1
|
Wang L, Wang L, Wang Z, Zhao H, Wu J, Gao F, Tang H. Efficacy observation of combined transcutaneous vagus nerve stimulation and transcranial direct current stimulation on gait in 169 subacute stroke patients. J Rehabil Med 2024; 56:jrm40348. [PMID: 39508575 PMCID: PMC11558862 DOI: 10.2340/jrm.v56.40348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/03/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE To investigate the combined effect of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation on improving lower limb function in stroke patients. DESIGN Randomized controlled trial. SUBJECTS/PATIENTS Subacute stroke patients. METHODS 169 post-stroke hemiplegia patients were randomly divided into 4 groups (control, transcranial direct current stimulation, transcutaneous auricular vagus nerve stimulation, and transcutaneous auricular vagus nerve stimulation combined with transcranial direct current stimulation) and evaluated using the Fugl-Meyer Assessment-Lower Extremity (FMA-LL), Timed Up-and-Go (TUG) test, Modified Barthel Index (MBI), Berg Balance Scale (BBS), gait parameters, and surface electromyography (sEMG). RESULTS Significant improvements in FMA-LL, MBI, BBS, TUG, gait parameters, and sEMG were noted in the intervention groups compared with the control, with the transcutaneous auricular vagus nerve stimulation combined with transcranial direct current stimulation group showing the most pronounced improvements. Differences in some outcomes were also notable between the transcutaneous auricular vagus nerve stimulation and transcranial direct current stimulation groups. CONCLUSION The combination of transcutaneous auricular vagus nerve stimulation and transcranial direct current stimulation effectively enhances gait, balance, and daily living activities in subacute stroke patients. These benefits are likely due to transcutaneous auricular vagus nerve stimulation activating the solitary and trigeminal nuclei and transcranial direct current stimulation stimulating the motor cortex. Wearable gait analysis systems and electromyography are valuable in clinical gait assessment for these patients.
Collapse
Affiliation(s)
- Litong Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China; Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Likai Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hongyu Zhao
- Lab of Intelligent System, School of Control and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Jingyi Wu
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Rehabilitation Medicine Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hong Tang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
2
|
Zhou Y, Zhai H, Wei H. Acute Effects of Transcranial Direct Current Stimulation Combined with High-Load Resistance Exercises on Repetitive Vertical Jump Performance and EEG Characteristics in Healthy Men. Life (Basel) 2024; 14:1106. [PMID: 39337890 PMCID: PMC11433315 DOI: 10.3390/life14091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive technique known to enhance athletic performance metrics such as vertical jump and lower limb strength. However, it remains unclear whether combining tDCS with the post-activation effects of high-load resistance training can further improve lower limb performance. OBJECTIVE This study investigated the synergistic effects of tDCS and high-load resistance training, using electroencephalography to explore changes in the motor cortex and vertical jump dynamics. METHODS Four experiments were conducted involving 29 participants. Each experiment included tDCS, high-load resistance training, tDCS combined with high-load resistance training, and a control condition. During the tDCS session, participants received 20 min of central stimulation using a Halo Sport 2 headset, while the high-load resistance training session comprised five repetitions of a 90% one-repetition maximum weighted half squat. No intervention was administered in the control group. Electroencephalography tests were conducted before and after each intervention, along with the vertical jump test. RESULTS The combination of tDCS and high-load resistance training significantly increased jump height (p < 0.05) compared to tDCS or high-load resistance training alone. As for electroencephalography power, tDCS combined with high-load resistance training significantly impacted the percentage of α-wave power in the frontal lobe area (F3) of the left hemisphere (F = 6.33, p < 0.05). In the temporal lobe area (T3) of the left hemisphere, tDCS combined with high-load resistance training showed a significant interaction effect (F = 6.33, p < 0.05). For β-wave power, tDCS showed a significant main effect in the frontal pole area (Fp1) of the left hemisphere (F = 17.65, p < 0.01). In the frontal lobe area (F3) of the left hemisphere, tDCS combined with high-load resistance training showed a significant interaction effect (F = 7.53, p < 0.05). The tDCS combined with high-load resistance training intervention also resulted in higher β-wave power in the parietal lobe area (P4) and the temporal lobe area (T4) (p < 0.05). CONCLUSIONS The findings suggest that combining transcranial direct current stimulation (tDCS) and high-load resistance training significantly enhances vertical jump performance compared to either intervention alone. This improvement is associated with changes in the α-wave and β-wave power in specific brain regions, such as the frontal and temporal lobes. Further research is needed to explore the mechanisms and long-term effects of this combined intervention.
Collapse
Affiliation(s)
- Yuping Zhou
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
- Department of Public Education, Zhejiang College of Construction, Hangzhou 311231, China
| | - Haiting Zhai
- School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China
- School of Sports Coaching, Beijing Sport University, Beijing 100084, China
| | - Hongwen Wei
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
3
|
Kong X, Lyu W, Lin X, Feng H, Xu L, Li C, Sun X, Lin C, Li J, Wei P. Transcranial direct current stimulation enhances the protective effect of isoflurane preconditioning on cerebral ischemia/reperfusion injury: A new mechanism associated with the nuclear protein Akirin2. CNS Neurosci Ther 2024; 30:e70033. [PMID: 39267282 PMCID: PMC11393012 DOI: 10.1111/cns.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
AIMS Ischemic stroke is a major cause of disability and mortality worldwide. Transcranial direct current stimulation (tDCS) and isoflurane (ISO) preconditioning exhibit neuroprotective properties. However, it remains unclear whether tDCS enhances the protective effect of ISO preconditioning on ischemic stroke, and the underlying mechanisms are yet to be clarified. METHOD A model of middle cerebral artery occlusion (MCAO), a rat ischemia-reperfusion (I/R) injury model, and an in vitro oxygen-glucose deprivation/re-oxygenation (O/R) model of ischemic injury were developed. ISO preconditioning and tDCS were administered daily for 7 days before MCAO modeling. Triphenyltetrazolium chloride staining, modified neurological severity score, and hanging-wire test were conducted to assess infarct volume and neurological outcomes. Untargeted metabolomic experiments, adeno-associated virus, lentiviral vectors, and small interfering RNA techniques were used to explore the underlying mechanisms. RESULTS tDCS/DCS enhanced the protective effects of ISO pretreatment on I/R injury-induced brain damage. This was evidenced by reduced infarct volume and improved neurological outcomes in rats with MCAO, as well as decreased cortical neuronal death after O/R injury. Untargeted metabolomic experiments identified oxidative phosphorylation (OXPHOS) as a critical pathological process for ISO-mediated neuroprotection from I/R injury. The combination of tDCS/DCS with ISO preconditioning significantly inhibited I/R injury-induced OXPHOS. Mechanistically, Akirin2, a small nuclear protein that regulates cell proliferation and differentiation, was found to decrease in the cortex of rats with MCAO and in cortical primary neurons subjected to O/R injury. Akirin2 functions upstream of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). tDCS/DCS was able to further upregulate Akirin2 levels and activate the Akirin2/PTEN signaling pathway in vivo and in vitro, compared with ISO pretreatment alone, thereby contributing to the improvement of cerebral I/R injury. CONCLUSION tDCS treatment enhances the neuroprotective effects of ISO preconditioning on ischemic stroke by inhibiting oxidative stress and activating Akirin2-PTEN signaling pathway, highlighting potential of combination therapy in ischemic stroke.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaojie Lin
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chengwei Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xinyi Sun
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chunlong Lin
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Markowska A, Tarnacka B. Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets-TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies. Biomedicines 2024; 12:1560. [PMID: 39062133 PMCID: PMC11274560 DOI: 10.3390/biomedicines12071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability. As the currently used neurorehabilitation methods present several limitations, the ongoing research focuses on the use of non-invasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). NIBS methods were demonstrated to modulate neural excitability and improve motor and cognitive functioning in neurodegenerative diseases. However, their mechanisms of action are not fully elucidated, and the clinical outcomes are often unpredictable. This review explores the molecular processes underlying the effects of TMS and tDCS in stroke rehabilitation, including oxidative stress reduction, cell death, stimulation of neurogenesis, and neuroprotective phenotypes of glial cells. A highlight is put on the newly emerging therapeutic targets, such as ferroptotic and pyroptotic pathways. In addition, the issue of interindividual variability is discussed, and the role of neuroimaging techniques is investigated to get closer to personalized medicine. Furthermore, translational challenges of NIBS techniques are analyzed, and limitations of current clinical trials are investigated. The paper concludes with suggestions for further neurorehabilitation stroke treatment, putting the focus on combination and personalized therapies, as well as novel protocols of brain stimulation techniques.
Collapse
Affiliation(s)
- Aleksandra Markowska
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland;
| | | |
Collapse
|
5
|
Wang C, Yang X, Guo D, Huo W, Yu N, Zhang Y. Transcranial direct current stimulation-induced changes in motor cortical connectivity are associated with motor gains following ischemic stroke. Sci Rep 2024; 14:15645. [PMID: 38977806 PMCID: PMC11231232 DOI: 10.1038/s41598-024-66464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Understanding the response of the injured brain to different transcranial direct current stimulation (tDCS) montages may help explain the variable tDCS treatment results on poststroke motor gains. Cortical connectivity has been found to reflect poststroke motor gains and cortical plasticity, but the changes in connectivity following tDCS remain unknown. We aimed to investigate the relationship between tDCS-induced changes in cortical connectivity and poststroke motor gains. In this study, participants were assigned to receive four tDCS montages (anodal, cathodal, bilateral, and sham) over the primary motor cortex (M1) according to a single-blind, randomized, crossover design. Electroencephalography (EEG) and Jebsen-Taylor hand function test (JTT) were performed before and after the intervention. Motor cortical connectivity was measured using beta-band coherence with the ipsilesional and contralesional M1 as seed regions. Motor gain was evaluated based on the JTT completion time. We examined the relationship between baseline connectivity and clinical characteristics and that between changes in connectivity and motor gains after different tDCS montages. Baseline functional connectivity, motor impairment, and poststroke duration were correlated. High ipsilesional M1-frontal-temporal connectivity was correlated with a good baseline motor status, and increased connectivity was accompanied by good functional improvement following anodal tDCS treatment. Low contralesional M1-frontal-central connectivity was correlated with a good baseline motor status, and decreased connectivity was accompanied by good functional improvement following cathodal tDCS treatment. In conclusion, EEG-based motor cortical connectivity was correlated with stroke characteristics, including motor impairment and poststroke duration, and motor gains induced by anodal and cathodal tDCS.
Collapse
Affiliation(s)
- Chunfang Wang
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China
- Tianjin Institute of Rehabilitation, Tianjin, China
- Tianjin Key Specialty of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Xiangli Yang
- Otolaryngological Department, Tianjin Union Medical Centre, Tianjin, China.
| | - Dan Guo
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China
- Tianjin Institute of Rehabilitation, Tianjin, China
- Tianjin Key Specialty of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Weiguang Huo
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, China.
| | - Ying Zhang
- Rehabilitation Medical Department, Tianjin Union Medical Centre, Tianjin, China.
- Tianjin Institute of Rehabilitation, Tianjin, China.
- Tianjin Key Specialty of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine, Tianjin, China.
| |
Collapse
|
6
|
Yu P, Dong R, Wang X, Tang Y, Liu Y, Wang C, Zhao L. Neuroimaging of motor recovery after ischemic stroke - functional reorganization of motor network. Neuroimage Clin 2024; 43:103636. [PMID: 38950504 PMCID: PMC11267109 DOI: 10.1016/j.nicl.2024.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.
Collapse
Affiliation(s)
- Pei Yu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruoyu Dong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Tang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaning Liu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Can Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Liu Q, Liu Y, Zhang Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024; 12:1348. [PMID: 38927555 PMCID: PMC11201496 DOI: 10.3390/biomedicines12061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The cerebellum is emerging as a promising target for noninvasive brain stimulation (NIBS). A systematic review was conducted to evaluate the effects of cerebellar NIBS on both motor and other symptoms in stroke rehabilitation, its impact on functional ability, and potential side effects (PROSPERO number: CRD42022365697). A systematic electronic database search was performed by using PubMed Central (PMC), EMBASE, and Web of Science, with a cutoff date of November 2023. Data extracted included study details, NIBS methodology, outcome measures, and results. The risk of bias in eligible studies was also assessed. Twenty-two clinical studies involving 1016 participants were finally included, with a focus on outcomes related to post-stroke motor recovery (gait and balance, muscle spasticity, and upper limb dexterity) and other functions (dysphagia and aphasia). Positive effects were observed, especially on motor functions like gait and balance. Some efficiency was also observed in dysphagia rehabilitation. However, findings on language recovery were preliminary and inconsistent. A slight improvement in functional ability was noted, with no serious adverse effects reported. Further studies are needed to explore the effects of cerebellar NIBS on post-stroke non-motor deficits and to understand how cerebellar engagement can facilitate more precise treatment strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
8
|
Lopes J, Miziara I, Kahani D, Parreira R, Fonseca D, Lazzari R, Cordeiro L, Naves E, Cimolin V, Galli M, Conway B, Oliveira C. Brain wave behavior in children with down syndrome following cortical neuromodulation combined with sensorimotor stimulation: observational study. Physiother Theory Pract 2024; 40:941-951. [PMID: 36384401 DOI: 10.1080/09593985.2022.2147808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Individuals with Down syndrome (DS) require more time to develop motor and/or cognitive skills. Neuromodulation is used to assist in this development. However, there is a gap in the literature on neurophysiological changes that may occur in the primary motor cortex in individuals with DS following neuromodulation. OBJECTIVE Our objective was to investigate possible neurophysiological changes in brain wave behavior of the primary motor cortex following the administration of anodal transcranial direct current stimulation combined with sensorimotor training. METHODS The study involved 12 participants with DS. EEG equipment was used to investigate brain activity. The participants received neuromodulation involving anodal tDCS for 20 minutes with a current of 1 mA combined with virtual reality (VR) training three times a week for a total of ten sessions. We analyzed EGG signals and 3D movement during a reaching movement of the dominant upper limb before and after the ten-session protocol. RESULTS Significant differences in event-related desynchronization and event-related synchronization of the alpha and beta rhythms were found throughout the evaluations. Brain mapping revealed reductions in power and frequency, demonstrating changes in the patterns of these rhythms in the cerebral cortex. Revealed reorganization of the behavior of alpha and beta waves, as demonstrated by distribution of synchronization and desynchronization of these waves among the regions of the brain. CONCLUSION The results suggest that anodal tDCS promotes the reorganization of brain impulses, redirecting these impulses to the required regions more efficiently and contributing to better motor planning.
Collapse
Affiliation(s)
- Jamile Lopes
- School of Medical Sciences, Santa Casa de São Paulo, 112 Doutor Cesário Street, São Paulo, SP, Brazil
| | - Isabela Miziara
- Electrical and Biomedical Engineering, Technology Institute, Federal University of Pará, Belém, PA, Brazil
| | - Danial Kahani
- Department of Bioengineering, University of Strathclyde, Glasgow, UK
| | - Rodolfo Parreira
- School of Medical Sciences, Santa Casa de São Paulo, 112 Doutor Cesário Street, São Paulo, SP, Brazil
| | - Daniela Fonseca
- Movement Analysis Lab, University Centre of Anápolis, Anápolis, Brazil
| | - Roberta Lazzari
- School of Medical Sciences, Santa Casa de São Paulo, 112 Doutor Cesário Street, São Paulo, SP, Brazil
| | - Lorraine Cordeiro
- Movement Analysis Lab, University Centre of Anápolis, Anápolis, Brazil
| | - Eduardo Naves
- Electrical Engineering Faculty, Federal University of Uberlândia, Uberlândia, Brazil
| | - Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Istituto Auxologico Italiano - IRCCS, San Giuseppe Hospital, Piancavallo, Italy
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Bernard Conway
- Department of Bioengineering, University of Strathclyde, Glasgow, UK
| | - Claudia Oliveira
- School of Medical Sciences, Santa Casa de São Paulo, 112 Doutor Cesário Street, São Paulo, SP, Brazil
- Movement Analysis Lab, University Centre of Anápolis, Anápolis, Brazil
| |
Collapse
|
9
|
Yeo SS, Kim CJ, Yun SH, Son SM, Kim YJ. Effects of Transcranial Direct Current Stimulation on Clinical Features of Dizziness and Cortical Activation in a Patient with Vestibular Migraine. Brain Sci 2024; 14:187. [PMID: 38391761 PMCID: PMC10887163 DOI: 10.3390/brainsci14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Vestibular migraine (VM) is common migraine that occurs in patients with dizziness. Vestibular rehabilitation for managing VM generally remains unclear. Recently, it has been reported that transcranial direct current stimulation (tDCS) has positive effects in alleviating dizziness. This study investigated the effects of tDCS on dizziness and cortical activation in a patient with VM. METHODS We recruited a male patient aged 31 years with no dizziness. The patient watched a video to induce dizziness using a virtual reality device. The study applied the intervention using tDCS for 4 weeks and measured 4 assessments: functional near-infrared spectroscopy (fNIRS), quantitative electroencephalography (qEEG), dizziness handicap inventory, and visual vertigo analog scale. RESULTS We showed the activation in the middle temporal gyrus and inferior temporal gyrus (ITG) of the left hemisphere and in the superior temporal gyrus and ITG of the right hemisphere in the pre-intervention. After the intervention, the activation of these areas decreased. In the results of qEEG, excessive activation of C3, P3, and T5 in the left hemisphere and C4 in the right hemisphere before intervention disappeared after the intervention. CONCLUSIONS This study indicated that tDCS-based intervention could be considered a viable approach to treating patients with vestibular dysfunction and dizziness caused by VM.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University, Cheonan-si 31116, Republic of Korea
| | - Chang Ju Kim
- Department of Physical Therapy, College of Health Science, Cheongju University, Cheongju-si 28503, Republic of Korea
| | - Seong Ho Yun
- Department of Health, Graduate School, Dankook University, Cheonan-si 31116, Republic of Korea
| | - Sung Min Son
- Department of Physical Therapy, College of Health Science, Cheongju University, Cheongju-si 28503, Republic of Korea
| | - Yoon Jae Kim
- Department of Health, Graduate School, Dankook University, Cheonan-si 31116, Republic of Korea
| |
Collapse
|
10
|
Bernardes TS, Santos KCS, Nascimento MR, Filho CANES, Bazan R, Pereira JM, de Souza LAPS, Luvizutto GJ. Effects of anodal transcranial direct current stimulation over motor cortex on resting-state brain activity in the early subacute stroke phase: A power spectral density analysis. Clin Neurol Neurosurg 2024; 237:108134. [PMID: 38335706 DOI: 10.1016/j.clineuro.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/06/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Despite promising results, the effects of transcranial direct current stimulation (tDCS) in the early stages of stroke and its impact on brain activity have been poorly studied. Therefore, this study aimed to investigate the effect of tDCS applied over the ipsilesional motor cortex on resting-state brain activity in the early subacute phase of stroke. METHODS This is a pilot, randomized, double-blind, proof-of-concept study. The patients with stroke were randomly assigned into two groups: anodal tDCS (A-tDCS) or sham tDCS (S-tDCS). For A-tDCS, the anode was placed over the ipsilesional motor cortex, while the cathode was placed over the left or right supraorbital area (Fp2 for left stroke or Fp1 for right stroke). For the real stimulation, a constant current of 1.0 mA was delivered for 20 min and then ramped down linearly for 30 s, maintaining a resistance below 10 kΩ. For the sham stimulation, the stimulator was turned on, and the current intensity was gradually increased for 30 s, tapered off over 30 s, and maintained for 30 min without stimulation. Each stimulation was performed for three consecutive sessions with an interval of 1 h between them. The primary outcome was spectral electroencephalography (EEG) analysis based on the Power Spectral Density (PSD) determined by EEG records of areas F3, F4, C3, C4, P3, and P4. Brain Vision Analyzer software processed the signals, EEG power spectral density (PSD) was calculated before and after stimulation, and alpha, beta, delta, and theta power were analyzed. The secondary outcomes included hemodynamic variables based on the difference between baseline (D0) and post-intervention session (D1) values of systolic (SBP) and diastolic (DBP) blood pressure, heart rate (HR), respiratory rate (RR) and peripheral oxygen saturation (SPO2). Mann-Whitney test was used to compare position measurements of two independent samples; Fisher's exact test was used to compare two proportions; paired Wilcoxon signed-rank test was used to compare the median differences in the within-group comparison, and Spearman correlations matrix among spectral power analysis between EEG bands was performed to verify consistency of occurrence of oscillations. Statistical significance was set at P < 0.05. RESULTS An increase in PSD in the alpha frequency in the P4 region was observed after the intervention in the A-tDCS group, as compared to the placebo group (before = 6.13; after = 10.45; p < 0.05). In the beta frequency, an increase in PSD was observed in P4 (before = 4.40; after = 6.79; p < 0.05) and C4 (before = 4.43; after = 6.94; p < 0.05) after intervention in the A-tDCS group. There was a reduction in PSD at delta frequency in C3 (before = 293.8; after = 58.6; p < 0.05) after intervention in the A-tDCS group. In addition, it was observed a strong relationship between alpha and theta power in the A-tDCS group before and after intervention. However, the sham group showed correlations between more power bands (alpha and theta, alpha and delta, and delta and theta) after intervention. There was no difference in hemodynamic variables between the intra- (before and after stimulation) and inter-groups (mean difference). CONCLUSION Anodal tDCS over the ipsilesional motor cortex had significant effects on the brain electrical activity in the early subacute stroke phase, increasing alpha and beta wave activities in sensorimotor regions while reducing slow delta wave activity in motor regions. These findings highlight the potential of anodal tDCS as a therapeutic intervention in the early stroke phase.
Collapse
Affiliation(s)
- Tiago Soares Bernardes
- Department of Medicine, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Kelly Cristina Sousa Santos
- Department of Applied Physical Therapy, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Monalisa Resende Nascimento
- Department of Applied Physical Therapy, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Rodrigo Bazan
- Department of Neurology, Psychology, and Psychiatry, Botucatu Medical School (UNESP), Botucatu, SP, Brazil
| | - Janser Moura Pereira
- Statistical Department, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Liu J, Wang J, Tan G, Sheng Y, Feng L, Tang T, Li X, Xie Q, Liu H, Wei Y. A Generalized Cortico-Muscular-Cortical Network to Evaluate the Effects of Three-Week Brain Stimulation. IEEE Trans Biomed Eng 2024; 71:195-206. [PMID: 37436865 DOI: 10.1109/tbme.2023.3294509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Post-stroke transcranial magnetic stimulation (TMS) has gradually become a brain intervention to assist patients in the recovery of motor function. The long lasting regulatory of TMS may involve the coupling changes between cortex and muscles. However, the effects of multi-day TMS on motor recovery after stroke is unclear. METHODS This study proposed to quantify the effects of three-week TMS on brain activity and muscles movement performance based on a generalized cortico-muscular-cortical network (gCMCN). The gCMCN-based features were further extracted and combined with the partial least squares (PLS) method to predict the Fugl-Meyer of upper extremity (FMUE) in stroke patients, thereby establishing an objective rehabilitation method that can evaluate the positive effects of continuous TMS on motor function. RESULTS We found that the improvement of motor function after three-week TMS was significantly correlated with the complexity trend of information interaction between hemispheres and the intensity of corticomuscular coupling. In addition, the fitting coefficient ([Formula: see text]) for predicted and actual FMUE before and after TMS were 0.856 and 0.963, respectively, suggesting that the gCMCN-based measurement may be a promising method for evaluating the therapeutic effect of TMS. CONCLUSION From the perspective of a novel brain-muscles network with dynamic contraction as the entry point, this work quantified TMS-induced connectivity differences while evaluating the potential efficacy of multi-day TMS. SIGNIFICANCE It provides a unique insight for the further application of intervention therapy in the field of brain diseases.
Collapse
|
12
|
Tang C, Zhou T, Zhang Y, Yuan R, Zhao X, Yin R, Song P, Liu B, Song R, Chen W, Wang H. Bilateral upper limb robot-assisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG. Eur J Med Res 2023; 28:603. [PMID: 38115157 PMCID: PMC10729331 DOI: 10.1186/s40001-023-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Upper limb dysfunction after stroke seriously affects quality of life. Bilateral training has proven helpful in recovery of upper limb motor function in these patients. However, studies evaluating the effectiveness of bilateral upper limb robot-assisted training on improving motor function and quality of life in stroke patients are lacking. Quantitative electroencephalography (EEG) is non-invasive, simple, and monitors cerebral cortical activity, which can be used to evaluate the effectiveness of interventions. In this study, EEG was used to evaluate the effect of end-drive bilateral upper extremity robot-assisted training on upper extremity functional recovery in stroke patients. METHODS 24 stroke patients with hemiplegia were randomly divided into a conventional training (CT, n = 12) group or a bilateral upper limb robot-assisted training (BRT, n = 12) group. All patients received 60 min of routine rehabilitation treatment including rolling, transferring, sitting, standing, walking, etc., per day, 6 days a week, for three consecutive weeks. The BRT group added 30 min of bilateral upper limb robot-assisted training per day, while the CT group added 30 min of upper limb training (routine occupational therapy) per day, 6 days a week, for 3 weeks. The primary outcome index to evaluate upper limb motor function was the Fugl-Meyer functional score upper limb component (FMA-UE), with the secondary outcome of activities of daily living (ADL), assessed by the modified Barthel index (MBI) score. Quantitative EEG was used to evaluate functional brain connectivity as well as alpha and beta power current source densities of the brain. RESULTS Significant (p < 0.05) within-group differences were found in FMA-UE and MBI scores for both groups after treatment. A between-group comparison indicated the MBI score of the BRT group was significantly different from that of the CT group, whereas the FMA-UE score was not significantly different from that of the CT group after treatment. The differences of FMA-UE and MBI scores before and after treatment in the BRT group were significantly different as compared to the CT group. In addition, beta rhythm power spectrum energy was higher in the BRT group than in the CT group after treatment. Functional connectivity in the BRT group, under alpha and beta rhythms, was significantly increased in both the bilateral frontal and limbic lobes as compared to the CT group. CONCLUSIONS BRT outperformed CT in improving ADL in stroke patients within three months, and BRT facilitates the recovery of upper limb function by enhancing functional connectivity of the bilateral cerebral hemispheres.
Collapse
Affiliation(s)
- Congzhi Tang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Yun Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Runping Yuan
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Xianghu Zhao
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ruian Yin
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Pengfei Song
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Bo Liu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Ruyan Song
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China
| | - Wenli Chen
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China.
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Qurat-ul-ain, Ahmad Z, Ilyas S, Ishtiaq S, Tariq I, Nawaz Malik A, Liu T, Wang J. Comparison of a single session of tDCS on cerebellum vs. motor cortex in stroke patients: a randomized sham-controlled trial. Ann Med 2023; 55:2252439. [PMID: 38100750 PMCID: PMC10732189 DOI: 10.1080/07853890.2023.2252439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE The purpose of this study was to determine whether a single session of trans-cranial direct current stimulation (tDCS) of the cerebellum and M1 has any advantages over one another or sham stimulation in terms of balance, gait and lower limb function. METHODS A total of 66 patients who had experienced their first ever stroke were recruited into three groups for this double-blinded, parallel, randomized, sham-controlled trial: cerebellar stimulation group (CbSG), M1 stimulation group (MSG) and sham stimulation group (SSG). A single session of anodal tDCS with an intensity of 2 mA for a duration of 20 min was administered in addition to gait and balance training based on virtual reality using an Xbox 360 with Kinect. Balance, gait, cognition and risk of fall were assessed using outcome measures before intervention (T0), immediately after intervention (T1) and an hour after intervention (T2). RESULTS Across group analysis of all outcome measures showed statistically non-significant results (p > .05) except for Six Minute Walk Test (p value T0 = .003, p value T1 = .025, p value T2 = .016). The training effect difference showed a significant difference in balance, gait and cognition, as well as cerebral and cerebellar stimulation, in comparison to sham stimulation (p < .05). The risk of falls remained unaffected by any stimulation (p > .05). CONCLUSIONS In addition to Xbox Kinect-based rehabilitation training, a single session of anodal tDCS to the M1 or cerebellum may be beneficial for improving lower limb function, balance and gait performance.
Collapse
Affiliation(s)
- Qurat-ul-ain
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| | - Zafran Ahmad
- Department of Logistics Engineering, Kunming University of Science & Technology, Kunming, China
| | - Saad Ilyas
- Faculty of Computing, Capital University of Science and Technology, Islamabad, Pakistan
- Department of Computing, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Summaiya Ishtiaq
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Iqbal Tariq
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Arshad Nawaz Malik
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Tian Liu
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| | - Jue Wang
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| |
Collapse
|
14
|
Lee JH, Lee DH. A comparative study on the overlapping effects of clinically applicable therapeutic interventions in patients with central nervous system damage. Open Med (Wars) 2023; 18:20230828. [PMID: 37900962 PMCID: PMC10612527 DOI: 10.1515/med-2023-0828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/04/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
This study was conducted to investigate the effects of anti-gravity treadmill (AGT) training, which provides visual feedback and Biorescue training on proprioception, muscle strength, balance, and gait, in stroke patients. A total of 45 people diagnosed with post-stroke were included as study subjects; they were randomized to an AGT training group provided with visual feedback (Group A), a Biorescue training group provided with visual feedback (Group B), and an AGT/Biorescue group that subsequently received AGT training and Biorescue training (Group C). A muscle strength-measuring device was used to evaluate muscle strength. Timed Up and Go and Bug Balance Scale assessment sheets were used to evaluate balance ability. Dartfish software was used to evaluate gait ability. The results of the study showed that Groups A and C had a significant increase in muscle strength compared with Group B; in terms of balance and gait abilities, Group C showed a significant increase in balance ability and gait speed and a significant change in knee joint angle compared with Groups A and B. In conclusion, this study suggests that including a method that applies multiple therapeutic interventions is desirable in the rehabilitation of stroke patients to improve their independence.
Collapse
Affiliation(s)
- Jung-Ho Lee
- Physical therapy, Kyungdong University, Goseong-gun, Republic of Korea
| | - Dae-Hwan Lee
- Physical therapy, Kyungdong University, Goseong-gun, Republic of Korea
| |
Collapse
|
15
|
Zhang X, Nan J, Xu M, Chen L, Ni G, Ming D. PSIs of EEG With Refined Frequency Decomposition Could Prognose Motor Recovery Before Rehabilitation Intervention. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3760-3771. [PMID: 37721877 DOI: 10.1109/tnsre.2023.3316210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Stroke often leads to permanent impairment in motor function. Accurate and quantitative prognosis of potential motor recovery before rehabilitation intervention can help healthcare centers improve resources organization and enable individualized intervention. The context of this paper investigated the potential of using electroencephalography (EEG) functional connectivity (FC) measures as biomarkers for assessing and prognosing improvement of Fugl-Meyer Assessment in upper extremity motor function ( ∆FMU) among participants with chronic stroke. EEG data from resting and motor imagery task were recorded from 13 participants with chronic stroke. Three functional connectivity methods, which were Pearson correlation measure (PCM), weighted Phase Lag Index (wPLI) and phase synchronization index (PSI), were investigated, under three regions of interest (inter-hemispheric, intra-hemispheric, and whole-brain), in two statues (resting and motor imagery), with 15 refined center frequencies. We applied correlation analysis to identify the optimal center frequencies and pairs of synchronized channels that were consistently associated with ∆FMU . Predictive models were generated using regression analysis algorithms based on optimized center frequencies and channel pairs identified from the proposed analysis method, with leave-one-out cross-validation. We found that PSI in the Alpha band (with center frequency of 9Hz) was the most sensitive FC measures for prognosing motor recovery. Strong and significant correlations were identified between the predictions and actual ∆FMU scores both in the resting state ( [Formula: see text], [Formula: see text], N=13) and motor imagery ( [Formula: see text], [Formula: see text], N=13). Our results suggested that EEG connectivity measured with PSI in resting state could be a promising biomarker for quantifying motor recovery before motor rehabilitation intervention.
Collapse
|
16
|
Hill G, Johnson F, Uy J, Serrada I, Benyamin B, Van Den Berg M, Hordacre B. Moderate intensity aerobic exercise may enhance neuroplasticity of the contralesional hemisphere after stroke: a randomised controlled study. Sci Rep 2023; 13:14440. [PMID: 37660093 PMCID: PMC10475034 DOI: 10.1038/s41598-023-40902-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
Upregulation of neuroplasticity might help maximize stroke recovery. One intervention that appears worthy of investigation is aerobic exercise. This study aimed to determine whether a single bout of moderate intensity aerobic exercise can enhance neuroplasticity in people with stroke. Participants were randomly assigned (1:1) to a 20-min moderate intensity exercise intervention or remained sedentary (control). Transcranial magnetic stimulation measured corticospinal excitability of the contralesional hemisphere by recording motor evoked potentials (MEPs). Intermittent Theta Burst Stimulation (iTBS) was used to repetitively activate synapses in the contralesional primary motor cortex, initiating the early stages of neuroplasticity and increasing excitability. It was surmised that if exercise increased neuroplasticity, there would be a greater facilitation of MEPs following iTBS. Thirty-three people with stroke participated in this study (aged 63.87 ± 10.30 years, 20 male, 6.13 ± 4.33 years since stroke). There was an interaction between Time*Group on MEP amplitudes (P = 0.009). Participants allocated to aerobic exercise had a stronger increase in MEP amplitude following iTBS. A non-significant trend indicated time since stroke might moderate this interaction (P = 0.055). Exploratory analysis suggested participants who were 2-7.5 years post stroke had a strong MEP facilitation following iTBS (P < 0.001). There was no effect of age, sex, resting motor threshold, self-reported physical activity levels, lesion volume or weighted lesion load (all P > 0.208). Moderate intensity cycling may enhance neuroplasticity in people with stroke. This therapy adjuvant could provide opportunities to maximize stroke recovery.
Collapse
Affiliation(s)
- Gabrielle Hill
- Clinical Rehabilitation, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, Australia
| | - Finn Johnson
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Jeric Uy
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Ines Serrada
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, 5000, Australia
| | - Maayken Van Den Berg
- Clinical Rehabilitation, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, 5001, Australia.
| |
Collapse
|
17
|
Chang H, Sheng Y, Liu J, Yang H, Pan X, Liu H. Noninvasive Brain Imaging and Stimulation in Post-Stroke Motor Rehabilitation: A Review. IEEE Trans Cogn Dev Syst 2023; 15:1085-1101. [DOI: 10.1109/tcds.2022.3232581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hui Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yixuan Sheng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jinbiao Liu
- Research Centre for Augmented Intelligence, Zhejiang Laboratory, Artificial Intelligence Research Institute, Hangzhou, China
| | - Hongyu Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xiangyu Pan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
18
|
Vatrano M, Nemirovsky IE, Tonin P, Riganello F. Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges. Life (Basel) 2023; 13:1675. [PMID: 37629532 PMCID: PMC10455583 DOI: 10.3390/life13081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback is a non-invasive therapeutic approach that has gained traction in recent years, showing promising results for various neurological and psychiatric conditions. It involves real-time monitoring of brain activity, allowing individuals to gain control over their own brainwaves and improve cognitive performance or alleviate symptoms. The use of electroencephalography (EEG), such as brain-computer interface (BCI), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), has been instrumental in developing neurofeedback techniques. However, the application of these tools in patients with disorders of consciousness (DoC) presents unique challenges. In this narrative review, we explore the use of neurofeedback in treating patients with DoC. More specifically, we discuss the advantages and challenges of using tools such as EEG neurofeedback, tDCS, TMS, and BCI for these conditions. Ultimately, we hope to provide the neuroscientific community with a comprehensive overview of neurofeedback and emphasize its potential therapeutic applications in severe cases of impaired consciousness levels.
Collapse
Affiliation(s)
- Martina Vatrano
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| | - Idan Efim Nemirovsky
- Department of Physics and Astronomy, Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Paolo Tonin
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| | - Francesco Riganello
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| |
Collapse
|
19
|
McCane LM, Wolpaw JR, Thompson AK. Effects of active and sham tDCS on the soleus H-reflex during standing. Exp Brain Res 2023; 241:1611-1622. [PMID: 37145136 PMCID: PMC10224818 DOI: 10.1007/s00221-023-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Weak transcranial direct current stimulation (tDCS) is known to affect corticospinal excitability and enhance motor skill acquisition, whereas its effects on spinal reflexes in actively contracting muscles are yet to be established. Thus, in this study, we examined the acute effects of Active and Sham tDCS on the soleus H-reflex during standing. In fourteen adults without known neurological conditions, the soleus H-reflex was repeatedly elicited at just above M-wave threshold throughout 30 min of Active (N = 7) or Sham (N = 7) 2-mA tDCS over the primary motor cortex in standing. The maximum H-reflex (Hmax) and M-wave (Mmax) were also measured before and immediately after 30 min of tDCS. The soleus H-reflex amplitudes became significantly larger (by 6%) ≈1 min into Active or Sham tDCS and gradually returned toward the pre-tDCS values, on average, within 15 min. With Active tDCS, the amplitude reduction from the initial increase appeared to occur more swiftly than with Sham tDCS. An acute temporary increase in the soleus H-reflex amplitude within the first minute of Active and Sham tDCS found in this study indicates a previously unreported effect of tDCS on the H-reflex excitability. The present study suggests that neurophysiological characterization of Sham tDCS effects is just as important as investigating Active tDCS effects in understanding and defining acute effects of tDCS on the excitability of spinal reflex pathways.
Collapse
Affiliation(s)
- Lynn M McCane
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, 02881, USA
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, 12208, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, 12208, USA
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, MSC 700, Charleston, SC, 29425, USA.
| |
Collapse
|
20
|
Hu W, Wang X, Li X, Wang Q. Effect of Transcranial Direct Current Stimulation Combined with Donepezil on stroke patients with memory impairment. Pak J Med Sci 2023; 39:898-901. [PMID: 37250578 PMCID: PMC10214780 DOI: 10.12669/pjms.39.3.6822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 01/07/2023] [Indexed: 11/02/2023] Open
Abstract
Objective To investigate the therapeutic effect of transcranial direct current stimulation (TDCS) combined with donepezil on stroke patients with memory impairment. Methods The subjects of the study were 120 stroke patients with memory impairment admitted to the Rehabilitation Department of Tianjin Medical University General Hospital from July 2017 to March 2020. Enrolled patients were divided into Group-A (58 cases) and Group-B (62 cases) according to different treatment intervention methods. Patients in Group-A were treated with TDCS and those in Group-B received donepezil on the basis of TDCS. The changes in Montreal Cognitive Assessment (MoCA) memory index score, Barthel Index (MBI) score, cognitive function and cognitive potential were observed and compared between the two groups before and after treatment. Results The improvement of total MoCA score, a single score of memory, MBI score, cognitive function and P300 potential index in Group-B was significantly better than that in Group-A (p<0.05). Conclusion TDCS combined with donepezil can reduce or delay the cognitive impairment of stroke patients, improve their delayed memory ability, increase the neurotransmitter acetylcholine in the cerebral cortex, and further enhance their neural function. Findings in our study support that the proposed therapeutic method is worthy of clinical application.
Collapse
Affiliation(s)
- Wenqing Hu
- Wenqing Hu, Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China
| | - Xue Wang
- Xue Wang, Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China
| | - Xinyi Li
- Xinyi Li, Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China
| | - Qian Wang
- Qian Wang, Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China
| |
Collapse
|
21
|
Salazar CA, Feng W, Bonilha L, Kautz S, Jensen JH, George MS, Rowland NC. Transcranial Direct Current Stimulation for Chronic Stroke: Is Neuroimaging the Answer to the Next Leap Forward? J Clin Med 2023; 12:2601. [PMID: 37048684 PMCID: PMC10094806 DOI: 10.3390/jcm12072601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
During rehabilitation, a large proportion of stroke patients either plateau or begin to lose motor skills. By priming the motor system, transcranial direct current stimulation (tDCS) is a promising clinical adjunct that could augment the gains acquired during therapy sessions. However, the extent to which patients show improvements following tDCS is highly variable. This variability may be due to heterogeneity in regions of cortical infarct, descending motor tract injury, and/or connectivity changes, all factors that require neuroimaging for precise quantification and that affect the actual amount and location of current delivery. If the relationship between these factors and tDCS efficacy were clarified, recovery from stroke using tDCS might be become more predictable. This review provides a comprehensive summary and timeline of the development of tDCS for stroke from the viewpoint of neuroimaging. Both animal and human studies that have explored detailed aspects of anatomy, connectivity, and brain activation dynamics relevant to tDCS are discussed. Selected computational works are also included to demonstrate how sophisticated strategies for reducing variable effects of tDCS, including electric field modeling, are moving the field ever closer towards the goal of personalizing tDCS for each individual. Finally, larger and more comprehensive randomized controlled trials involving tDCS for chronic stroke recovery are underway that likely will shed light on how specific tDCS parameters, such as dose, affect stroke outcomes. The success of these collective efforts will determine whether tDCS for chronic stroke gains regulatory approval and becomes clinical practice in the future.
Collapse
Affiliation(s)
- Claudia A. Salazar
- Department of Neurosurgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Center for Biomedical Imaging, University of South Carolina, Columbia, SC 29208, USA
- Department of Neuroscience, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Steven Kautz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Jens H. Jensen
- Center for Biomedical Imaging, University of South Carolina, Columbia, SC 29208, USA
- Department of Neuroscience, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Radiology and Radiological Science, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark S. George
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan C. Rowland
- Department of Neurosurgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Center for Biomedical Imaging, University of South Carolina, Columbia, SC 29208, USA
- Department of Neuroscience, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
22
|
Jose L, Martins LB, Cordeiro TM, Lee K, Diaz AP, Ahn H, Teixeira AL. Non-Invasive Neuromodulation Methods to Alleviate Symptoms of Huntington's Disease: A Systematic Review of the Literature. J Clin Med 2023; 12:2002. [PMID: 36902788 PMCID: PMC10004225 DOI: 10.3390/jcm12052002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Huntington's disease (HD) is a progressive and debilitating neurodegenerative disease. There is growing evidence for non-invasive neuromodulation tools as therapeutic strategies in neurodegenerative diseases. This systematic review aims to investigate the effectiveness of noninvasive neuromodulation in HD-associated motor, cognitive, and behavioral symptoms. A comprehensive literature search was conducted in Ovid MEDLINE, Cochrane Central Register of Clinical Trials, Embase, and PsycINFO from inception to 13 July 2021. Case reports, case series, and clinical trials were included while screening/diagnostic tests involving non-invasive neuromodulation, review papers, experimental studies on animal models, other systematic reviews, and meta-analyses were excluded. We have identified 19 studies in the literature investigating the use of ECT, TMS, and tDCS in the treatment of HD. Quality assessments were performed using Joanna Briggs Institute's (JBI's) critical appraisal tools. Eighteen studies showed improvement of HD symptoms, but the results were very heterogeneous considering different intervention techniques and protocols, and domains of symptoms. The most noticeable improvement involved depression and psychosis after ECT protocols. The impact on cognitive and motor symptoms is more controversial. Further investigations are required to determine the therapeutic role of distinct neuromodulation techniques for HD-related symptoms.
Collapse
Affiliation(s)
- Lijin Jose
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Lais Bhering Martins
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Thiago M. Cordeiro
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Keya Lee
- Texas Medical Center Library, Houston, TX 77030, USA
| | - Alexandre Paim Diaz
- Center for the Study and Prevention of Suicide, Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hyochol Ahn
- College of Nursing, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| |
Collapse
|
23
|
Ni J, Jiang W, Gong X, Fan Y, Qiu H, Dou J, Zhang J, Wang H, Li C, Su M. Effect of rTMS intervention on upper limb motor function after stroke: A study based on fNIRS. Front Aging Neurosci 2023; 14:1077218. [PMID: 36711205 PMCID: PMC9880218 DOI: 10.3389/fnagi.2022.1077218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Background Stroke is a disease with a high fatality rate worldwide and a major cause of long-term disability. In the rehabilitation of limb motor function after stroke, the rehabilitation of upper limb function takes a long time and the recovery progress is slow, which seriously affects the patients' self-care ability in daily life. Repeated transcranial magnetic stimulation (rTMS) has been increasingly used to improve limb dysfunction in patients with stroke. However, a standardized reference for selecting a magnetic stimulation regimen is not available. Whether to increase the inhibition of the contralateral hemispheric motor cortex remains controversial. This study has evaluated the effects of different rTMS stimulation programs on upper limb function and corresponding brain functional network characteristics of patients with stroke and sought a new objective standard based on changes in brain network parameters to guide accurate rTMS stimulation programs. Method Thirty-six patients with stroke were selected and divided into control group and treatment group by number table method, with 18 patients in each group, and 3 patients in the control group were turned out and lost due to changes in disease condition. The treatment group was divided into two groups. TMS1 group was given 1 Hz magnetic stimulation in the M1 region of the contralesional hemisphere +10 Hz magnetic stimulation in the M1 region of the affected hemisphere, and the TMS2 group was given 10 Hz magnetic stimulation in the M1 region of the affected hemisphere. The control group was given false stimulation. The treatment course was once a day for 5 days a week for 4 weeks. The Fugl-Meyer Assessment for upper extremity (FMA-UE) sand near-infrared brain function were collected before treatment, 2 weeks after treatment, and 4 weeks after treatment, and the brain function network was constructed. Changes in brain oxygenated hemoglobin concentration and brain network parameters were analyzed with the recovery of motor function (i.e., increased FMA score). Meanwhile, according to the average increment of brain network parameters, the rTMS stimulation group was divided into two groups with good efficacy and poor efficacy. Network parameters of the two groups before and after rTMS treatment were analyzed statistically. Results (1) Before treatment, there was no statistical difference in Fugl-Meyer score between the control group and the magnetic stimulation group (p = 0.178).Compared with before treatment, Fugl-Meyer scores of 2 and 4 weeks after treatment were significantly increased in both groups (p <0.001), and FMA scores of 4 weeks after treatment were significantly improved compared with 2 weeks after treatment (p < 0.001). FMA scores increased faster in the magnetic stimulation group at 2 and 4 weeks compared with the control group at the same time point (p <0.001).TMS1 and TMS2 were compared at the same time point, FMA score in TMS2 group increased more significantly after 4 weeks of treatment (p = 0.010). (2) Before treatment, HbO2 content in healthy sensory motor cortex (SMC) area of magnetic stimulation group and control group was higher than that in other region of interest (ROI) area, but there was no significant difference in ROI between the two groups. After 4 weeks of treatment, the HbO2 content in the healthy SMC area was significantly decreased (p < 0.001), while the HbO2 content in the affected SMC area was significantly increased, and the change was more significant in the magnetic stimulation group (p < 0.001). (3) In-depth study found that with the recovery of motor function (FMA upper limb score increase ≥4 points) after magnetic stimulation intervention, brain network parameters were significantly improved. The mean increment of network parameters in TMS1 group and TMS2 group was significantly different (χ 2 = 5.844, p = 0.016). TMS2 group was more advantageous than TMS1 group in improving the mean increment of brain network parameters. Conclusion (1) The rTMS treatment is beneficial to the recovery of upper limb motor function in stroke patients, and can significantly improve the intensity of brain network connection and reduce the island area. The island area refers to an isolated activated brain area that cannot transmit excitation to other related brain areas. (2) When the node degree of M1_Healthy region less than 0.52, it is suggested to perform promotion therapy only in the affected hemisphere. While the node degree greater than 0.52, and much larger than that in the M1_affected region. it is suggested that both inhibition in the contralesional hemisphere and high-frequency excitatory magnetic stimulation in the affected hemisphere can be performed. (3) In different brain functional network connection states, corresponding adjustment should be made to the treatment plan of rTMS to achieve optimal therapeutic effect and precise rehabilitation treatment.
Collapse
Affiliation(s)
- Jing Ni
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Jiangsu Rongjun Hospital, Wuxi, Jiangsu, China
| | - Wei Jiang
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Jiangsu Rongjun Hospital, Wuxi, Jiangsu, China
| | - Xueyang Gong
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Wuxi International Tongren Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yingjie Fan
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China
| | - Hao Qiu
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China
| | - Jiaming Dou
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Wuxi International Tongren Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Juan Zhang
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China,*Correspondence: Hongxing Wang, ✉
| | - Chunguang Li
- The Key Laboratory of Robotics and System of Jiangsu Province, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China,Chunguang Li, ✉
| | - Min Su
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China,First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Min Su, ✉
| |
Collapse
|
24
|
Wang Y, Chen YL, Huang CM, Chen LT, Liao LD. Visible CCD Camera-Guided Photoacoustic Imaging System for Precise Navigation during Functional Rat Brain Imaging. BIOSENSORS 2023; 13:107. [PMID: 36671941 PMCID: PMC9856069 DOI: 10.3390/bios13010107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In photoacoustic (PA) imaging, tissue absorbs specific wavelengths of light. The absorbed energy results in thermal expansion that generates ultrasound waves that are reconstructed into images. Existing commercial PA imaging systems for preclinical brain imaging are limited by imprecise positioning capabilities and inflexible user interfaces. We introduce a new visible charge-coupled device (CCD) camera-guided photoacoustic imaging (ViCPAI) system that integrates an ultrasound (US) transducer and a data acquisition platform with a CCD camera for positioning. The CCD camera accurately positions the US probe at the measurement location. The programmable MATLAB-based platform has an intuitive user interface. In vitro carbon fiber and in vivo animal experiments were performed to investigate the precise positioning and imaging capabilities of the ViCPAI system. We demonstrated real-time capturing of bilateral cerebral hemodynamic changes during (1) forelimb electrical stimulation under normal conditions, (2) forelimb stimulation after right brain focal photothrombotic ischemia (PTI) stroke, and (3) progression of KCl-induced cortical spreading depression (CSD). The ViCPAI system accurately located target areas and achieved reproducible positioning, which is crucial in animal and clinical experiments. In animal experiments, the ViCPAI system was used to investigate bilateral cerebral cortex responses to left forelimb electrical stimulation before and after stroke, showing that the CBV and SO2 in the right primary somatosensory cortex of the forelimb (S1FL) region were significantly changed by left forelimb electrical stimulation before stroke. No CBV or SO2 changes were observed in the bilateral cortex in the S1FL area in response to left forelimb electrical stimulation after stroke. While monitoring CSD progression, the ViCPAI system accurately locates the S1FL area and returns to the same position after the probe moves, demonstrating reproducible positioning and reducing positioning errors. The ViCPAI system utilizes the real-time precise positioning capability of CCD cameras to overcome various challenges in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-Lin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No.75 Po-Ai St., Hsinchu 300, Taiwan
| | - Li-Tzong Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital and Center for Cancer Research, Kaohsiung Medical University, No.100, Tzyou 1st Road, Sanmin Dist., Kaohsiung City 80756, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
25
|
Santana K, França E, Sato J, Silva A, Queiroz M, de Farias J, Rodrigues D, Souza I, Ribeiro V, Caparelli-Dáquer E, Teixeira AL, Charvet L, Datta A, Bikson M, Andrade S. Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC). Brain Stimul 2023; 16:100-107. [PMID: 36693536 PMCID: PMC9867562 DOI: 10.1016/j.brs.2023.01.1672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND and purpose: Fatigue is among the most common persistent symptoms following post-acute sequelae of Sars-COV-2 infection (PASC). The current study investigated the potential therapeutic effects of High-Definition transcranial Direct Current Stimulation (HD-tDCS) associated with rehabilitation program for the management of PASC-related fatigue. METHODS Seventy patients with PASC-related fatigue were randomized to receive 3 mA or sham HD-tDCS targeting the left primary motor cortex (M1) for 30 min paired with a rehabilitation program. Each patient underwent 10 sessions (2 sessions/week) over five weeks. Fatigue was measured as the primary outcome before and after the intervention using the Modified Fatigue Impact Scale (MFIS). Pain level, anxiety severity and quality of life were secondary outcomes assessed, respectively, through the McGill Questionnaire, Hamilton Anxiety Rating Scale (HAM-A) and WHOQOL. RESULTS Active HD-tDCS resulted in significantly greater reduction in fatigue compared to sham HD-tDCS (mean group MFIS reduction of 22.11 points vs 10.34 points). Distinct effects of HD-tDCS were observed in fatigue domains with greater effect on cognitive (mean group difference 8.29 points; effect size 1.1; 95% CI 3.56-13.01; P < .0001) and psychosocial domains (mean group difference 2.37 points; effect size 1.2; 95% CI 1.34-3.40; P < .0001), with no significant difference between the groups in the physical subscale (mean group difference 0.71 points; effect size 0.1; 95% CI 4.47-5.90; P = .09). Compared to sham, the active HD-tDCS group also had a significant reduction in anxiety (mean group difference 4.88; effect size 0.9; 95% CI 1.93-7.84; P < .0001) and improvement in quality of life (mean group difference 14.80; effect size 0.7; 95% CI 7.87-21.73; P < .0001). There was no significant difference in pain (mean group difference -0.74; no effect size; 95% CI 3.66-5.14; P = .09). CONCLUSION An intervention with M1 targeted HD-tDCS paired with a rehabilitation program was effective in reducing fatigue and anxiety, while improving quality of life in people with PASC.
Collapse
Affiliation(s)
| | | | - João Sato
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | - Ana Silva
- Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | - Iara Souza
- Federal University of Paraíba, João Pessoa, Brazil
| | - Vanessa Ribeiro
- Department of Health, Government of Paraíba, João Pessoa, Brazil
| | - Egas Caparelli-Dáquer
- Nervous System Electric Stimulation Lab, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Antonio L. Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, United States,Faculdade Santa Casa BH, Belo Horizonte, Brazil
| | - Leigh Charvet
- Department of Neurology, New York University Langone Health, New York, United States
| | - Abhishek Datta
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, United States,Research & Development, Soterix Medical, Inc., New York, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, United States
| | | |
Collapse
|
26
|
Yuan K, Ti CHE, Wang X, Chen C, Lau CCY, Chu WCW, Tong RKY. Individual electric field predicts functional connectivity changes after anodal transcranial direct-current stimulation in chronic stroke. Neurosci Res 2023; 186:21-32. [PMID: 36220454 DOI: 10.1016/j.neures.2022.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
The neuromodulation effect of anodal tDCS is not thoroughly studied, and the heterogeneous profile of stroke individuals with brain lesions would further complicate the stimulation outcomes. This study aimed to investigate the functional changes in sensorimotor areas induced by anodal tDCS and whether individual electric field could predict the functional outcomes. Twenty-five chronic stroke survivors were recruited and divided into tDCS group (n = 12) and sham group (n = 13). Increased functional connectivity (FC) within the surrounding areas of ipsilesional primary motor cortex (M1) was only observed after anodal tDCS. Averaged FC among the ipsilesional sensorimotor regions was observed to be increased after anodal tDCS (t(11) = 2.57, p = 0.026), but not after sham tDCS (t(12) = 0.69, p = 0.50). Partial least square analysis identified positive correlations between electric field (EF) strength normal to the ipsilesional M1 surface and individual FC changes in tDCS group (r = 0.84, p < 0.001) but not in sham group (r = 0.21, p = 0.5). Our results indicated anodal tDCS facilitates the FC within the ipsilesional sensorimotor network in chronic stroke subjects, and individual electric field predicts the functional outcomes.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chun-Hang Eden Ti
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xin Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cheng Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cathy Choi-Yin Lau
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
27
|
Fang Y, Li J, Liu S, Wang Y, Li J, Yang D, Wang Q. Optimization of electrical stimulation for the treatment of lower limb dysfunction after stroke: A systematic review and Bayesian network meta-analysis of randomized controlled trials. PLoS One 2023; 18:e0285523. [PMID: 37167257 PMCID: PMC10174537 DOI: 10.1371/journal.pone.0285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE To compare the treatment effect of five electrical stimulation methods commonly used in the treatment of stroke patients with lower limb dysfunction. METHODS We implemented a systematic search of 3915 studies published up to January 2023 from eight databases and two clinical trial registries. First, two independent reviewers critically evaluated trial eligibility according to the inclusion and exclusion criteria. Next, they selected and extracted data. Then, they assessed the risk of bias. Pairwise meta-analysis and Bayesian network meta-analysis were conducted to estimate the effectiveness and ranking of the five electrical stimulation methods. RESULTS A total of 33 trials with a final total of 2246 subjects were included in the analysis. By combining the comprehensive Rehabilitation Treatment (RT), the treatment effects of using five electrical stimulation methods were surperior to those of using RT only. In the meantime, RT+transcranial Direct Current Stimulation(tDCS) and RT+Functional Electrical Stimulation(FES) could be the optimal electric stimulation schemes for restoring lower limb motor function(SMD 8.35, 95%CI [3.05, 13.34]/ SMD 5.64, 95%CI [3.68, 7.56]), improving balance (SMD 9.80, 95%CI [0.67, 20.93]/ SMD 6.54, 95%CI [3.85, 10.95]) and activities of daily living(SMD 18.95, 95%CI [0.401, 36.9]/ SMD 15.47, 95%CI [7.89, 22.75]), and the treatment effects would be even better using RT+FES+tDCS combination. CONCLUSION tDCS and FES superior to other electrical stimulation methods based on RT in the treatment of lower limb dysfunction after stroke.
Collapse
Affiliation(s)
- Yu Fang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiang Li
- General Practice Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanyu Liu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wang
- Department of Neurology, The Fifth People's Hospital of Chengdu/ The Fifth Affiliated Hospital of Chengdu University of traditional Chinese Medicine, Chengdu, China
| | - Jiaming Li
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoling Wang
- Department of Ministry of Science, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Li C, Tu S, Xu S, Zhang Y, Yan Z, Jia J, Tian S. Research Hotspots and Frontiers of Transcranial Direct Current Stimulation in Stroke: A Bibliometric Analysis. Brain Sci 2022; 13:brainsci13010015. [PMID: 36671997 PMCID: PMC9856087 DOI: 10.3390/brainsci13010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Over the past decade, many studies in the field of transcranial direct current stimulation (tDCS) in stroke have been published in scholarly journals. However, a scientometric analysis focusing on tDCS after stroke is still missing. The purpose of this study is to deliver a bibliometric analysis to investigate the global hotspots and frontiers in the domain of tDCS in stroke from 2012 to 2021. Methods: Articles and reviews related to tDCS in stroke were retrieved and obtained from the Web of Science core collection database from 2012 to 2021. Data visualization and analysis were conducted by using CiteSpace, VOSviewer, and Microsoft Excel 2019. Results: Finally, 371 publications were included in the scientometric analysis, including 288 articles and 83 reviews. The results showed that the number of publications per year increased from 15 to 68 in the last 10 years. Neurosciences was the main research hotspot category (n = 201). Frontiers in Human Neuroscience was the most published journal with 14 papers. The most productive author, institution, and country were Fregni F (n = 13), the League of European Research Universities (n = 37), and the United States of America (n = 98), respectively. A burstness analysis of keywords and the literature indicated that current studies in the field of tDCS in stroke focused on poststroke aphasia, tDCS combined with robotic therapy, and anatomical parameters. Conclusion: The research of tDCS in stroke is predicted to remain a research hotspot in the future. We recommend investigating the curative effect of other different tDCS closed-loop rehabilitation methods for different stroke dysfunctions. In conclusion, this bibliometric study presented the hotspots and trends of tDCS in stroke over the last decade, which may help researchers manage their further studies.
Collapse
Affiliation(s)
- Chong Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200040, China
| | - Shuting Tu
- Institute of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shuo Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongli Zhang
- Institute of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhijie Yan
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.J.); (S.T.)
| | - Shiliu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200040, China
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai 200433, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200031, China
- Fujian Sports Vocational Education and Technical College, Fuzhou 350003, China
- Correspondence: (J.J.); (S.T.)
| |
Collapse
|
29
|
Beretta VS, Santos PCR, Orcioli-Silva D, Zampier VC, Vitório R, Gobbi LTB. Transcranial direct current stimulation for balance rehabilitation in neurological disorders: A systematic review and meta-analysis. Ageing Res Rev 2022; 81:101736. [PMID: 36116750 DOI: 10.1016/j.arr.2022.101736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/31/2023]
Abstract
Postural instability is common in neurological diseases. Although transcranial direct current stimulation (tDCS) seems to be a promising complementary therapy, emerging evidence indicates mixed results and protocols' characteristics. We conducted a systematic review and meta-analysis on PubMed, EMBASE, Scopus, and Web of Science to synthesize key findings of the effectiveness of single and multiple sessions of tDCS alone and combined with other interventions on balance in adults with neurological disorders. Thirty-seven studies were included in the systematic review and 33 in the meta-analysis. The reviewed studies did not personalize the stimulation protocol to individual needs/characteristics. A random-effects meta-analysis indicated that tDCS alone (SMD = -0.44; 95%CI = -0.69/-0.19; p < 0.001) and combined with another intervention (SMD = -0.31; 95%CI = -0.51/-0.11; p = 0.002) improved balance in adults with neurological disorders (small to moderate effect sizes). Balance improvements were evidenced regardless of the number of sessions and targeted area. In summary, tDCS is a promising therapy for balance rehabilitation in adults with neurological disorders. However, further clinical trials should identify factors that influence responsiveness to tDCS for a more tailored approach, which may optimize the clinical use of tDCS.
Collapse
Affiliation(s)
- Victor Spiandor Beretta
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | | | - Diego Orcioli-Silva
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; University of Campinas (UNICAMP), School of Applied Sciences (FCA), Laboratory of Applied Sport Physiology (LAFAE), Limeira, Brazil
| | - Vinicius Cavassano Zampier
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Rodrigo Vitório
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil.
| |
Collapse
|
30
|
Muacevic A, Adler JR. Comparison of Rehabilitative Interventions That Ameliorate Post-stroke Working Memory Deficit: A Systematic Review. Cureus 2022; 14:e30014. [PMID: 36348933 PMCID: PMC9637249 DOI: 10.7759/cureus.30014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
Stroke is one of the most common causes of disability in the world. It has sensory, motor, and cognitive symptoms. Many cognitive domains might get involved in a stroke. This systematic review focuses on working memory domain deficits after stroke and their various rehabilitation methods. This review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines. For this review, we have searched PubMed, Google Scholar, and Science Direct databases and screened thoroughly with the inclusion criteria of free full-text English papers in the last 10 years that have exclusively studied humans. The articles included in the search are randomized control trials (RCTs), observational studies, meta-analysis studies, systematic reviews, and traditional reviews. Consequent quality assessment was done using the most commonly used tools for each type of study and eight papers were selected. From these papers, full-text articles were studied, analyzed, and tabulated. We found five different rehabilitation methods: transcranial direct-current stimulation, computer-assisted cognitive rehabilitation, physical activity, goal setting, and multimodal rehabilitation. We found that goal setting, computer-assisted cognitive rehabilitation, and multimodal rehabilitation can improve working memory deficits. While transcranial direct current stimulation and physical activity were inconsistent, further studies are needed. The small sample size, no follow-up, the inclusion of only a few studies, the size of the stroke, and comorbid conditions like mild cognitive impairment, dementia, and depression were the main limitations of this study. Future reviews must include a larger number of studies with large sample sizes, including follow-up as an inclusion criterion. We need more clinical trials on these methods for better knowledge.
Collapse
|
31
|
Rosenich E, Hillier SL, Low A, Hordacre B. Cognitive reserve modifies the relationship between neural function, neural injury and upper-limb recovery after stroke. J Stroke Cerebrovasc Dis 2022; 31:106557. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022] Open
|
32
|
Varied Response of EEG Rhythm to Different tDCS Protocols and Lesion Hemispheres in Stroke Subjects with Upper Limb Dysfunction. Neural Plast 2022; 2022:7790730. [PMID: 35941932 PMCID: PMC9356883 DOI: 10.1155/2022/7790730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) provides a way to modulate the cortical activity and promote motor rehabilitation following stroke. However, evidence indicates that the response to tDCS is highly variable. This study was aimed at exploring rhythmic response of Electroencephalography (EEG) to three tDCS protocols in stroke subjects. We hypothesize that tDCS protocols may interact with stoke characteristics, and electrode placement may affect cortical activity which could be reflected by the EEG rhythm. 32 subjects with unilateral stroke were recruited to a single-blinded, randomized, and controlled crossover experiment. All of the subjects underwent four tDCS protocols (anodal (atDCS), cathodal (ctDCS), and bilateral tDCS (bi-tDCS) and sham) with an interval of at least 1 week. Resting-state EEG was acquired before and after the stimulation. We tested the change of EEG spectral power after tDCS and the difference of change among four protocols using the paired-sample t-test and repeated measures analysis of variance. Then, we investigated the clinical factors affecting the above changes using the linear and quadratic regression model. According to the results, EEG responded to atDCS and bi-tDCS protocols on alpha and beta rhythm and subjects with a left lesion had higher response than those with the right lesion. Besides that, the change of alpha and beta power after atDCS and of beta power after bi-tDCS showed association with clinical characteristics only in subjects with the left lesion. In conclusion, the study found varied EEG response with different protocols, lesion hemispheres, and other clinical characteristics supporting the individualized cortical oscillatory effect induced by tDCS.
Collapse
|
33
|
Traumatic Brain Magnetic Resonance Imaging Feature Extraction Based on Variable Model Algorithm in Stroke Examination. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4524958. [PMID: 35685662 PMCID: PMC9170432 DOI: 10.1155/2022/4524958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to explore the diagnostic value of different sequence scanning of nonparametric variable model-based cranial magnetic resonance imaging (MRI) for ischemic stroke. A histogram analysis-based nonparametric variable model was proposed first, which was compared with the parametric deformation (PD) model and geometric deformation (GD) model. Then, 116 patients with acute ischemic stroke were selected as the research subjects. Routine MRI (T2WI, T1WI, FLAIR, DWI, SWI, and 3D TOF MRA) and MR SCALE-PWI were performed. The results showed that the nonparametric variable model algorithm was relatively complete in the actual segmentation results of MRI images, and the display clarity of lesions was better than PD and GD algorithms. The diagnostic sensitivity, specificity, and overall performance of the variable model algorithm were significantly higher than those of the other two algorithms (P < 0.05). According to ROC curve analysis, the AUC areas of DWI, SWI, 3D TOF MRA, and MR SCALE-PWI for the diagnosis of ischemic penumbra were 0.793, 0.825, 0.871, and 0.933, respectively. In summary, the segmentation results of MRI images by the nonparametric variable model based on histogram analysis were relatively complete, and the clarity of lesions was better than that of the traditional model. MRI images can effectively identify the occurrence of ischemic stroke. Moreover, MR SCALE-PWI had a good early identification effect on ischemic penumbra, which can reduce unnecessary treatment for patients.
Collapse
|
34
|
Wong PL, Yang YR, Tang SC, Huang SF, Wang RY. Comparing different montages of transcranial direct current stimulation on dual-task walking and cortical activity in chronic stroke: double-blinded randomized controlled trial. BMC Neurol 2022; 22:119. [PMID: 35337288 PMCID: PMC8951706 DOI: 10.1186/s12883-022-02644-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation to modulate cortical activity for improving motor function. However, the different tDCS applications for modulating cortical activity and dual task gait performance in chronic stroke have not yet been investigated. This study investigated the effects of different tDCS applications on dual task gait performance and contralesional M1 activation in chronic stroke. METHODS Forty-eight participants were randomized to anodal, bilateral, cathodal, and sham tDCS groups. Each group received 20 min of tDCS stimulation, except the sham group. Gait performance was measured by GaitRite system during cognitive dual task (CDT) walking, motor dual task (MDT) walking, and single walking (SW). Contralesional M1 activity of unaffected tibialis anterior (TA) was measured using transcranial magnetic stimulation (TMS). Intragroup difference was analyzed by Wilconxon sign ranks test with Bonferroni correction, and Kruskal-Wallis one-way analysis of variance by ranks was used for intergroup comparisons, followed by post-hoc Mann-Whitney U tests with Bonferroni correction. RESULTS The bilateral tDCS (p = 0.017) and cathodal tDCS (p = 0.010) improved the CDT walking speed more than sham group. The bilateral tDCS (p = 0.048) and cathodal tDCS (p = 0.048) also improved the MDT walking speed more than sham group. Furthermore, bilateral tDCS (p = 0.012) and cathodal tDCS (p = 0.040) increased the silent period (SP) more than the anodal and sham group. Thus, one-session of bilateral and cathodal tDCS improved dual task walking performance paralleled with increasing contralesional corticomotor inhibition in chronic stroke. CONCLUSIONS Our results indicate that one-session of bilateral and cathodal tDCS increased contralesional corticomotor inhibition and improved dual task gait performance in chronic stroke. TRIAL REGISTRATION Thai Clinical Trials Registry (TCTR20180116001). Registered prospectively on 16th Jan, 2018 at http://www.thaiclinicaltrials.org .
Collapse
Affiliation(s)
- Pei-Ling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shun-Chang Tang
- Division of Nerve Repair- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shi-Fong Huang
- Division of Nerve Repair- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
35
|
A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn 2022; 16:17-41. [PMID: 35126769 PMCID: PMC8807775 DOI: 10.1007/s11571-021-09689-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/25/2021] [Accepted: 05/31/2021] [Indexed: 02/03/2023] Open
Abstract
Brain network analysis is one efficient tool in exploring human brain diseases and can differentiate the alterations from comparative networks. The alterations account for time, mental states, tasks, individuals, and so forth. Furthermore, the changes determine the segregation and integration of functional networks that lead to network reorganization (or reconfiguration) to extend the neuroplasticity of the brain. Exploring related brain networks should be of interest that may provide roadmaps for brain research and clinical diagnosis. Recent electroencephalogram (EEG) studies have revealed the secrets of the brain networks and diseases (or disorders) within and between subjects and have provided instructive and promising suggestions and methods. This review summarized the corresponding algorithms that had been used to construct functional or effective networks on the scalp and cerebral cortex. We reviewed EEG network analysis that unveils more cognitive functions and neural disorders of the human and then explored the relationship between brain science and artificial intelligence which may fuel each other to accelerate their advances, and also discussed some innovations and future challenges in the end.
Collapse
|
36
|
de Oliveira PCA, de Araújo TAB, Machado DGDS, Rodrigues AC, Bikson M, Andrade SM, Okano AH, Simplicio H, Pegado R, Morya E. Transcranial Direct Current Stimulation on Parkinson's Disease: Systematic Review and Meta-Analysis. Front Neurol 2022; 12:794784. [PMID: 35082749 PMCID: PMC8785799 DOI: 10.3389/fneur.2021.794784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for Parkinson's disease (PD) is still a challenge. Thus, there is a need to synthesize available results, analyze methodologically and statistically, and provide evidence to guide tDCS in PD. Objective: Investigate isolated tDCS effect in different brain areas and number of stimulated targets on PD motor symptoms. Methods: A systematic review was carried out up to February 2021, in databases: Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor symptoms of PD were included. Results: Ten studies (n = 236) were included in meta-analysis and 25 studies (n = 405) in qualitative synthesis. The most frequently stimulated targets were dorsolateral prefrontal cortex and primary motor cortex. No significant effect was found among single targets on motor outcomes: Unified Parkinson's Disease Rating Scale (UPDRS) III – motor aspects (MD = −0.98%, 95% CI = −10.03 to 8.07, p = 0.83, I2 = 0%), UPDRS IV – dyskinesias (MD = −0.89%, CI 95% = −3.82 to 2.03, p = 0.55, I2 = 0%) and motor fluctuations (MD = −0.67%, CI 95% = −2.45 to 1.11, p = 0.46, I2 = 0%), timed up and go – gait (MD = 0.14%, CI 95% = −0.72 to 0.99, p = 0.75, I2 = 0%), Berg Balance Scale – balance (MD = 0.73%, CI 95% = −1.01 to 2.47, p = 0.41, I2 = 0%). There was no significant effect of single vs. multiple targets in: UPDRS III – motor aspects (MD = 2.05%, CI 95% = −1.96 to 6.06, p = 0.32, I2 = 0%) and gait (SMD = −0.05%, 95% CI = −0.28 to 0.17, p = 0.64, I2 = 0%). Simple univariate meta-regression analysis between treatment dosage and effect size revealed that number of sessions (estimate = −1.7, SE = 1.51, z-score = −1.18, p = 0.2, IC = −4.75 to 1.17) and cumulative time (estimate = −0.07, SE = 0.07, z-score = −0.99, p = 0.31, IC = −0.21 to 0.07) had no significant association. Conclusion: There was no significant tDCS alone short-term effect on motor function, balance, gait, dyskinesias or motor fluctuations in Parkinson's disease, regardless of brain area or targets stimulated.
Collapse
Affiliation(s)
- Paloma Cristina Alves de Oliveira
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Thiago Anderson Brito de Araújo
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | | | - Abner Cardoso Rodrigues
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | | | - Alexandre Hideki Okano
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Hougelle Simplicio
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil.,Rehabilitation Center, Anita Garibaldi Center for Education and Health, Santos Dumont Institute, Macaíba, Brazil.,Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoró, Brazil.,Neuron-Care Unit in Neurosurgery, Hospital Rio Grande, Natal, Brazil
| | - Rodrigo Pegado
- Program in Rehabilitation Science, Program in Health Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Edgard Morya
- Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| |
Collapse
|
37
|
Fathi Azar E, Hosseinzadeh S, Nosrat Abadi M, Sayad Nasiri M, Haghgoo HA. Impact of Psychosocial Occupational Therapy Combined with Anodal Transcranial Direct Current Stimulation to the Left Dorsolateral Prefrontal Cortex on the Cognitive Performance of Patients with Schizophrenia: A Randomized Controlled Trial. Hong Kong J Occup Ther 2022; 34:121-131. [PMID: 34987350 PMCID: PMC8721578 DOI: 10.1177/15691861211065155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background The most common cognitive dysfunctions in patients with schizophrenia are information processing, memory, and learning. Based on the hypothesis of rehabilitation and brain stimulation in memory and learning, adding a form of neuromodulation to conventional rehabilitation might increase the effectiveness of treatments. Aims To explore the effects of psychosocial occupational therapy combined with anodal Transcranial Direct Current Stimulation (tDCS) on cognitive performance in patients with Schizophrenia. Methods Twenty-four patients diagnosed with schizophrenia were randomized into the experimental and control groups. We used The Cambridge Neuropsychological Test Automated Battery (CANTAB) and the Loewenstein Occupational Therapy Cognitive Assessment battery (LOTCA) to assess spatial recognition, attention, visual memory, learning abilities, and high-level cognitive functions like problem-solving. All participants received customized psychosocial occupational therapy activities. Furthermore, the experimental group received 12 sessions of active anodal tDCS for 20 minutes with 2 mA intensity on the left dorsolateral prefrontal cortex (DLPFC) while the patients in the sham group received sham tDCS. Results Combining tDCS to conventional psychosocial occupational therapy resulted in a significant increase in spatial memory, visual learning, and attention. Conclusions Anodal tDCS on the left DLPFC improved visual memory, attention, and learning abilities. Contrary to our expectations, we could not find any changes in complex and more demanding cognitive functions.
Collapse
Affiliation(s)
- Elahe Fathi Azar
- MSc in Occupational Therapy, The University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Samaneh Hosseinzadeh
- Biostatics Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Nosrat Abadi
- Clinical Psychology Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohamad Sayad Nasiri
- Assistant Professor of Neurology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hojjat Allah Haghgoo
- Occupational Therapy Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Hojjat Allah Haghgoo, Occupational Therapy Department, The University of Social Welfare and Rehabilitation Sciences, Kodakyar st.,Velenjak, Tehran, 1985713871, Iran.
| |
Collapse
|
38
|
Lin Y, Liu J, Shi W. Interactive relationship between neuronal circuitry and glioma: A narrative review. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_15_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Yang C, Zhang T, Huang K, Xiong M, Liu H, Wang P, Zhang Y. Increased both cortical activation and functional connectivity after transcranial direct current stimulation in patients with post-stroke: A functional near-infrared spectroscopy study. Front Psychiatry 2022; 13:1046849. [PMID: 36569623 PMCID: PMC9784914 DOI: 10.3389/fpsyt.2022.1046849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies have shown that cognitive impairment is common after stroke. Transcranial direct current stimulation (tDCS) is a promising tool for rehabilitating cognitive impairment. This study aimed to investigate the effects of tDCS on the rehabilitation of cognitive impairment in patients with stroke. METHODS Twenty-two mild-moderate post-stroke patients with cognitive impairments were treated with 14 tDCS sessions. A total of 14 healthy individuals were included in the control group. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Cortical activation was assessed using functional near-infrared spectroscopy (fNIRS) during the verbal fluency task (VFT). RESULTS The cognitive function of patients with stroke, as assessed by the MMSE and MoCA scores, was lower than that of healthy individuals but improved after tDCS. The cortical activation of patients with stroke was lower than that of healthy individuals in the left superior temporal cortex (lSTC), right superior temporal cortex (rSTC), right dorsolateral prefrontal cortex (rDLPFC), right ventrolateral prefrontal cortex (rVLPFC), and left ventrolateral prefrontal cortex (lVLPFC) cortical regions. Cortical activation increased in the lSTC cortex after tDCS. The functional connectivity (FC) between the cerebral hemispheres of patients with stroke was lower than that of healthy individuals but increased after tDCS. CONCLUSION The cognitive and brain functions of patients with mild-to-moderate stroke were damaged but recovered to a degree after tDCS. Increased cortical activation and increased FC between the bilateral cerebral hemispheres measured by fNIRS are promising biomarkers to assess the effectiveness of tDCS in stroke.
Collapse
Affiliation(s)
- Caihong Yang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,School of Psychology, Central China Normal University, Wuhan, Hubei, China
| | - Tingyu Zhang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kaiqi Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Menghui Xiong
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huiyu Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Rehabilitation Medicine, Tianyang District People's Hospital, Baise, Guangxi, China
| | - Yan Zhang
- School of Educational Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
40
|
Mitsutake T, Imura T, Hori T, Sakamoto M, Tanaka R. Effects of Combining Online Anodal Transcranial Direct Current Stimulation and Gait Training in Stroke Patients: A Systematic Review and Meta-Analysis. Front Hum Neurosci 2021; 15:782305. [PMID: 34955795 PMCID: PMC8708562 DOI: 10.3389/fnhum.2021.782305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/25/2021] [Indexed: 01/17/2023] Open
Abstract
Objective: Combining transcranial direct current stimulation (tDCS) and repetitive gait training may be effective for gait performance recovery after stroke; however, the timing of stimulation to obtain the best outcomes remains unclear. We performed a systematic review and meta-analysis to establish evidence for changes in gait performance between online stimulation (tDCS and repetitive gait training simultaneously) and offline stimulation (gait training after tDCS). Methods: We comprehensively searched the electronic databases Medline, Cochrane Central Register of Controlled Trials, Physiotherapy Evidence Database, and Cumulative Index to Nursing and Allied Health Literature, and included studies that combined cases of anodal tDCS with motor-related areas of the lower limbs and gait training. Nine studies fulfilled the inclusion criteria and were included in the systematic review, of which six were included in the meta-analysis. Result: The pooled effect estimate showed that anodal tDCS significantly improved the 10-m walking test (p = 0.04; I 2 = 0%) and 6-min walking test (p = 0.001; I 2 = 0%) in online stimulation compared to sham tDCS. Conclusion: Our findings suggested that simultaneous interventions may effectively improve walking ability. However, we cannot draw definitive conclusions because of the small sample size. More high-quality studies are needed on the effects of online stimulation, including various stimulation parameters.
Collapse
Affiliation(s)
- Tsubasa Mitsutake
- Department of Physical Therapy, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Takeshi Imura
- Department of Rehabilitation, Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima, Japan
| | - Tomonari Hori
- Department of Rehabilitation, Fukuyama Rehabilitation Hospital, Hiroshima, Japan
| | - Maiko Sakamoto
- Education and Research Centre for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ryo Tanaka
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
41
|
Cavendish BA, de Lima MFR, Perícoli L, Buratto LG. Effects of combining retrieval practice and tDCS over long-term memory: A randomized controlled trial. Brain Cogn 2021; 156:105807. [PMID: 34949566 DOI: 10.1016/j.bandc.2021.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
The ability to retain new information is important in daily life. In particular, two techniques have shown promise for improving long-term retention: retrieval practice (RP), which consists of actively retrieving information from long-term memory to make it more accessible in the future; and transcranial direct current stimulation (tDCS), which consists of non-invasive brain stimulation that modulates cognitive processes by increasing and decreasing neuronal excitability. Previous studies have implicated the left dorsolateral prefrontal cortex (l-dlPFC) in memory encoding and memory organization. We examined whether RP associated with a single 20-min tDCS session over the l-dlPFC could improve long-term memory retention. Participants (N = 119) repeatedly studied a list of related words either via RP or via restudy, while undergoing either anodal or sham stimulation. Participants returned 2 days later for a free-recall test. Results showed that the RP group outperformed the restudy group in all measures, regardless of stimulation type. Also, recall organization was higher in the RP group than in the restudy group. The data support previous findings and indicate that RP may enhance performance by improving the organization of the to-be-remembered list items.
Collapse
Affiliation(s)
- Beatriz Araújo Cavendish
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasília, Brasília 70.910-900, Brazil.
| | | | - Lara Perícoli
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasília, Brasília 70.910-900, Brazil
| | - Luciano Grüdtner Buratto
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasília, Brasília 70.910-900, Brazil
| |
Collapse
|
42
|
Shi X, Guo Y, Zhu L, Wu W, Hordacre B, Su X, Wang Q, Chen X, Lan X, Dang G. Electroencephalographic connectivity predicts clinical response to repetitive transcranial magnetic stimulation in patients with insomnia disorder. Sleep Med 2021; 88:171-179. [PMID: 34773788 DOI: 10.1016/j.sleep.2021.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence suggests that low frequency repetitive transcranial magnetic stimulation (rTMS), which generally decreases cortical excitability and remodels plastic connectivity, improves sleep quality in patients with insomnia disorder. However, the effects of rTMS vary substantially across individuals and treatment is sometimes unsatisfactory, calling for biomarkers for predicting clinical outcomes. OBJECTIVE This study aimed to investigate whether functional connectivity of the target network in electroencephalography is associated with the clinical response to low frequency rTMS in patients with insomnia disorder. METHODS Twenty-five patients with insomnia disorder were subjected to 10 sessions of treatment with 1 Hz rTMS over the right dorsolateral prefrontal cortex. Resting-state electroencephalography was collected before rTMS. Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Mini-Mental State Exam were performed before and after rTMS treatment, with a follow-up after one month. Electroencephalographic connectivity was measured by the power envelope connectivity at the source level. Partial least squares regression identified models of connectivity that maximally accounted for the rTMS response. RESULTS Scores of Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale were decreased after rTMS and one-month later. Baseline weaker connectivity of a network in the beta and alpha bands between a brain region approximating the stimulated right dorsolateral prefrontal cortex and areas located in the frontal, insular, and limbic cortices was associated with a greater change in Pittsburgh Sleep Quality Index and Hamilton Depression Rating Scale following rTMS. CONCLUSIONS Low frequency rTMS could improve sleep quality and depressive moods in patients with insomnia disorder. Moreover, electroencephalographic functional connectivity would potentially be a robust biomarker for predicting the therapeutic effects.
Collapse
Affiliation(s)
- Xue Shi
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen, 518020, Guangdong, China
| | - Lin Zhu
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Wei Wu
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Australia
| | - Xiaolin Su
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Qian Wang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoxia Chen
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoyong Lan
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
43
|
Zhu S, Wang M, Ma M, Guan H, Zhang S. An Optimization Approach for Transcranial Direct Current Stimulation Using Nondominated Sorting Genetic Algorithm II. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4337-4340. [PMID: 34892181 DOI: 10.1109/embc46164.2021.9629971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial direct current stimulation (tDCS) delivers weak current into the brain to modulate neural activities. Many methods have been proposed to determine electrode positions and stimulation intensities. Due to the trade-off between intensity and focality, it is actually a multi-objective optimization problem that has a set of optimal solutions. However, traditional methods can produce only one solution at each time, and many parameters need to be determined by experience. In this study, we proposed the nondominated sorting genetic algorithm II (NSGA-II) to solve the current optimization problem of multi-electrode tDCS. We also compared the representative solutions with LCMV solutions. The result shows that a group of solutions close to the optimal front can be obtained just in only one run without any prior knowledge.
Collapse
|
44
|
Ica R, Munteanu CV, Vukelic Z, Zamfir AD. High-resolution mass spectrometry reveals a complex ganglioside pattern and novel polysialylated structures associated with the human motor cortex. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:205-214. [PMID: 34516313 DOI: 10.1177/14690667211040912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have developed here a superior methodology based on high-resolution mass spectrometry for screening and fragmentation analysis of gangliosides extracted and purified from the human motor cortex . The experiments, conducted on a nanoelectrospray Orbitrap mass spectroscope in the negative ion mode, allowed the discrimination in the native mixture extracted from human motor cortex of no less than 83 different gangliosides, which represents the highest number of structures identified so far in this brain region. The spectral data, acquired in high-resolution mass spectrometry mode with a remarkable sensitivity and an average mass accuracy of 4.48 ppm, also show that the gangliosidome of motor cortex is generally characterized by species exhibiting a much higher degree of sialylation than previously known. Motor cortex was found dominated by complex structures with a sialylation degree ≥3, exhibiting long saccharide chains, in the G1 class. Fucogangliosides and species with the glycan chain elongated by either O-acetylation and/or acetate anion attachments were also detected; the later modification was for the first time discovered in this brain region. Of major significance is the identification of hepta and octasialylated species of GS1 and GO1 type, which are among the structures with the longest oligosaccharide chain discovered so far in the human brain. In the last stage of research, tandem mass spectrometry performed by higher energy collision dissociation provided structural data documenting the occurrence of GT1b (d18:1/20:0) isomer in the human motor cortex.
Collapse
Affiliation(s)
- Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Romania
- Faculty of Physics, 124255West University of Timisoara, Romania
| | | | - Zeljka Vukelic
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Croatia
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Romania
- "Aurel Vlaicu"University of Arad, Romania
| |
Collapse
|
45
|
Mariner J, Loetscher T, Hordacre B. Parietal Cortex Connectivity as a Marker of Shift in Spatial Attention Following Continuous Theta Burst Stimulation. Front Hum Neurosci 2021; 15:718662. [PMID: 34566602 PMCID: PMC8455944 DOI: 10.3389/fnhum.2021.718662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Non-invasive brain stimulation is a useful tool to probe brain function and provide therapeutic treatments in disease. When applied to the right posterior parietal cortex (PPC) of healthy participants, it is possible to temporarily shift spatial attention and mimic symptoms of spatial neglect. However, the field of brain stimulation is plagued by issues of high response variability. The aim of this study was to investigate baseline functional connectivity as a predictor of response to an inhibitory brain stimulation paradigm applied to the right PPC. In fourteen healthy adults (9 female, aged 24.8 ± 4.0 years) we applied continuous theta burst stimulation (cTBS) to suppress activity in the right PPC. Resting state functional connectivity was quantified by recording electroencephalography and assessing phase consistency. Spatial attention was assessed before and after cTBS with the Landmark Task. Finally, known determinants of response to brain stimulation were controlled for to enable robust investigation of the influence of resting state connectivity on cTBS response. We observed significant inter-individual variability in the behavioral response to cTBS with 53.8% of participants demonstrating the expected rightward shift in spatial attention. Baseline high beta connectivity between the right PPC, dorsomedial pre-motor region and left temporal-parietal region was strongly associated with cTBS response (R2 = 0.51). Regression analysis combining known cTBS determinants (age, sex, motor threshold, physical activity, stress) found connectivity between the right PPC and left temporal-parietal region was the only significant variable (p = 0.011). These results suggest baseline resting state functional connectivity is a strong predictor of a shift in spatial attention following cTBS. Findings from this study help further understand the mechanism by which cTBS modifies cortical function and could be used to improve the reliability of brain stimulation protocols.
Collapse
Affiliation(s)
- Jessica Mariner
- Innovation, IMPlementation And Clinical Translation in Health (IIMPACT in Health), Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Tobias Loetscher
- Behavior-Brain-Body Research Center, Justice and Society, University of South Australia, Adelaide, SA, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation And Clinical Translation in Health (IIMPACT in Health), Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
46
|
Storch S, Samantzis M, Balbi M. Driving Oscillatory Dynamics: Neuromodulation for Recovery After Stroke. Front Syst Neurosci 2021; 15:712664. [PMID: 34366801 PMCID: PMC8339272 DOI: 10.3389/fnsys.2021.712664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of death and disability worldwide, with limited treatments being available. However, advances in optic methods in neuroscience are providing new insights into the damaged brain and potential avenues for recovery. Direct brain stimulation has revealed close associations between mental states and neuroprotective processes in health and disease, and activity-dependent calcium indicators are being used to decode brain dynamics to understand the mechanisms underlying these associations. Evoked neural oscillations have recently shown the ability to restore and maintain intrinsic homeostatic processes in the brain and could be rapidly deployed during emergency care or shortly after admission into the clinic, making them a promising, non-invasive therapeutic option. We present an overview of the most relevant descriptions of brain injury after stroke, with a focus on disruptions to neural oscillations. We discuss the optical technologies that are currently used and lay out a roadmap for future studies needed to inform the next generation of strategies to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Sven Storch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Hu M, Cheng HJ, Ji F, Chong JSX, Lu Z, Huang W, Ang KK, Phua KS, Chuang KH, Jiang X, Chew E, Guan C, Zhou JH. Brain Functional Changes in Stroke Following Rehabilitation Using Brain-Computer Interface-Assisted Motor Imagery With and Without tDCS: A Pilot Study. Front Hum Neurosci 2021; 15:692304. [PMID: 34335210 PMCID: PMC8322606 DOI: 10.3389/fnhum.2021.692304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-computer interface-assisted motor imagery (MI-BCI) or transcranial direct current stimulation (tDCS) has been proven effective in post-stroke motor function enhancement, yet whether the combination of MI-BCI and tDCS may further benefit the rehabilitation of motor functions remains unknown. This study investigated brain functional activity and connectivity changes after a 2 week MI-BCI and tDCS combined intervention in 19 chronic subcortical stroke patients. Patients were randomized into MI-BCI with tDCS group and MI-BCI only group who underwent 10 sessions of 20 min real or sham tDCS followed by 1 h MI-BCI training with robotic feedback. We derived amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) from resting-state functional magnetic resonance imaging (fMRI) data pre- and post-intervention. At baseline, stroke patients had lower ALFF in the ipsilesional somatomotor network (SMN), lower ReHo in the contralesional insula, and higher ALFF/Reho in the bilateral posterior default mode network (DMN) compared to age-matched healthy controls. After the intervention, the MI-BCI only group showed increased ALFF in contralesional SMN and decreased ALFF/Reho in the posterior DMN. In contrast, no post-intervention changes were detected in the MI-BCI + tDCS group. Furthermore, higher increases in ALFF/ReHo/FC measures were related to better motor function recovery (measured by the Fugl-Meyer Assessment scores) in the MI-BCI group while the opposite association was detected in the MI-BCI + tDCS group. Taken together, our findings suggest that brain functional re-normalization and network-specific compensation were found in the MI-BCI only group but not in the MI-BCI + tDCS group although both groups gained significant motor function improvement post-intervention with no group difference. MI-BCI and tDCS may exert differential or even opposing impact on brain functional reorganization during post-stroke motor rehabilitation; therefore, the integration of the two strategies requires further refinement to improve efficacy and effectiveness.
Collapse
Affiliation(s)
- Mengjiao Hu
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore.,Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao-Ju Cheng
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Fang Ji
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanna Su Xian Chong
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhongkang Lu
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Weimin Huang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore.,School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kok Soon Phua
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore.,Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Xudong Jiang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Effie Chew
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Juan Helen Zhou
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Hordacre B, Goldsworthy MR, Graetz L, Ridding MC. Motor network connectivity predicts neuroplastic response following theta burst stimulation in healthy adults. Brain Struct Funct 2021; 226:1893-1907. [PMID: 34043076 DOI: 10.1007/s00429-021-02299-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/10/2021] [Indexed: 01/17/2023]
Abstract
A patterned repetitive transcranial magnetic stimulation protocol, known as continuous theta burst stimulation (cTBS), can suppress corticospinal excitability via mechanisms that appear similar to long-term depression synaptic plasticity. Despite much potential, this technique is currently limited by substantial response variability. The purpose of this study was to investigate whether baseline resting state functional connectivity is a determinant of response to cTBS. Eighteen healthy young adults participated in up to three experimental sessions. Single-pulse transcranial magnetic stimulation was used to quantify change in corticospinal excitability following cTBS. Three minutes of resting electroencephalographic activity was recorded, and functional connectivity was estimated using the debiased weighted phase lag index across different frequency bands. Partial least squares regression identified models of connectivity between a seed region (C3) and the whole scalp that maximally accounted for variance in cTBS responses. There was no group-level effect of a single cTBS train or spaced cTBS trains on corticospinal excitability (p = 0.092). A low beta frequency band model of connectivity accounted for the largest proportion of variance in spaced cTBS response (R2 = 0.50). Based on the low beta frequency model, a-priori regions of interest were identified and predicted 39% of variance in response to spaced cTBS at a subsequent session. Importantly, weaker connectivity between the seed electrode (C3) and a cluster approximating a frontocentral region was associated with greater spaced cTBS response (p = 0.02). It appears M1-frontocentral networks may have an important role in determining the effects of cTBS on corticospinal excitability.
Collapse
Affiliation(s)
- Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South, 5001, Australia.
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, The University of Adelaide, Adelaide, 5005, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lynton Graetz
- Lifespan Human Neurophysiology Group, Adelaide Medical School, The University of Adelaide, Adelaide, 5005, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Michael C Ridding
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South, 5001, Australia
| |
Collapse
|
49
|
Yang K, Xi X, Wang T, Wang J, Kong W, Zhao YB, Zhang Q. Effects of transcranial direct current stimulation on brain network connectivity and complexity in motor imagery. Neurosci Lett 2021; 757:135968. [PMID: 34023412 DOI: 10.1016/j.neulet.2021.135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
Related experiments have shown that transcranial direct current stimulation (tDCS) anodal stimulation of the brain's primary motor cortex (M1) and supplementary motor area (SMA) can improve the motor control and clinical manifestations of stroke patients with aphasia and dyskinesia. In this study, to explore the different effects of tDCS on the M1 and SMA in motor imagery, 35 healthy volunteers participated in a double-blind randomized controlled experiment. Five subjects underwent sham stimulation (control), 15 subjects underwent tDCS anode stimulation of the M1, and the remaining 15 subjects underwent tDCS anode stimulation of the SMA. The electroencephalogram data of the subjects' left- and right-hand motor imagery under different stimulation paradigms were recorded. We used a functional brain network and sample entropy to examine the different complexities and functional connectivities in subjects undergoing sham-tDCS and the two stimulation paradigms. The results show that tDCS anodal stimulation of the SMA produces less obvious differences in the motor preparation phase, while tDCS anodal stimulation of the M1 produces significant differences during the motor imaging task execution phase. The effect of tDCS on the motor area of the brain is significant, especially in the M1.
Collapse
Affiliation(s)
- Kangbo Yang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China.
| | - Ting Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Junhong Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Yun-Bo Zhao
- Department of Automation, University of Science and Technology of China, Hefei, 230026, China
| | - Qizhong Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
50
|
Hordacre B, McCambridge AB, Ridding MC, Bradnam LV. Can Transcranial Direct Current Stimulation Enhance Poststroke Motor Recovery? Development of a Theoretical Patient-Tailored Model. Neurology 2021; 97:170-180. [PMID: 33986136 DOI: 10.1212/wnl.0000000000012187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
New treatments that can facilitate neural repair and reduce persistent impairments have significant value in promoting recovery following stroke. One technique that has gained interest is transcranial direct current stimulation (tDCS) as early research suggested it could enhance plasticity and enable greater behavioral recovery. However, several studies have now identified substantial intersubject variability in response to tDCS and clinical trials revealed insufficient evidence of treatment effectiveness. A possible explanation for the varied and negative findings is that the physiologic model of stroke recovery that researchers have used to guide the application of tDCS-based treatments in stroke is overly simplistic and does not account for stroke heterogeneity or known determinants that affect the tDCS response. Here, we propose that tDCS could have a more clearly beneficial role in enhancing stroke recovery if greater consideration is given to individualizing treatment. By critically reviewing the proposed mechanisms of tDCS, stroke physiology across the recovery continuum, and known determinants of tDCS response, we propose a new, theoretical, patient-tailored approach to delivering tDCS after stroke. The proposed model includes a step-by-step principled selection strategy for identifying optimal neuromodulation targets and outlines key areas for further investigation. Tailoring tDCS treatment to individual neuroanatomy and physiology is likely our best chance at producing robust and meaningful clinical benefit for people with stroke and would therefore accelerate opportunities for clinical translation.
Collapse
Affiliation(s)
- Brenton Hordacre
- From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand.
| | - Alana B McCambridge
- From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand
| | - Michael C Ridding
- From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand
| | - Lynley V Bradnam
- From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand
| |
Collapse
|