E Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Dominic Sims
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
19
|
Rogala J, Kublik E, Krauz R, Wróbel A. Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance. Sci Rep 2020; 10:5064. [PMID: 32193502 PMCID: PMC7081192 DOI: 10.1038/s41598-020-61866-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence indicates that resting-state EEG activity is related to various cognitive functions. To trace physiological underpinnings of this relationship, we investigated EEG and behavioral performance of 36 healthy adults recorded at rest and during visual attention tasks: visual search and gun shooting. All measures were repeated two months later to determine stability of the results. Correlation analyses revealed that within the range of 2–45 Hz, at rest, beta-2 band power correlated with the strength of frontoparietal connectivity and behavioral performance in both sessions. Participants with lower global beta-2 resting-state power (gB2rest) showed weaker frontoparietal connectivity and greater capacity for its modifications, as indicated by changes in phase correlations of the EEG signals. At the same time shorter reaction times and improved shooting accuracy were found, in both test and retest, in participants with low gB2rest compared to higher gB2rest values. We posit that weak frontoparietal connectivity permits flexible network reconfigurations required for improved performance in everyday tasks.
Collapse
Affiliation(s)
- Jacek Rogala
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Mokra 17 street, Kajetany, 05-830, Nadarzyn, Poland.
| | - Ewa Kublik
- Instytut Biologii Doświadczalnej im. Marcelego Nenckiego, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Rafał Krauz
- Military University of Technology, Physical Education, 3 gen, Sylwestra Kaliskiego street, 00-908, Warsaw, Poland
| | - Andrzej Wróbel
- Instytut Biologii Doświadczalnej im. Marcelego Nenckiego, 3 Pasteur Street, 02-093, Warsaw, Poland.,Department of Epistemology, Institute of Philosophy, University of Warsaw, 3 Krakowskie Przedmiescie street, 00-927, Warszawa, Poland
| |
Collapse
|
20
|
Shaw AD, Knight L, Freeman TCA, Williams GM, Moran RJ, Friston KJ, Walters JTR, Singh KD. Oscillatory, Computational, and Behavioral Evidence for Impaired GABAergic Inhibition in Schizophrenia. Schizophr Bull 2020; 46:345-353. [PMID: 31219602 PMCID: PMC7442335 DOI: 10.1093/schbul/sbz066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dysconnection hypothesis of schizophrenia (SZ) proposes that psychosis is best understood in terms of aberrant connectivity. Specifically, it suggests that dysconnectivity arises through aberrant synaptic modulation associated with deficits in GABAergic inhibition, excitation-inhibition balance and disturbances of high-frequency oscillations. Using a computational model combined with a graded-difficulty visual orientation discrimination paradigm, we demonstrate that, in SZ, perceptual performance is determined by the balance of excitation-inhibition in superficial cortical layers. Twenty-eight individuals with a DSM-IV diagnosis of SZ, and 30 age- and gender-matched healthy controls participated in a psychophysics orientation discrimination task, a visual grating magnetoencephalography (MEG) recording, and a magnetic resonance spectroscopy (MRS) scan for GABA. Using a neurophysiologically informed model, we quantified group differences in GABA, gamma measures, and the predictive validity of model parameters for orientation discrimination in the SZ group. MEG visual gamma frequency was reduced in SZ, with lower peak frequency associated with more severe negative symptoms. Orientation discrimination performance was impaired in SZ. Dynamic causal modeling of the MEG data showed that local synaptic connections were reduced in SZ and local inhibition correlated negatively with the severity of negative symptoms. The effective connectivity between inhibitory interneurons and superficial pyramidal cells predicted orientation discrimination performance within the SZ group; consistent with graded, behaviorally relevant, disease-related changes in local GABAergic connections. Occipital GABA levels were significantly reduced in SZ but did not predict behavioral performance or oscillatory measures. These findings endorse the importance, and behavioral relevance, of GABAergic synaptic disconnection in schizophrenia that underwrites excitation-inhibition balance.
Collapse
Affiliation(s)
- Alexander D Shaw
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Laura Knight
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tom C A Freeman
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Gemma M Williams
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | | | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Krish D Singh
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK,To whom correspondence should be addressed; CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK; tel: +44-(0)-2920-874690, fax: +44 (0)29 2087 4679, e-mail:
| |
Collapse
|
21
|
Forsyth A, McMillan R, Campbell D, Malpas G, Maxwell E, Sleigh J, Dukart J, Hipp J, Muthukumaraswamy SD. Modulation of simultaneously collected hemodynamic and electrophysiological functional connectivity by ketamine and midazolam. Hum Brain Mapp 2019; 41:1472-1494. [PMID: 31808268 PMCID: PMC7267972 DOI: 10.1002/hbm.24889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
The pharmacological modulation of functional connectivity in the brain may underlie therapeutic efficacy for several neurological and psychiatric disorders. Functional magnetic resonance imaging (fMRI) provides a noninvasive method of assessing this modulation, however, the indirect nature of the blood‐oxygen level dependent signal restricts the discrimination of neural from physiological contributions. Here we followed two approaches to assess the validity of fMRI functional connectivity in developing drug biomarkers, using simultaneous electroencephalography (EEG)/fMRI in a placebo‐controlled, three‐way crossover design with ketamine and midazolam. First, we compared seven different preprocessing pipelines to determine their impact on the connectivity of common resting‐state networks. Independent components analysis (ICA)‐denoising resulted in stronger reductions in connectivity after ketamine, and weaker increases after midazolam, than pipelines employing physiological noise modelling or averaged signals from cerebrospinal fluid or white matter. This suggests that pipeline decisions should reflect a drug's unique noise structure, and if this is unknown then accepting possible signal loss when choosing extensive ICA denoising pipelines could engender more confidence in the remaining results. We then compared the temporal correlation structure of fMRI to that derived from two connectivity metrics of EEG, which provides a direct measure of neural activity. While electrophysiological estimates based on the power envelope were more closely aligned to BOLD signal connectivity than those based on phase consistency, no significant relationship between the change in electrophysiological and hemodynamic correlation structures was found, implying caution should be used when making cross‐modal comparisons of pharmacologically‐modulated functional connectivity.
Collapse
Affiliation(s)
- Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesiology Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Sumner RL, McMillan R, Spriggs MJ, Campbell D, Malpas G, Maxwell E, Deng C, Hay J, Ponton R, Kirk IJ, Sundram F, Muthukumaraswamy SD. Ketamine Enhances Visual Sensory Evoked Potential Long-term Potentiation in Patients With Major Depressive Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:45-55. [PMID: 31495712 DOI: 10.1016/j.bpsc.2019.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The rapid-acting clinical effects of ketamine as a novel treatment for depression along with its complex pharmacology have made it a growing research area. One of the key mechanistic hypotheses for how ketamine works to alleviate depression is by enhancing long-term potentiation (LTP)-mediated neural plasticity. METHODS The objective of this study was to investigate the plasticity hypothesis in 30 patients with depression noninvasively using visual LTP as an index of neural plasticity. In a double-blind, active placebo-controlled crossover trial, electroencephalography-based LTP was recorded approximately 3 to 4 hours following a single 0.44-mg/kg intravenous dose of ketamine or active placebo (1.7 ng/mL remifentanil) in 30 patients. Montgomery-Åsberg Depression Rating Scale scores were used to measure clinical symptoms. Visual LTP was measured as a change in the visually evoked potential following high-frequency visual stimulation. Dynamic causal modeling investigated the underlying neural architecture of visual LTP and the contribution of ketamine. RESULTS Montgomery-Åsberg Depression Rating Scale scores revealed that 70% of participants experienced 50% or greater reduction in their depression symptoms within 1 day of receiving ketamine. LTP was demonstrated in the N1 (p = .00002) and P2 (p = 2.31 × 10-11) visually evoked components. Ketamine specifically enhanced P2 potentiation compared with placebo (p = .017). Dynamic causal modeling replicated the recruitment of forward and intrinsic connections for visual LTP and showed complementary effects of ketamine indicative of downstream and proplasticity modulation. CONCLUSIONS This study provides evidence that LTP-based neural plasticity increases within the time frame of the antidepressant effects of ketamine in humans and supports the hypothesis that changes to neural plasticity may be key to the antidepressant properties of ketamine.
Collapse
Affiliation(s)
- Rachael L Sumner
- School of Pharmacy, University of Auckland, Auckland, New Zealand.
| | - Rebecca McMillan
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Meg J Spriggs
- School of Psychology, University of Auckland, Auckland, New Zealand; Brain Research New Zealand, Aukland, New Zealand; Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - Doug Campbell
- Department of Anaesthesia and Perioperative Medicine, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesia and Perioperative Medicine, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesia and Perioperative Medicine, Auckland District Health Board, Auckland, New Zealand
| | - Carolyn Deng
- Department of Anaesthesia and Perioperative Medicine, Auckland District Health Board, Auckland, New Zealand
| | - John Hay
- Department of Anaesthesia and Perioperative Medicine, Auckland District Health Board, Auckland, New Zealand
| | - Rhys Ponton
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Ian J Kirk
- School of Psychology, University of Auckland, Auckland, New Zealand; Brain Research New Zealand, Aukland, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
23
|
Thériault RK, Perreault ML. Hormonal regulation of circuit function: sex, systems and depression. Biol Sex Differ 2019; 10:12. [PMID: 30819248 PMCID: PMC6394099 DOI: 10.1186/s13293-019-0226-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2019] [Indexed: 01/10/2023] Open
Abstract
Major depressive disorder (MDD) is a debilitating chronic illness that is two times more prevalent in women than in men. The mechanisms associated with the increased female susceptibility to depression remain poorly characterized. Aberrant neuronal oscillatory activity within the putative depression network is an emerging mechanism underlying MDD. However, innate sex differences in network activity and its contribution to depression vulnerability have not been well described. In this review, current evidence of sex differences in neuronal oscillatory activity, including the influence of sex hormones and female cycling, will first be described followed by evidence of disrupted neuronal circuit function in MDD and the effects of antidepressant treatment. Lastly, current knowledge of sex differences in MDD-associated aberrant circuit function and oscillatory activity will be highlighted, with an emphasis on the role of sex steroids and female cycling. Collectively, it is clear that there are significant gaps in the literature regarding innate and pathologically associated sex differences in network activity and that the elucidation of these differences is invaluable to our understanding of sex-specific vulnerabilities and therapies for MDD.
Collapse
Affiliation(s)
- Rachel-Karson Thériault
- Department of Molecular and Cellular Biology, University of Guelph (ON), 50 Stone Rd. E, Guelph, Ontario N1G 2W1 Canada
- Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Canada
| | - Melissa L. Perreault
- Department of Molecular and Cellular Biology, University of Guelph (ON), 50 Stone Rd. E, Guelph, Ontario N1G 2W1 Canada
- Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Canada
| |
Collapse
|
24
|
Clemens AM, Lenschow C, Beed P, Li L, Sammons R, Naumann RK, Wang H, Schmitz D, Brecht M. Estrus-Cycle Regulation of Cortical Inhibition. Curr Biol 2019; 29:605-615.e6. [PMID: 30744972 DOI: 10.1016/j.cub.2019.01.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
Female mammals experience cyclical changes in sexual receptivity known as the estrus cycle. Little is known about how estrus affects the cortex, although alterations in sensation, cognition and the cyclical occurrence of epilepsy suggest brain-wide processing changes. We performed in vivo juxtacellular and whole-cell recordings in somatosensory cortex of female rats and found that the estrus cycle potently altered cortical inhibition. Fast-spiking interneurons were strongly activated with social facial touch and varied their ongoing activity with the estrus cycle and estradiol in ovariectomized females, while regular-spiking excitatory neurons did not change. In situ hybridization for estrogen receptor β (Esr2) showed co-localization with parvalbumin-positive (PV+) interneurons in deep cortical layers, mirroring the laminar distribution of our physiological findings. The fraction of neurons positive for estrogen receptor β (Esr2) and PV co-localization (Esr2+PV+) in cortical layer V was increased in proestrus. In vivo and in vitro experiments confirmed that estrogen acts locally to increase fast-spiking interneuron excitability through an estrogen-receptor-β-dependent mechanism.
Collapse
Affiliation(s)
- Ann M Clemens
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany
| | - Constanze Lenschow
- Champalimaud Center for the Unknown, Neurosciences, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Lanxiang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Rosanna Sammons
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Robert K Naumann
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Hong Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
25
|
Forsyth A, McMillan R, Campbell D, Malpas G, Maxwell E, Sleigh J, Dukart J, Hipp JF, Muthukumaraswamy SD. Comparison of local spectral modulation, and temporal correlation, of simultaneously recorded EEG/fMRI signals during ketamine and midazolam sedation. Psychopharmacology (Berl) 2018; 235:3479-3493. [PMID: 30426183 DOI: 10.1007/s00213-018-5064-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES The identification of biomarkers of drug action can be supported by non-invasive brain imaging techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), with simultaneous collection plausibly overcoming the limitations of either modality alone. Despite this, few studies have assessed the feasibility and utility of recording simultaneous EEG/fMRI in a drug study. METHODS We used simultaneous EEG/fMRI to assess the modulation of neural activity by ketamine and midazolam, in a placebo-controlled, single-blind, three-way cross-over design. Specifically, we analysed the sensitivity and direction of the spectral effects of each modality and the temporal correlations between the modulations of power of the common EEG bands and the blood-oxygen-level-dependent (BOLD) signal. RESULTS AND CONCLUSIONS Demonstrating feasibility, local spectral effects were similar to those found in previous non-simultaneous EEG and fMRI studies. Ketamine administration resulted in a widespread reduction of BOLD fractional amplitude of low frequency fluctuations (fALFF) and a diverse pattern of effects in the different EEG bands. Midazolam increased fALFF in occipital, parietal, and temporal areas, and frontal delta and beta EEG power. While EEG spectra were more sensitive to pharmacological modulations than the fALFF bands, there was no clear spatial relationship between the two modalities. Additionally, ketamine modulated the temporal correlation strengths between the theta EEG band and the BOLD signal, whereas midazolam altered temporal correlations with the alpha and beta bands. Taken together, these results demonstrate the utility of simultaneous recording: each modality provides unique insights, and combinatorial analyses elicit more information than separate recordings.
Collapse
Affiliation(s)
- Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juergen Dukart
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand.
| |
Collapse
|
26
|
Sumner RL, Spriggs MJ, McMillan RL, Sundram F, Kirk IJ, Muthukumaraswamy SD. Neural plasticity is modified over the human menstrual cycle: Combined insight from sensory evoked potential LTP and repetition suppression. Neurobiol Learn Mem 2018; 155:422-434. [PMID: 30172951 DOI: 10.1016/j.nlm.2018.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 01/18/2023]
Abstract
In healthy women, fluctuations in hormones including progesterone and oestradiol lead to functional changes in the brain over the course of each menstrual cycle. Though considerable attention has been directed towards understanding changes in human cognition over the menstrual cycle, changes in underlying processes such as neural plasticity have largely only been studied in animals. In this study we explored predictive coding and repetition suppression via the roving mismatch negativity paradigm as a model of short-term plasticity (Garrido, Kilner, Kiebel, et al., 2009), and Hebbian learning via visual sensory long-term potentiation (LTP) as a model of long-term plasticity (Teyler et al., 2005). Electroencephalography (EEG) was recorded in 20 females during their early follicular and mid-luteal phases. Event-related potential (ERP) analyses were complemented with dynamic causal modelling (DCM) to characterise changes in the underlying neural architecture. More sustained variability in the ERP response to a change in tone during the luteal phase are interpreted as a delayed habituation of the P3a component in the luteal relative to the follicular phase. The additional increased forward connection strength over tone repetitions compared to the follicular phase suggests that, in this phase, females may be less efficient when processing deviations from predicted sensory input (error). In contrast, there appears to be no reliable change in sensory LTP. This suggests that predictive coding, but not Hebbian plasticity is modified in the mid-luteal compared to the follicular phase, at least at the days of the menstrual cycle tested. This finding implicates the human menstrual cycle in complex changes in neural plasticity and provides further evidence for the importance of considering the menstrual cycle when including females in electrophysiological research.
Collapse
Affiliation(s)
- R L Sumner
- School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| | - M J Spriggs
- School of Psychology, The University of Auckland, Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | - R L McMillan
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - F Sundram
- Department of Psychological Medicine, The University of Auckland, Auckland, New Zealand
| | - I J Kirk
- School of Psychology, The University of Auckland, Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | | |
Collapse
|
27
|
Sumner RL, McMillan RL, Shaw AD, Singh KD, Sundram F, Muthukumaraswamy SD. Peak visual gamma frequency is modified across the healthy menstrual cycle. Hum Brain Mapp 2018; 39:3187-3202. [PMID: 29665216 PMCID: PMC6055613 DOI: 10.1002/hbm.24069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Fluctuations in gonadal hormones over the course of the menstrual cycle are known to cause functional brain changes and are thought to modulate changes in the balance of cortical excitation and inhibition. Animal research has shown this occurs primarily via the major metabolite of progesterone, allopregnanolone, and its action as a positive allosteric modulator of the GABAA receptor. Our study used EEG to record gamma oscillations induced in the visual cortex using stationary and moving gratings. Recordings took place during twenty females' mid-luteal phase when progesterone and estradiol are highest, and early follicular phase when progesterone and estradiol are lowest. Significantly higher (∼5 Hz) gamma frequency was recorded during the luteal compared to the follicular phase for both stimuli types. Using dynamic causal modeling, these changes were linked to stronger self-inhibition of superficial pyramidal cells in the luteal compared to the follicular phase. In addition, the connection from inhibitory interneurons to deep pyramidal cells was found to be stronger in the follicular compared to the luteal phase. These findings show that complex functional changes in synaptic microcircuitry occur across the menstrual cycle and that menstrual cycle phase should be taken into consideration when including female participants in research into gamma-band oscillations.
Collapse
Affiliation(s)
- Rachael L. Sumner
- School of PsychologyThe University of AucklandAuckland1142New Zealand
| | | | | | - Krish D. Singh
- CUBRIC, School of PsychologyCardiff UniversityCardiffCF24 4HQUK
| | - Fred Sundram
- Department of Psychological MedicineThe University of AucklandAuckland1142New Zealand
| | | |
Collapse
|