1
|
Koyun AH, Wendiggensen P, Roessner V, Beste C, Stock AK. Effects of Catecholaminergic and Transcranial Direct Current Stimulation on Response Inhibition. Int J Neuropsychopharmacol 2024; 27:pyae023. [PMID: 38742426 PMCID: PMC11184454 DOI: 10.1093/ijnp/pyae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The principle of gain control determines the efficiency of neuronal processing and can be enhanced with pharmacological or brain stimulation methods. It is a key factor for cognitive control, but the degree of how much gain control may be enhanced underlies a physical limit. METHODS To investigate whether methylphenidate (MPH) and transcranial direct current stimulation (tDCS) share common underlying mechanisms and cognitive effects, we administered MPH and anodal tDCS (atDCS) over the right inferior frontal gyrus both separately and combined, while healthy adult participants (n = 104) performed a response selection and inhibition task. The recorded EEG data were analyzed with a focus on theta band activity, and source estimation analyses were conducted. RESULTS The behavioral data show that MPH and atDCS revealed interactive effects on the ability to inhibit responses. Both MPH and atDCS modulated task-related theta oscillations in the supplementary motor area when applied separately, making a common underlying mechanism likely. When both stimulation methods were combined, there was no doubling of effects in the supplementary motor area but a shift to inferior frontal areas in the cortical network responsible for theta-driven processing. CONCLUSIONS The results indicate that both MPH and atDCS likely share a common underlying neuronal mechanism, and interestingly, they demonstrate interactive effects when combined, which are most likely due to the physical limitations of gain control increases. The current study provides critical groundwork for future combined applications of MPH and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Anna Helin Koyun
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Paul Wendiggensen
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
2
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
3
|
Prochnow A, Mückschel M, Eggert E, Senftleben J, Frings C, Münchau A, Roessner V, Bluschke A, Beste C. The Ability to Voluntarily Regulate Theta Band Activity Affects How Pharmacological Manipulation of the Catecholaminergic System Impacts Cognitive Control. Int J Neuropsychopharmacol 2024; 27:pyae003. [PMID: 38181228 PMCID: PMC10810285 DOI: 10.1093/ijnp/pyae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The catecholaminergic system influences response inhibition, but the magnitude of the impact of catecholaminergic manipulation is heterogeneous. Theoretical considerations suggest that the voluntary modulability of theta band activity can explain this variance. The study aimed to investigate to what extent interindividual differences in catecholaminergic effects on response inhibition depend on voluntary theta band activity modulation. METHODS A total of 67 healthy adults were tested in a randomized, double-blind, cross-over study design. At each appointment, they received a single dose of methylphenidate or placebo and performed a Go/Nogo task with stimuli of varying complexity. Before the first appointment, the individual's ability to modulate theta band activity was measured. Recorded EEG data were analyzed using temporal decomposition and multivariate pattern analysis. RESULTS Methylphenidate effects and voluntary modulability of theta band activity showed an interactive effect on the false alarm rates of the different Nogo conditions. The multivariate pattern analysis revealed that methylphenidate effects interacted with voluntary modulability of theta band activity at a stimulus processing level, whereas during response selection methylphenidate effects interacted with the complexity of the Nogo condition. CONCLUSIONS The findings reveal that the individual's theta band modulability affects the responsiveness of an individual's catecholaminergic system to pharmacological modulation. Thus, the impact of pharmacological manipulation of the catecholaminergic system on cognitive control most likely depends on the existing ability to self-modulate relevant brain oscillatory patterns underlying the cognitive processes being targeted by pharmacological modulations.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jessica Senftleben
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology, Institute of Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
Guthrie OW, Yang L. Oral intake of carboxy alkyl ester improves attention: A randomized double-blind cross-over placebo-controlled study. Hum Psychopharmacol 2023; 38:e2885. [PMID: 37915240 DOI: 10.1002/hup.2885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE To test the null hypothesis that oral intake of the dietary supplement carboxy alkyl ester (CAE) would have no effect on attention as revealed by mean rapid visual information processing (RVIP) scores. METHODS In a randomized double-blind cross-over placebo-controlled trial, healthy participants (age 19-66 years) of both sexes were randomly assigned to consume 700 mg of CAE or 700 mg of placebo. They received baseline attention testing via the RVIP task. Then they consumed CAE or placebo followed by RVIP testing. Participants were then given a washout period where they did not consume CAE or placebo. Afterward, individuals who initially consumed CAE were given the placebo and those who initially consumed the placebo were given CAE. Finally, all participants were tested again via RVIP. RESULTS A priori statistical computation revealed that 30-day oral intake of CAE improved mean RVIP test scores (t = 2.4, p < .05) relative to that at baseline, which resulted in a rejection of the null hypothesis. CONCLUSIONS Daily oral intake of the CAE dietary supplement may boost attention and further research is now needed to confirm this observation.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, Arizona, USA
| | - Li Yang
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
5
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Warren CV, Kroll CF, Kopp B. Dopaminergic and norepinephrinergic modulation of endogenous event-related potentials: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 151:105221. [PMID: 37150485 DOI: 10.1016/j.neubiorev.2023.105221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Event-related potentials (ERPs) represent the cortical processing of sensory, motor or cognitive functions invoked by particular events or stimuli. A current theory posits that the catecholaminergic neurotransmitters dopamine (DA) and norepinephrine (NE) modulate a number of endogenous ERPs during various cognitive processes. This manuscript aims to evaluate a leading neurotransmitter hypothesis with a systematic overview and meta-analysis of pharmacologic DA and NE manipulation of specific ERPs in healthy subjects during executive function. Specifically, the frontally-distributed P3a, N2, and Ne/ERN (or error-related negativity) are supposedly modulated primarily by DA, whereas the parietally-distributed P3b is thought to be modulated by NE. Based on preceding research, we refer to this distinction between frontally-distributed DA-sensitive and parietally-distributed NE-sensitive ERP components as the Extended Neurobiological Polich (ENP) hypothesis. Our systematic review and meta-analysis indicate that this distinction is too simplistic and many factors interact with DA and NE to influence these specific ERPs. These may include genetic factors, the specific cognitive processes engaged, or elements of study design, i.e. session or sequence effects or data-analysis strategies.
Collapse
Affiliation(s)
- Claire V Warren
- Charlotte Fresenius Hochschule, Alte Rabenstraße 32, 20148 Hamburg, Germany; Professorship for Clinical Psychology, Helmut-Schmidt University/ Bundeswehr University Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany.
| | - Charlotte F Kroll
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Minderbroedersberg 4-6. P.O. Box 616, Maastricht, MD, 6200, The Netherlands
| | - Bruno Kopp
- Clinic für Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Jamous R, Takacs A, Frings C, Münchau A, Mückschel M, Beste C. Unsigned surprise but not reward magnitude modulates the integration of motor elements during actions. Sci Rep 2023; 13:5379. [PMID: 37009782 PMCID: PMC10068803 DOI: 10.1038/s41598-023-32508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
It seems natural that motor responses unfold smoothly and that we are able to easily concatenate different components of movements to achieve goal-directed actions. Theoretical frameworks suggest that different motor features have to be bound to each other to achieve a coherent action. Yet, the nature of the "glue" (i.e., bindings) between elements constituting a motor sequence and enabling a smooth unfolding of motor acts is not well understood. We examined in how far motor feature bindings are affected by reward magnitude or the effects of an unsigned surprise signal. We show that the consistency of action file binding strength is modulated by unsigned surprise, but not by reward magnitude. On a conceptual and theoretical level, the results provide links between frameworks, which have until now not been brought into connection. In particular, theoretical accounts stating that only the unexpectedness (surprisingness) is essential for action control are connected to meta-control accounts of human action control.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology Unit, Chair of General Psychology and Methodology, Faculty I - Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
9
|
Ghin F, Stock AK, Beste C. The importance of resource allocation for the interplay between automatic and cognitive control in response inhibition – an EEG source localization study. Cortex 2022; 155:202-217. [DOI: 10.1016/j.cortex.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
|
10
|
Konjusha A, Colzato L, Mückschel M, Beste C. Auricular Transcutaneous Vagus Nerve Stimulation Diminishes Alpha-Band-Related Inhibitory Gating Processes During Conflict Monitoring in Frontal Cortices. Int J Neuropsychopharmacol 2022; 25:457-467. [PMID: 35137108 PMCID: PMC9211011 DOI: 10.1093/ijnp/pyac013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pursuing goals is compromised when being confronted with interfering information. In such situations, conflict monitoring is important. Theoretical considerations on the neurobiology of response selection and control suggest that auricular transcutaneous vagus nerve stimulation (atVNS) should modulate conflict monitoring. However, the neurophysiological-functional neuroanatomical underpinnings are still not understood. METHODS AtVNS was applied in a randomized crossover study design (n = 45). During atVNS or sham stimulation, conflict monitoring was assessed using a Flanker task. EEG data were recorded and analyzed with focus on theta and alpha band activity. Beamforming was applied to examine functional neuroanatomical correlates of atVNS-induced EEG modulations. Moreover, temporal EEG signal decomposition was applied to examine different coding levels in alpha and theta band activity. RESULTS AtVNS compromised conflict monitoring processes when it was applied at the second appointment in the crossover study design. On a neurophysiological level, atVNS exerted specific effects because only alpha-band activity was modulated. Alpha-band activity was lower in middle and superior prefrontal regions during atVNS stimulation and thus lower when there was also a decline in task performance. The same direction of alpha-band modulations was evident in fractions of the alpha-band activity coding stimulus-related processes, stimulus-response translation processes, and motor response-related processes. CONCLUSIONS The combination of prior task experience and atVNS compromises conflict monitoring processes. This is likely due to reduction of the alpha-band-associated inhibitory gating process on interfering information in frontal cortices. Future research should pay considerable attention to boundary conditions affecting the direction of atVNS effects.
Collapse
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Germany
| | - Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Germany
- Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Germany
- Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
11
|
Pscherer C, Mückschel M, Bluschke A, Beste C. Resting-state theta activity is linked to information content-specific coding levels during response inhibition. Sci Rep 2022; 12:4530. [PMID: 35296740 PMCID: PMC8927579 DOI: 10.1038/s41598-022-08510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
The neurophysiological processes underlying the inhibition of impulsive responses have been studied extensively. While also the role of theta oscillations during response inhibition is well examined, the relevance of resting-state theta activity for inhibitory control processes is largely unknown. We test the hypothesis that there are specific relationships between resting-state theta activity and sensory/motor coding levels during response inhibition using EEG methods. We show that resting theta activity is specifically linked to the stimulus-related fraction of neurophysiological activity in specific time windows during motor inhibition. In contrast, concomitantly coded processes related to decision-making or response selection as well as the behavioral inhibition performance were not associated with resting theta activity. Even at the peak of task-related theta power, where task-related theta activity and resting theta activity differed the most, there was still predominantly a significant correlation between both types of theta activity. This suggests that aspects similar to resting dynamics are evident in the proportion of inhibition-related neurophysiological activity that reflects an “alarm” signal, whose function is to process and indicate the need for cognitive control. Thus, specific aspects of task-related theta power may build upon resting theta activity when cognitive control is necessary.
Collapse
Affiliation(s)
- Charlotte Pscherer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| |
Collapse
|
12
|
Eggert E, Bluschke A, Takacs A, Kleimaker M, Münchau A, Roessner V, Mückschel M, Beste C. Perception-Action Integration Is Modulated by the Catecholaminergic System Depending on Learning Experience. Int J Neuropsychopharmacol 2021; 24:592-600. [PMID: 33730752 PMCID: PMC8299823 DOI: 10.1093/ijnp/pyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/31/2021] [Accepted: 03/13/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The process underlying the integration of perception and action is a focal topic in neuroscientific research and cognitive frameworks such as the theory of event coding have been developed to explain the mechanisms of perception-action integration. The neurobiological underpinnings are poorly understood. While it has been suggested that the catecholaminergic system may play a role, there are opposing predictions regarding the effects of catecholamines on perception-action integration. METHODS Methylphenidate (MPH) is a compound commonly used to modulate the catecholaminergic system. In a double-blind, randomized crossover study design, we examined the effect of MPH (0.25 mg/kg) on perception-action integration using an established "event file coding" paradigm in a group of n = 45 healthy young adults. RESULTS The data reveal that, compared with the placebo, MPH attenuates binding effects based on the established associations between stimuli and responses, provided participants are already familiar with the task. However, without prior task experience, MPH did not modulate performance compared with the placebo. CONCLUSIONS Catecholamines and learning experience interactively modulate perception-action integration, especially when perception-action associations have to be reconfigured. The data suggest there is a gain control-based mechanism underlying the interactive effects of learning/task experience and catecholaminergic activity during perception-action integration.
Collapse
Affiliation(s)
- Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | | | | | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
13
|
Takács Á, Kóbor A, Kardos Z, Janacsek K, Horváth K, Beste C, Nemeth D. Neurophysiological and functional neuroanatomical coding of statistical and deterministic rule information during sequence learning. Hum Brain Mapp 2021; 42:3182-3201. [PMID: 33797825 PMCID: PMC8193527 DOI: 10.1002/hbm.25427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Humans are capable of acquiring multiple types of information presented in the same information stream. It has been suggested that at least two parallel learning processes are important during learning of sequential patterns-statistical learning and rule-based learning. Yet, the neurophysiological underpinnings of these parallel learning processes are not fully understood. To differentiate between the simultaneous mechanisms at the single trial level, we apply a temporal EEG signal decomposition approach together with sLORETA source localization method to delineate whether distinct statistical and rule-based learning codes can be distinguished in EEG data and can be related to distinct functional neuroanatomical structures. We demonstrate that concomitant but distinct aspects of information coded in the N2 time window play a role in these mechanisms: mismatch detection and response control underlie statistical learning and rule-based learning, respectively, albeit with different levels of time-sensitivity. Moreover, the effects of the two learning mechanisms in the different temporally decomposed clusters of neural activity also differed from each other in neural sources. Importantly, the right inferior frontal cortex (BA44) was specifically implicated in visuomotor statistical learning, confirming its role in the acquisition of transitional probabilities. In contrast, visuomotor rule-based learning was associated with the prefrontal gyrus (BA6). The results show how simultaneous learning mechanisms operate at the neurophysiological level and are orchestrated by distinct prefrontal cortical areas. The current findings deepen our understanding on the mechanisms of how humans are capable of learning multiple types of information from the same stimulus stream in a parallel fashion.
Collapse
Affiliation(s)
- Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Andrea Kóbor
- Brain Imaging CentreResearch Centre for Natural SciencesBudapestHungary
| | - Zsófia Kardos
- Brain Imaging CentreResearch Centre for Natural SciencesBudapestHungary
- Department of Cognitive ScienceBudapest University of Technology and EconomicsBudapestHungary
| | - Karolina Janacsek
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and PsychologyResearch Centre for Natural SciencesBudapestHungary
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human SciencesUniversity of GreenwichLondonUK
| | - Kata Horváth
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and PsychologyResearch Centre for Natural SciencesBudapestHungary
- Doctoral School of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Dezso Nemeth
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and PsychologyResearch Centre for Natural SciencesBudapestHungary
- Lyon Neuroscience Research Center (CRNL)Université de LyonLyonFrance
| |
Collapse
|
14
|
Adelhöfer N, Stock AK, Beste C. Anodal tDCS modulates specific processing codes during conflict monitoring associated with superior and middle frontal cortices. Brain Struct Funct 2021; 226:1335-1351. [PMID: 33656578 PMCID: PMC8036188 DOI: 10.1007/s00429-021-02245-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Conflict monitoring processes are central for cognitive control. Neurophysiological correlates of conflict monitoring (i.e. the N2 ERP) likely represent a mixture of different cognitive processes. Based on theoretical considerations, we hypothesized that effects of anodal tDCS (atDCS) in superior frontal areas affect specific subprocesses in neurophysiological activity during conflict monitoring. To investigate this, young healthy adults performed a Simon task while EEG was recorded. atDCS and sham tDCS were applied in a single-blind, cross-over study design. Using temporal signal decomposition in combination with source localization analyses, we demonstrated that atDCS effects on cognitive control are very specific: the detrimental effect of atDCS on response speed was largest in case of response conflicts. This however only showed in aspects of the decomposed N2 component, reflecting stimulus-response translation processes. In contrast to this, stimulus-related aspects of the N2 as well as purely response-related processes were not modulated by atDCS. EEG source localization analyses revealed that the effect was likely driven by activity modulations in the superior frontal areas, including the supplementary motor cortex (BA6), as well as middle frontal (BA9) and medial frontal areas (BA32). atDCS did not modulate effects of proprioceptive information on hand position, even though this aspect is known to be processed within the same brain areas. Physiological effects of atDCS likely modulate specific aspects of information processing during cognitive control.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
15
|
Adelhöfer N, Bluschke A, Roessner V, Beste C. The dynamics of theta-related pro-active control and response inhibition processes in AD(H)D. NEUROIMAGE-CLINICAL 2021; 30:102609. [PMID: 33711621 PMCID: PMC7970141 DOI: 10.1016/j.nicl.2021.102609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 11/01/2022]
Abstract
Impulsivity and deficits in response inhibition are hallmarks of attention-deficit(-hyperactivity) disorder (AD(H)D), can cause severe problems in daily functioning, and are thus of high clinical relevance. Traditionally, research to elucidate associated neural correlates has intensively, but also quite selectively examined mechanisms during response inhibition in various tasks. Doing so, in-between trial periods or periods prior to the response inhibition process, where no information relevant to inhibitory control is presented, have been neglected. Yet, these periods may nevertheless reveal relevant information. In the present study, using a case-control cross-sectional design, we take a more holistic approach, examining the inter-relation of pre-trial and within-trial periods in a Go/Nogo task with a focus on EEG theta band activity. Applying EEG beamforming methods, we show that the dynamics between pre-trial (pro-active) and within-trial (inhibition-related) control processes significantly differ between AD(H)D subtypes. We show that response inhibition, and differences between AD(H)D subtypes, exhibit distinct patterns of (at least) three factors: (i) strength of pre-trial (pro-active control) theta-band activity, (ii) the inter-relation of pro-active control and inhibition-relation theta band activity and (iii) the functional neuroanatomical region active during theta-related pro-active control processes. This multi-factorial pattern is captured by AD(H)D subtype clinical symptom clusters. The study provides a first hint that novel cognitive-neurophysiological facets of AD(H)D may be relevant to distinguish AD(H)D subtypes.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
16
|
Dissociating direct and indirect effects: a theoretical framework of how latent toxoplasmosis affects cognitive profile across the lifespan. Neurobiol Aging 2021; 102:119-128. [PMID: 33765425 DOI: 10.1016/j.neurobiolaging.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
About one-third of the world's population has latent toxoplasmosis, which is typically most prevalent in old age due to its lifelong persistence. Most infected people do not reveal clinically relevant symptoms, but T. gondii might trigger cognitive changes in otherwise asymptomatic individuals. As intact cognitive processes are essential for various achievements and successful aging, this review focuses on the cognitive profile associated with latent toxoplasmosis across the lifespan. It could be explained by a shift in balance between direct effects (increased dopamine synthesis) and indirect effects (neurodegeneration and chronic inflammation, which can decrease dopamine levels). Based thereon, we provide a possibly comprehensive framework of how T. gondii can differently affect cognitive performance across the lifespan (i.e., from increased catecholaminergic signaling in young age to decreased signaling in old age). We outline how future studies may inform our knowledge on the role of individual differences in response to T. gondii and how longitudinal studies can help trace the temporal dynamics in the shift of the balance between direct and indirect effects.
Collapse
|
17
|
Bluschke A, Zink N, Mückschel M, Roessner V, Beste C. A novel approach to intra-individual performance variability in ADHD. Eur Child Adolesc Psychiatry 2021; 30:733-745. [PMID: 32410131 PMCID: PMC8060200 DOI: 10.1007/s00787-020-01555-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
Abstract
Patients with attention deficit/(hyperactivity) disorder (AD(H)D) show increased intra-individual variability (IIV) in behavioral performance. This likely reflects dopaminergic deficiencies. However, the precise performance profile across time and the pattern of fluctuations within it have not yet been considered, partly due to insufficient methods. Yet, such an analysis may yield important theory-based implications for clinical practice. Thus, in a case-control cross-sectional study, we introduce a new method to investigate performance fluctuations in patients with ADD (n = 76) and ADHD (n = 67) compared to healthy controls (n = 45) in a time estimation task. In addition, we also evaluate the effects of methylphenidate (MPH) treatment on this performance pattern in 29 patients with AD(H)D. Trial-by-trial differences in performance between healthy controls and patients with AD(H)D do not persist continuously over longer time periods. Periods during which no differences in performance between healthy controls and patients occur alternate with periods in which such differences are present. AD(H)D subtype and surprisingly also medication status does not affect this pattern. The presented findings likely reflect (phasic) deficiencies of the dopaminergic system in patients with AD(H)D which are not sufficiently ameliorated by first-line pharmacological treatment. The presented findings carry important clinical and scientific implications.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
18
|
Colzato LS, Zhang W, Brandt MD, Stock AK, Beste C. Cognitive profile in Restless Legs Syndrome: A signal-to-noise ratio account. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100021. [PMID: 36246509 PMCID: PMC9559071 DOI: 10.1016/j.crneur.2021.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
Restless legs syndrome (RLS) is a common neurological disorder characterized by a sensorimotor condition, where patients feel an uncontrollable urge to move the lower limbs in the evening and/or during the night. RLS does not only have a profound impact on quality of life due to the disturbed night-time sleep, but there is growing evidence that untreated or insufficiently managed RLS might also cause cognitive changes in patients affected by this syndrome. It has been proposed that RLS is caused by alterations in the signal-to-noise ratio (SNR) and in dopamine (DA) neurotransmission in the nervous system. Based on this evidence, we propose the “SNR-DA hypothesis” as an explanation of how RLS could affect cognitive performance. According to this hypothesis, variations/reductions in the SNR underlie RLS-associated cognitive deficits, which follow an inverted U-shaped function: In unmedicated patients, low dopamine levels worsen the SNR, which eventually impairs cognition. Pharmacological treatment enhances DA levels in medicated patients, which likely improves/normalizes the SNR in case of optimal doses, thus restoring cognition to a normal level. However, overmedication might push patients past the optimal point on the inverted U-shaped curve, where an exaggerated SNR potentially impairs cognitive performance relying on cortical noise such as cognitive flexibility. Based on these assumptions of SNR alterations, we propose to directly measure neural noise via “1/f noise” and related metrics to use transcranial random noise stimulation (tRNS), a noninvasive brain stimulation method which manipulates the SNR, as a research tool and potential treatment option for RLS. Restless legs syndrome (RLS) is a common neurological disorder. RLS is caused by alterations in the SNR ratio and in DA neurotransmission. The SNR- DA hypothesis how RLS affects cognitive performance is presented.
Collapse
Affiliation(s)
- Lorenza S. Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Wenxin Zhang
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Moritz D. Brandt
- Department of Neurology, University Hospital, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Biopsychology, Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Corresponding author. Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany Schubertstrasse 42, D-01309, Dresden, Germany.
| |
Collapse
|
19
|
Zink N, Mückschel M, Beste C. Resting-state EEG Dynamics Reveals Differences in Network Organization and its Fluctuation between Frequency Bands. Neuroscience 2020; 453:43-56. [PMID: 33276088 DOI: 10.1016/j.neuroscience.2020.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
Functional connectivity in EEG resting-state is not stable but fluctuates considerably. The aim of this study was to investigate how efficient information flows through a network, i.e. how resting-state EEG networks are organized and whether this organization it also subject to fluctuations. Differences of the network organization (small-worldness), degree of clustered connectivity, and path length as an indicator of how information is integrated into the network across time was compared between theta, alpha and beta bands. We show robust differences in network organization (small-worldness) between frequency bands. Fluctuations in network organization were larger in the theta, compared to the alpha and beta frequency. Variation in network organization and not the frequency of fluctuations differs between frequency bands. Furthermore, the degree of clustered connectivity and its modulation across time is the same across frequency bands, but the path length revealed the same modulatory pattern as the small-world metric. It is therefore the interplay of local processing efficiency and global information processing efficiency in the brain that fluctuates in a frequency-specific way. Properties of how information can be integrated is subject to fluctuations in a frequency-specific way in the resting-state. The possible relevance of these resting-state EEG properties is discussed including its clinical relevance.
Collapse
Affiliation(s)
- Nicolas Zink
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany.
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany
| |
Collapse
|
20
|
Abstract
Cognitive enhancement is becoming progressively popular as a subject of scientific investigation and by the public, although possible adverse effects are not sufficiently understood. We call for cognitive enhancement to build on more specific, mechanistic theories given that a-theoretical approaches to cognitive enhancement are both a cause and a consequence of a strong, if not exclusive focus on the benefits of procedures suited to enhance human cognition. We focus on downsides of cognitive enhancement and suggest that every attempt to enhance human cognition needs to deal with two basic principles: the neuro-competition principle and the nonlinearity principle. We discuss the possibility of both principles in light of recent attempts to improve human cognition by means of transcranial direct current stimulation, a well-established brain stimulation method, and clinically relevant nootropic drugs. We propose that much stronger emphasis on mechanistic theorizing is necessary in guiding future research on both the upsides and the downsides of cognitive enhancement.
Collapse
Affiliation(s)
- Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Bernhard Hommel
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.,Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
21
|
Zink N, Kang K, Li SC, Beste C. Anodal transcranial direct current stimulation enhances the efficiency of functional brain network communication during auditory attentional control. J Neurophysiol 2020; 124:207-217. [PMID: 32233902 DOI: 10.1152/jn.00074.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Attentional control is crucial for selectively attending to relevant information when our brain is confronted with a multitude of sensory signals. Graph-theoretical measures provide a powerful tool for investigating the efficiency of brain network communication in separating and integrating information. Albeit, it has been demonstrated that anodal transcranial direct current stimulation (atDCS) can boost auditory attention in situations with high control demands, its effect on neurophysiological mechanisms of functional brain network communication in situations when attentional focus conflicts with perceptual saliency remain unclear. This study investigated the effects of atDCS on network connectivity and θ-oscillatory power under different levels of attentional-perceptual conflict. We hypothesized that the benefit of atDCS on network communication efficiency would be particularly apparent in conditions requiring high attentional control. Thirty young adults participated in a dichotic listening task with intensity manipulation, while EEG activity was recorded. In a cross-over design, participants underwent right frontal atDCS and sham stimulations in two separate sessions. Time-frequency decomposition and graph-theoretical analyses of network efficiency (using "small-world" properties) were used to quantify θ-oscillatory power and brain network efficiency, respectively. The atDCS-induced effect on task efficiency in the most demanding condition was mirrored only by an increase in network efficiency during atDCS compared with the sham stimulation. These findings are corroborated by Bayesian analyses. AtDCS-induced performance enhancement under high levels of attentional-perceptual conflicts is accompanied by an increase in network efficiency. Graph-theoretical measures can serve as a metric to quantify the effects of noninvasive brain stimulation on the separation and integration of information in the brain.NEW & NOTEWORTHY As compared with sham stimulation, application of atDCS enhances θ-oscillation-based network efficiency, but it has no impact on θ-oscillation power. Individual differences in θ-oscillation-based network efficiency correlated with performance efficiency under the sham stimulation.
Collapse
Affiliation(s)
- Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| | - Kathleen Kang
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| |
Collapse
|
22
|
Mückschel M, Roessner V, Beste C. Task experience eliminates catecholaminergic effects on inhibitory control - A randomized, double-blind cross-over neurophysiological study. Eur Neuropsychopharmacol 2020; 35:89-99. [PMID: 32402650 DOI: 10.1016/j.euroneuro.2020.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
Catecholaminergic neural transmission plays an important role during the inhibition of prepotent responses. Methylphenidate (MPH) is an important drug that modulates the catecholaminergic system. However, theoretical considerations suggest that the effects of drugs (e.g. MPH) on cognitive control may depend on prior learning effects. Here we investigate this in a conflict-modulated Go/Nogo task and evaluate neurophysiological processes associated with this dynamic using EEG signal decomposition methods and source localization analysis. The behavioral data show that prior learning experiences eliminate effects of MPH on response inhibition processes. On a neurophysiological level, we show that MPH modulates specific processes in medial frontal brain regions. Although MPH seems to consistently modulate neurophysiological processes associated with response inhibition, this is no longer sufficient to modulate behavioral performance once learning or task familiarization processes have taken place. An important consequence of this study finding is that it may be important to adjust MPH dosage depending on learning effects in a specific setting to constantly increase cognitive control functions in that setting. This has important implications for clinical practice, since MPH is the first-line pharmacological therapy in attention-deficit hyperactivity disorder (ADHD). Cross-over study designs with constant doses of MPH can mask effects on cognitive functions. The impact of learning needs careful consideration in cross-over study designs examining catecholaminergic drug effects.
Collapse
Affiliation(s)
- Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, D-01309 Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, D-01309 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, D-01309 Dresden, Germany.
| |
Collapse
|
23
|
Takacs A, Mückschel M, Roessner V, Beste C. Decoding Stimulus-Response Representations and Their Stability Using EEG-Based Multivariate Pattern Analysis. Cereb Cortex Commun 2020; 1:tgaa016. [PMID: 34296094 PMCID: PMC8152870 DOI: 10.1093/texcom/tgaa016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Goal-directed actions require proper associations between stimuli and response. This has been delineated by cognitive theory, for example, in the theory of event coding framework, which proposes that event files represent such bindings. Yet, how such event file representations are coded on a neurophysiological level is unknown. We close this gap combining temporal electroencephalography (EEG) signal decomposition methods and multivariate pattern analysis (MVPA). We show that undecomposed neurophysiological data is unsuitable to decode event file representations because different aspects of information coded in the neurophysiological signal reveal distinct and partly opposed dynamics in the representational content. This is confirmed by applying MVPA to temporal decomposed EEG data. After intermixed aspects of information in the EEG during response selection have been separated, a reliable examination of the event file’s representational content and its temporal stability was possible. We show that representations of stimulus–response bindings are activated and decay in a gradual manner and that event file representations resemble distributed neural activity. Especially representations of stimulus–response bindings, as well as stimulus-related representations, are coded and reveal temporal stability. Purely motor-related representations are not found in neurophysiological signals during event coding.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden D-01309, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden D-01309, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden D-01309, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden D-01309, Germany
| |
Collapse
|
24
|
Colzato L, Beste C. A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions. J Neurophysiol 2020; 123:1739-1755. [PMID: 32208895 DOI: 10.1152/jn.00057.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain stimulation approaches are important to gain causal mechanistic insights into the relevance of functional brain regions and/or neurophysiological systems for human cognitive functions. In recent years, transcutaneous vagus nerve stimulation (tVNS) has attracted considerable popularity. It is a noninvasive brain stimulation technique based on the stimulation of the vagus nerve. The stimulation of this nerve activates subcortical nuclei, such as the locus coeruleus and the nucleus of the solitary tract, and from there, the activation propagates to the cortex. Since tVNS is a novel stimulation technique, this literature review outlines a brief historical background of tVNS, before detailing underlying neurophysiological mechanisms of action, stimulation parameters, cognitive effects of tVNS on healthy humans, and, lastly, current challenges and future directions of tVNS research in cognitive functions. Although more research is needed, we conclude that tVNS, by increasing norepineprine (NE) and gamma-aminobutyric acid (GABA) levels, affects NE- and GABA-related cognitive performance. The review provides detailed background information how to use tVNS as a neuromodulatory tool in cognitive neuroscience and outlines important future leads of research on tVNS.
Collapse
Affiliation(s)
- Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
25
|
Mückschel M, Eggert E, Prochnow A, Beste C. Learning Experience Reverses Catecholaminergic Effects on Adaptive Behavior. Int J Neuropsychopharmacol 2019; 23:12-19. [PMID: 31701133 PMCID: PMC7064049 DOI: 10.1093/ijnp/pyz058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Catecholamines are important for cognitive control and the ability to adapt behavior (e.g., after response errors). A prominent drug that modulates the catecholaminergic system is methylphenidate. On the basis of theoretical consideration, we propose that the effects of methylphenidate on behavioral adaptation depend on prior learning experience. METHODS In a double-blind, randomized, placebo-controlled crossover study design, we examined the effect of methylphenidate (0.25 mg/kg) on post error behavioral adaptation processes in a group of n = 43 healthy young adults. Behavioral adaptation processes were examined in a working memory, modulated response selection task. The focus of the analysis was on order effects within the crossover study design to evaluate effects of prior learning/task experience. RESULTS The effect of methylphenidate/placebo on post-error behavioral adaptation processes reverses depending on prior task experience. When there was no prior experience with the task, methylphenidate increased post-error slowing and thus intensified behavioral adaptation processes. However, when there was prior task experience, (i.e., when the placebo session was conducted first in the crossover design), methylphenidate even decreased post-error slowing and behavioral adaptation. Effect sizes were large and the power of the observed effects was higher than 95%. CONCLUSIONS The data suggest that catecholaminergic effects on cognitive control functions vary as a function of prior learning/task experience. The data establish a close link between learning/task familiarization and catecholaminergic effects for executive functions, which has not yet been studied, to our knowledge, but is of considerable clinical relevance. Theoretical implications are discussed.
Collapse
Affiliation(s)
- Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany,MS Centre, Department of Neurology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany,Correspondence: Christian Beste, Faculty of Medicine Carl Gustav Carus, TU Dresden, Department of Child and Adolescent Psychiatry, Fetscherstrasse 74, 01307 Dresden, Germany ()
| |
Collapse
|
26
|
Adelhöfer N, Gohil K, Passow S, Beste C, Li SC. Lateral prefrontal anodal transcranial direct current stimulation augments resolution of auditory perceptual-attentional conflicts. Neuroimage 2019; 199:217-227. [DOI: 10.1016/j.neuroimage.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/24/2023] Open
|
27
|
Pscherer C, Mückschel M, Summerer L, Bluschke A, Beste C. On the relevance of EEG resting theta activity for the neurophysiological dynamics underlying motor inhibitory control. Hum Brain Mapp 2019; 40:4253-4265. [PMID: 31219652 DOI: 10.1002/hbm.24699] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/27/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022] Open
Abstract
The modulation of theta frequency activity plays a major role in inhibitory control processes. However, the relevance of resting theta band activity and of the ability to spontaneously modulate this resting theta activity for neural mechanisms underlying inhibitory control is elusive. Various theoretical conceptions suggest to take these aspects into consideration. In the current study, we examine whether the strength of resting theta band activity or the ability to modulate the resting state theta activity affects response inhibition. We combined EEG-time frequency decomposition and beamforming in a conflict-modulated Go/Nogo task. A sample of N = 66 healthy subjects was investigated. We show that the strength of resting state theta activity modulates the effects of conflicts during motor inhibitory control. Especially when resting theta activity was low, conflicts strongly affected response inhibition performance and total theta band activity during Nogo trials. These effects were associated with theta-related activity differences in the superior (BA7) and inferior parietal cortex (BA40). The results were very specific for total theta band activity since evoked theta activity and measures of intertrial phase coherency (phase-locking factor) were not affected. The data suggest that the strength of resting state theta activity modulates processing of a theta-related alarm or surprise signal during inhibitory control. The ability to voluntarily modulate theta band activity did not affect conflict-modulated inhibitory control. These findings have important implications for approaches aiming to optimize human cognitive control.
Collapse
Affiliation(s)
- Charlotte Pscherer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Lena Summerer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| |
Collapse
|
28
|
How the depth of processing modulates emotional interference – evidence from EEG and pupil diameter data. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1231-1246. [DOI: 10.3758/s13415-019-00732-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Bensmann W, Zink N, Arning L, Beste C, Stock AK. The Presynaptic Regulation of Dopamine and Norepinephrine Synthesis Has Dissociable Effects on Different Kinds of Cognitive Conflicts. Mol Neurobiol 2019; 56:8087-8100. [PMID: 31183808 DOI: 10.1007/s12035-019-01664-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Goal-directed behavior requires the ability to resolve subliminally or consciously induced response conflicts, both of which may benefit from catecholamine-induced increases in gain control. We investigated the effects of presynaptic differences in dopamine and norepinephrine synthesis with the help of the tyrosine hydroxylase (TH) rs10770141 and the dopamine-β-hydroxylase (DBH) rs1611115, rs6271, and rs1611122 polymorphisms. Conscious and subliminal response conflicts were induced with flanker and prime distractors in (n = 207) healthy young participants while neurophysiological data (EEG) was recorded. The results demonstrated that the increased presynaptic catecholamine synthesis associated with the TH rs10770141 TT genotype improves cognitive control in case of consciously perceived (flanker) conflicts, but not in case of subliminally processed (prime) conflicts. Only norepinephrine seemed to also modulate subliminal conflict processing, as evidenced by better performance of the DBH rs1611122 CC genotype in case of high subliminal conflict load. Better performance was linked to larger conflict-induced modulations in post-response alpha band power arising from parietal and inferior frontal regions, which likely helps to suppress the processing of distracting information. In summary, presynaptic catecholamine synthesis benefits consciously perceived conflicts by improving the suppression of distracting information following a conflict. Subliminal conflicts were modulated via the same mechanism, but only by norepinephrine.
Collapse
Affiliation(s)
- Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
30
|
Bensmann W, Zink N, Roessner V, Stock AK, Beste C. Catecholaminergic effects on inhibitory control depend on the interplay of prior task experience and working memory demands. J Psychopharmacol 2019; 33:678-687. [PMID: 30816793 DOI: 10.1177/0269881119827815] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Catecholamines affect response inhibition, but the effects of methylphenidate on inhibitory control in healthy subjects are heterogenous. Theoretical considerations suggest that working memory demands and learning/familiarization processes are important factors to consider regarding catecholaminergic effects on response inhibition. AIMS The purpose of this study was to examine the role of working memory demands and familiarization for methylphenidate effects on response inhibition. METHODS Twenty-eight healthy adults received a single dose of methylphenidate (0.5 mg/kg) or placebo in a randomised, double-blind, crossover study design. The subjects were tested using a working memory-modulated response inhibition paradigm that combined a Go/Nogo task with a mental rotation task. RESULTS Methylphenidate effects were largest in the most challenging mental rotation condition. The direction of effects depended on the extent of the participants' task experience. When performing the task for the first time, methylphenidate impaired response inhibition performance in the most challenging mental rotation condition, as reflected by an increased false alarm rate. In sharp contrast to this, methylphenidate seemed to improve response execution performance in the most challenging condition when performing the task for the second time as reflected by reaction times on Go trials. CONCLUSION Effects of catecholamines on inhibitory control processes depend on the interplay of two factors: (a) working memory demands, and (b) learning or familiarization with a task. It seems that the net effect of increases in gain control and decreases in working memory processes determines the methylphenidate effect on response inhibition. Hence, crossover study designs likely underestimate methylphenidate effects on cognitive functions.
Collapse
Affiliation(s)
- Wiebke Bensmann
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Nicolas Zink
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Ann-Kathrin Stock
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Christian Beste
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| |
Collapse
|
31
|
Chmielewski W, Bluschke A, Bodmer B, Wolff N, Roessner V, Beste C. Evidence for an altered architecture and a hierarchical modulation of inhibitory control processes in ADHD. Dev Cogn Neurosci 2019; 36:100623. [PMID: 30738306 PMCID: PMC6969218 DOI: 10.1016/j.dcn.2019.100623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/23/2023] Open
Abstract
Inhibitory control deficits are a hallmark in ADHD. Yet, inhibitory control includes a multitude of entities (e.g. ‘inhibition of interferences’ and ‘action inhibition’). Examining the interplay between these kinds of inhibitory control provides insights into the architecture of inhibitory control in ADHD. Combining a Simon task and a Go/Nogo task, we assessed the interplay of ‘inhibition of interferences’ and ‘action inhibition’. This was combined with EEG recordings, EEG data decomposition and source localization. Simon interference effects in Go trials were larger in ADHD. At the neurophysiological level, this insufficient inhibition of interferences in ADHD related to the superior parietal cortex. Simon interference effects were absent in action inhibition (Nogo) trials in ADHD, compared to controls. This was supported by bayesian statistics. The power of effects was higher than 95%. The differential effects between the groups were associated with modulations of neurophysiological response selection processes in the superior frontal gyrus. ADHD is not only associated with deficits in inhibitory control. Rather, the organization and architecture of the inhibitory control system is different in ADHD. Distinguishable inhibitory control processes operate on a hierarchical ‘first come, first serve’ basis and are not integrated in ADHD. This is a new facet of ADHD.
Collapse
Affiliation(s)
- Witold Chmielewski
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Benjamin Bodmer
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nicole Wolff
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
32
|
Adelhöfer N, Mückschel M, Teufert B, Ziemssen T, Beste C. Anodal tDCS affects neuromodulatory effects of the norepinephrine system on superior frontal theta activity during response inhibition. Brain Struct Funct 2019; 224:1291-1300. [PMID: 30701308 DOI: 10.1007/s00429-019-01839-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
Medial and superior frontal theta oscillations are important for response inhibition. The norepinephrine (NE) system has been shown to modulate these oscillations possibly via gain control mechanisms, which depend on the modulation of neuron membrane potentials. Because the latter are also modulated by tDCS, the interrelation of tDCS and NE effects on superior frontal theta band activity needs investigation. We test the hypothesis that anodal tDCS affects modulatory effects of the NE system on theta band activity during inhibitory control in superior frontal regions. Using EEG beamforming, theta band activity in the superior frontal gyrus (SFG) was integrated (correlated) with the pupil diameter data as an indirect index of NE activity. In a within-subject design, healthy participants completed a response inhibition task in two sessions in which they received 2 mA anodal tDCS over the vertex, or sham stimulation. There were no behavioral effects of anodal tDCS. Yet, tDCS affected correlations between SFG theta band activity time course and the pupil diameter time course. Correlations were evident after sham stimulation (r = .701; p < .004), but absent after anodal tDCS. The observed power of this dissociation was above 95%. The data suggest that anodal tDCS may eliminate neuromodulatory effects, likely of the NE system, on theta band activity during response inhibition in a structure of the response inhibition network. The NE system and tDCS seem to target similar mechanisms important for cognitive control in the prefrontal cortex. The results provide a hint why tDCS often fails to induce overt behavioral effects and shows that neurobiological systems, which may exert similar effects as tDCS on neural processes should closely be monitored in tDCS experiments.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.,Department of Neurology, Faculty of Medicine, MS Centre Dresden, TU Dresden, Dresden, Germany
| | - Benjamin Teufert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre Dresden, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
33
|
Adelhöfer N, Gohil K, Passow S, Teufert B, Roessner V, Li SC, Beste C. The system-neurophysiological basis for how methylphenidate modulates perceptual-attentional conflicts during auditory processing. Hum Brain Mapp 2018; 39:5050-5061. [PMID: 30133058 DOI: 10.1002/hbm.24344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022] Open
Abstract
The ability to selectively perceive and flexibly attend to relevant sensory signals in the environment is essential for action control. Whereas neuromodulation of sensory or attentional processing is often investigated, neuromodulation of interactive effects between perception and attention, that is, high attentional control demand when the relevant sensory information is perceptually less salient than the irrelevant one, is not well understood. To fill this gap, this pharmacological-electroencephalogram (EEG) study applied an intensity-modulated, focused-attention dichotic listening paradigm together with temporal EEG signal decomposition and source localization analyses. We used a double-blind MPH/placebo crossover design to delineate the effects of methylphenidate (MPH)-a dopamine/norepinephrine transporter blocker-on the resolution of perceptual-attentional conflicts, when perceptual saliency and attentional focus favor opposing ears, in healthy young adults. We show that MPH increased behavioral performance specifically in the condition with the most pronounced conflict between perceptual saliency and attentional focus. On the neurophysiological level, MPH effects in line with the behavioral data were observed after accounting for intraindividual variability in the signal. More specifically, MPH did not show an effect on stimulus-related processes but modulated the onset latency of processes between stimulus evaluation and responding. These modulations were further shown to be associated with activation differences in the temporoparietal junction (BA40) and the superior parietal cortex (BA7) and may reflect neuronal gain modulation principles. The findings provide mechanistic insights into the role of modulated dopamine/norepinephrine transmitter systems for the interactions between perception and attention.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Krutika Gohil
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Susanne Passow
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Benjamin Teufert
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| |
Collapse
|