1
|
Romero LR, Acharya N, Nabás JF, Marín I, Andero R. Sex Differences in Neural Circuits Underlying Fear Processing. Curr Top Behav Neurosci 2024. [PMID: 39587012 DOI: 10.1007/7854_2024_543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neural circuitry involved in anxiety and fear-related disorders exhibits strong sexual modulation. A limited number of studies integrating female and male data have revealed differences in neural networks, and distinct interconnectivity between these brain areas. Despite the efforts to incorporate female or mixed-sex data, there is compelling evidence that sex, as a biological variable, significantly influences fear processing. This chapter presents primary findings on sex differences in fear circuitry. It is imperative to consider this factor to ensure scientific research's integrity and understand how fear is processed in the central nervous system.
Collapse
Affiliation(s)
| | - Neha Acharya
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ignacio Marín
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | - Raül Andero
- Departament de Psicobiologia i Metodología de les Ciències de la Salut, Universistat Autònoma de Barcelona, Barcelona, Spain.
- Centro de investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Translational, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universistat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
2
|
Huang Y, Chen Q, Lv H, Wang Z, Wang X, Liu C, Huang Y, Zhao P, Yang Z, Gong S, Wang Z. Amygdala structural and functional reorganization as an indicator of affective dysfunction in patients with tinnitus. Hum Brain Mapp 2024; 45:e26712. [PMID: 38798104 PMCID: PMC11128775 DOI: 10.1002/hbm.26712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
The aim of this study was to systematically investigate structural and functional alterations in amygdala subregions using multimodal magnetic resonance imaging (MRI) in patients with tinnitus with or without affective dysfunction. Sixty patients with persistent tinnitus and 40 healthy controls (HCs) were recruited. Based on a questionnaire assessment, 26 and 34 patients were categorized into the tinnitus patients with affective dysfunction (TPAD) and tinnitus patients without affective dysfunction (TPWAD) groups, respectively. MRI-based measurements of gray matter volume, fractional anisotropy (FA), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC) were conducted within 14 amygdala subregions for intergroup comparisons. Associations between the MRI properties and clinical characteristics were estimated via partial correlation analyses. Compared with that of the HCs, the TPAD and TPWAD groups exhibited significant structural and functional changes, including white matter integrity (WMI), fALFF, ReHo, DC, and FC alterations, with more pronounced WMI changes in the TPAD group, predominantly within the left auxiliary basal or basomedial nucleus (AB/BM), right central nucleus, right lateral nuclei (dorsal portion), and left lateral nuclei (ventral portion containing basolateral portions). Moreover, the TPAD group exhibited decreased FC between the left AB/BM and left middle occipital gyrus and right superior frontal gyrus (SFG), left basal nucleus and right SFG, and right lateral nuclei (intermediate portion) and right SFG. In combination, these amygdalar alterations exhibited a sensitivity of 65.4% and specificity of 96.9% in predicting affective dysfunction in patients with tinnitus. Although similar structural and functional amygdala remodeling were observed in the TPAD and TPWAD groups, the changes were more pronounced in the TPAD group. These changes mainly involved alterations in functionality and white matter microstructure in various amygdala subregions; in combination, these changes could serve as an imaging-based predictor of emotional disorders in patients with tinnitus.
Collapse
Affiliation(s)
- Yan Huang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Qian Chen
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Han Lv
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaodi Wang
- Department of OtolaryngologyBeijing Jingmei Group General HospitalBeijingChina
| | - Xinghao Wang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Chunli Liu
- Department of OtolaryngologyThe Affiliated Hospital of Chengde Medical CollegeChengdeChina
| | - Yuyou Huang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Pengfei Zhao
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhenghan Yang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck SurgeryBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhenchang Wang
- Department of RadiologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Zhang S, Jung K, Langner R, Florin E, Eickhoff SB, Popovych OV. Impact of data processing varieties on DCM estimates of effective connectivity from task-fMRI. Hum Brain Mapp 2024; 45:e26751. [PMID: 38864293 PMCID: PMC11167406 DOI: 10.1002/hbm.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/05/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Effective connectivity (EC) refers to directional or causal influences between interacting neuronal populations or brain regions and can be estimated from functional magnetic resonance imaging (fMRI) data via dynamic causal modeling (DCM). In contrast to functional connectivity, the impact of data processing varieties on DCM estimates of task-evoked EC has hardly ever been addressed. We therefore investigated how task-evoked EC is affected by choices made for data processing. In particular, we considered the impact of global signal regression (GSR), block/event-related design of the general linear model (GLM) used for the first-level task-evoked fMRI analysis, type of activation contrast, and significance thresholding approach. Using DCM, we estimated individual and group-averaged task-evoked EC within a brain network related to spatial conflict processing for all the parameters considered and compared the differences in task-evoked EC between any two data processing conditions via between-group parametric empirical Bayes (PEB) analysis and Bayesian data comparison (BDC). We observed strongly varying patterns of the group-averaged EC depending on the data processing choices. In particular, task-evoked EC and parameter certainty were strongly impacted by GLM design and type of activation contrast as revealed by PEB and BDC, respectively, whereas they were little affected by GSR and the type of significance thresholding. The event-related GLM design appears to be more sensitive to task-evoked modulations of EC, but provides model parameters with lower certainty than the block-based design, while the latter is more sensitive to the type of activation contrast than is the event-related design. Our results demonstrate that applying different reasonable data processing choices can substantially alter task-evoked EC as estimated by DCM. Such choices should be made with care and, whenever possible, varied across parallel analyses to evaluate their impact and identify potential convergence for robust outcomes.
Collapse
Affiliation(s)
- Shufei Zhang
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Robert Langner
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Oleksandr V. Popovych
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research Centre JülichJülichGermany
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
4
|
Foster SL, Breukelaar IA, Ekanayake K, Lewis S, Korgaonkar MS. Functional Magnetic Resonance Imaging of the Amygdala and Subregions at 3 Tesla: A Scoping Review. J Magn Reson Imaging 2024; 59:361-375. [PMID: 37352130 DOI: 10.1002/jmri.28836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/25/2023] Open
Abstract
The amygdalae are a pair of small brain structures, each of which is composed of three main subregions and whose function is implicated in neuropsychiatric conditions. Functional Magnetic Resonance Imaging (fMRI) has been utilized extensively in investigation of amygdala activation and functional connectivity (FC) with most clinical research sites now utilizing 3 Tesla (3T) MR systems. However, accurate imaging and analysis remains challenging not just due to the small size of the amygdala, but also its location deep in the temporal lobe. Selection of imaging parameters can significantly impact data quality with implications for the accuracy of study results and validity of conclusions. Wide variation exists in acquisition protocols with spatial resolution of some protocols suboptimal for accurate assessment of the amygdala as a whole, and for measuring activation and FC of the three main subregions, each of which contains multiple nuclei with specialized roles. The primary objective of this scoping review is to provide a broad overview of 3T fMRI protocols in use to image the activation and FC of the amygdala with particular reference to spatial resolution. The secondary objective is to provide context for a discussion culminating in recommendations for a standardized protocol for imaging activation of the amygdala and its subregions. As the advantages of big data and protocol harmonization in imaging become more apparent so, too, do the disadvantages of data heterogeneity. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sheryl L Foster
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Isabella A Breukelaar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Kanchana Ekanayake
- University Library, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Lewis
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
5
|
Jiang Y, Zhang Y, Nie L, Liu H, Zheng J. Identification and effective connections of core networks in patients with temporal lobe epilepsy and cognitive impairment: Granger causality analysis and multivariate pattern analysis. Int J Neurosci 2023; 133:935-946. [PMID: 34923894 DOI: 10.1080/00207454.2021.2017926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to explore effective connectivity (EC) of the core networks in cognition impairment associated with temporal lobe epilepsy (CI-TLE) by applying resting state and Granger causality analysis (REST-GCA). The specific brain regions that played a critical role in classification were assessed using multivariate pattern analysis (MVPA). METHODS Thirty-two patients with CI-TLE and 29 healthy controls who were matched based on age and gender underwent functional magnetic resonance imaging (fMRI). RESULTS REST-GCA revealed that patients with CI-TLE displayed decreased GC values in the following brain areas: from the posterior cingulate cortex (PCC) to the left fusiform gyrus (lFFG) and the right parahippocampal gyrus (rPPG); from the right dorsal prefrontal cortex (rDPFC) to the left superior parietal lobule (lSPL); from the left amygdala (lAG) to the PCC. Inhibitory EC was observed from the rDPFC to the PCC compared to HCs. The GC values increased from the right dorsal prefrontal cingulate cortex (rdACC) to the PCC and from the right dorsal forebrain insula (rDAI) to the right middle temporal gyrus (rMTG) in the CI-TLE patients. MVPA showed that the classification yielded an accuracy of 81.91% (78.12%, specificity =85.71%). CONCLUSION Our observations indicated that the abnormal EC between the frontal and parietal regions might be associated with the pathophysiological mechanism of CI-TLE. These results also indicated that EC might be play a role as a potential discriminative pattern to detect CI-TLE in patients.
Collapse
Affiliation(s)
- Yanchun Jiang
- The Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanbo Zhang
- The Department of Neurology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Liluo Nie
- The Department of neurology, Hengyang Central Hospital, Hengyang, China
| | - Huihua Liu
- The Department of Neurology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jinou Zheng
- The Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
van de Poll Y, Cras Y, Ellender TJ. The neurophysiological basis of stress and anxiety - comparing neuronal diversity in the bed nucleus of the stria terminalis (BNST) across species. Front Cell Neurosci 2023; 17:1225758. [PMID: 37711509 PMCID: PMC10499361 DOI: 10.3389/fncel.2023.1225758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST), as part of the extended amygdala, has become a region of increasing interest regarding its role in numerous human stress-related psychiatric diseases, including post-traumatic stress disorder and generalized anxiety disorder amongst others. The BNST is a sexually dimorphic and highly complex structure as already evident by its anatomy consisting of 11 to 18 distinct sub-nuclei in rodents. Located in the ventral forebrain, the BNST is anatomically and functionally connected to many other limbic structures, including the amygdala, hypothalamic nuclei, basal ganglia, and hippocampus. Given this extensive connectivity, the BNST is thought to play a central and critical role in the integration of information on hedonic-valence, mood, arousal states, processing emotional information, and in general shape motivated and stress/anxiety-related behavior. Regarding its role in regulating stress and anxiety behavior the anterolateral group of the BNST (BNSTALG) has been extensively studied and contains a wide variety of neurons that differ in their electrophysiological properties, morphology, spatial organization, neuropeptidergic content and input and output synaptic organization which shape their activity and function. In addition to this great diversity, further species-specific differences are evident on multiple levels. For example, classic studies performed in adult rat brain identified three distinct neuron types (Type I-III) based on their electrophysiological properties and ion channel expression. Whilst similar neurons have been identified in other animal species, such as mice and non-human primates such as macaques, cross-species comparisons have revealed intriguing differences such as their comparative prevalence in the BNSTALG as well as their electrophysiological and morphological properties, amongst other differences. Given this tremendous complexity on multiple levels, the comprehensive elucidation of the BNSTALG circuitry and its role in regulating stress/anxiety-related behavior is a major challenge. In the present Review we bring together and highlight the key differences in BNSTALG structure, functional connectivity, the electrophysiological and morphological properties, and neuropeptidergic profiles of BNSTALG neurons between species with the aim to facilitate future studies of this important nucleus in relation to human disease.
Collapse
Affiliation(s)
- Yana van de Poll
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yasmin Cras
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tommas J. Ellender
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Jin S, Liu W, Hu Y, Liu Z, Xia Y, Zhang X, Ding Y, Zhang L, Xie S, Ma C, Kang Y, Hu Z, Cheng W, Yang Z. Aberrant functional connectivity of the bed nucleus of the stria terminalis and its age dependence in children and adolescents with social anxiety disorder. Asian J Psychiatr 2023; 82:103498. [PMID: 36758449 DOI: 10.1016/j.ajp.2023.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Social anxiety disorder (SAD) is a prevalent and impairing mental disorder among children and adolescents. The bed nucleus of the stria terminalis (BNST) plays a critical role in anxiety disorders, including valence surveillance and hypervigilance for potential threats. However, the role of BNST and its related functional network in children and adolescents with SAD has not been fully investigated. This study examined the aberration of BNST's functional connectivity and its age dependence in adolescents with SAD. METHODS Using a sample of 75 SAD patients and 75 healthy controls (HCs) children aged 9-18 years old, we delineated the group-by-age interaction of BNST-seeded functional connectivity (FC) during resting state and movie-watching. The relationships between BNST-seeded FC and clinical scores were also examined. RESULTS During movie viewing, the FC between the right BNST and the left amygdala, bilateral posterior cingulate cortex (PCC), bilateral superior temporal cortex, and right pericalcarine cortex showed a diagnostic group-by-age interaction. Compared to HCs, SAD patients showed a significant enhancement of the above FC at younger ages. Meanwhile, they showed an age-dependent decrease in FC between the right BNST and left amygdala. Furthermore, for SAD patients, FC between the right BNST and left amygdala during movie viewing was positively correlated with separation anxiety scores. CONCLUSIONS The right BNST plays an essential role in the aberrant brain functioning in children and adolescents with SAD. The atypicality of BNST's FC has remarkable age dependence in SAD, suggesting an association of SAD with neurodevelopmental traits.
Collapse
Affiliation(s)
- Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yufeng Xia
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhishan Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Bauer EP. Sex differences in fear responses: Neural circuits. Neuropharmacology 2023; 222:109298. [PMID: 36328063 PMCID: PMC11267399 DOI: 10.1016/j.neuropharm.2022.109298] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Women have increased vulnerability to PTSD and anxiety disorders compared to men. Understanding the neurobiological underpinnings of these disorders is critical for identifying risk factors and developing appropriate sex-specific interventions. Despite the clear clinical relevance of an examination of sex differences in fear responses, the vast majority of pre-clinical research on fear learning and memory formation has exclusively used male animals. This review highlights sex differences in context and cued fear conditioning, fear extinction and fear generalization with a focus on the neural circuits underlying these behaviors in rodents. There are mixed reports of behavioral sex differences in context and cued fear conditioning paradigms, which can depend upon the behavioral indices of fear. However, there is greater evidence of differential activation of the hippocampus, amygdalar nuclei and the prefrontal cortical regions in male and female rodents during context and cued fear conditioning. The bed nucleus of the stria terminalis (BNST), a sexually dimorphic structure, is of particular interest as it differentially contributes to fear responses in males and females. In addition, while the influence of the estrous cycle on different phases of fear conditioning is delineated, the clearest modulatory effect of estrogen is on fear extinction processes. Examining the variability in neural responses and behavior in both sexes should increase our understanding of how that variability contributes to the neurobiology of affective disorders. This article is part of the Special Issue on 'Fear, anxiety and PTSD'.
Collapse
Affiliation(s)
- Elizabeth P Bauer
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY, 10027, United States.
| |
Collapse
|
9
|
Ye S, Li W, Zhu B, Lv Y, Yang Q, Krueger F. Altered effective connectivity from the posterior insula to the amygdala mediates the relationship between psychopathic traits and endorsement of the Harm foundation. Neuropsychologia 2022; 170:108216. [PMID: 35339504 DOI: 10.1016/j.neuropsychologia.2022.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Psychopathic traits have been demonstrated to be associated with different moral foundations. However, the neuropsychological mechanism underlying the relationship between psychopathic traits and moral foundations remains obscure. Our study examined the effective connectivity (EC) of psychopathy-related brain regions and its association with endorsement to moral foundations (Harm, Fairness, Loyalty, Authority, and Purity)-combining questionnaire measures, resting-state fMRI (RS-fMRI), and Granger causality analysis. We administered the Levenson Self-Report Psychopathy Scale and Moral Foundation Questionnaire to 78 college students after RS-fMRI scanning. Our results showed that total and primary psychopathy negatively predicted endorsement of the Harm foundation. The EC from the posterior insula to the amygdala was negatively associated with primary psychopathy but positively associated with endorsement of the Harm foundation. Altered posterior insula-amygdala EC partially mediated the relationship between primary psychopathy and endorsement of the Harm foundation. Our findings demonstrated that individuals with elevated psychopathic traits may have atypical processes in recognizing and integrating bodily state information into emotional responses -leading to less concern for harm-related morality. Our findings deepen the understanding of the neuropsychological mechanism underlying the relationship between psychopathic traits and morality, providing potential neurobiological explanations for increased moral transgressions, especially those harm-related transgressions, committed by psychopathic individuals.
Collapse
Affiliation(s)
- Shuer Ye
- Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Wei Li
- Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Bing Zhu
- School of Marxism, Zhejiang Yuexiu University, China
| | - Yating Lv
- Centre for Cognition and Brain Disorder, The Affiliated Hospital of Hangzhou Normal University, China.
| | - Qun Yang
- Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
10
|
Wang M, Zeng N, Zheng H, Du X, Potenza MN, Dong GH. Altered effective connectivity from the pregenual anterior cingulate cortex to the laterobasal amygdala mediates the relationship between internet gaming disorder and loneliness. Psychol Med 2022; 52:737-746. [PMID: 32684185 DOI: 10.1017/s0033291720002366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individual with internet gaming disorder (IGD) often experience a high level of loneliness, and neuroimaging studies have demonstrated that amygdala function is associated with both IGD and loneliness. However, the neurobiological basis underlying these relationships remains unclear. METHODS In the current study, Granger causal analysis was performed to investigate amygdalar subdivision-based resting-state effective connectivity differences between 111 IGD subjects and 120 matched participants with recreational game use (RGUs). We further correlated neuroimaging findings with clinical measures. Mediation analysis was conducted to explore whether amygdalar subdivision-based effective connectivity mediated the relationship between IGD severity and loneliness. RESULTS Compared with RGUs, IGD subjects showed inhibitory effective connections from the left pregenual anterior cingulate cortex (pACC) to the left laterobasal amygdala (LBA) and from the right medial prefrontal cortex (mPFC) to the left LBA, as well as an excitatory effective connection from the left middle prefrontal gyrus (MFG) to the right superficial amygdala. Further analyses demonstrated that the left pACC-left LBA effective connection was negatively correlated with both Internet Addiction Test and UCLA Loneliness scores, and it mediated the relationship between the two. CONCLUSION IGD subjects and RGUs showed different connectivity patterns involving amygdalar subdivisions. These findings support a neurobiological mechanism for the relationship between IGD and loneliness, and suggest targets for therapeutic approaches that could be used to treat IGD.
Collapse
Affiliation(s)
- Min Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
| | - Ningning Zeng
- Department of Psychology, Zhejiang Normal University, Jinhua, PR, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, PR, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR, China
| |
Collapse
|
11
|
Xiao Y, Zhao L, Wang D, Xue SW, Tan Z, Lan Z, Kuai C, Wang Y, Li H, Pan C, Fu S, Hu X. Effective Connectivity of Right Amygdala Subregions Predicts Symptom Improvement Following 12-Week Pharmacological Therapy in Major Depressive Disorder. Front Neurosci 2021; 15:742102. [PMID: 34588954 PMCID: PMC8473745 DOI: 10.3389/fnins.2021.742102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
The low rates of treatment response still exist in the pharmacological therapy of major depressive disorder (MDD). Exploring an optimal neurological predictor of symptom improvement caused by pharmacotherapy is urgently needed for improving response to treatment. The amygdala is closely related to the pathological mechanism of MDD and is expected to be a predictor of the treatment. However, previous studies ignored the heterogeneousness and lateralization of amygdala. Therefore, this study mainly aimed to explore whether the right amygdala subregion function at baseline can predict symptom improvement after 12-week pharmacotherapy in MDD patients. We performed granger causality analysis (GCA) to identify abnormal effective connectivity (EC) of right amygdala subregions in MDD and compared the EC strength before and after 12-week pharmacological therapy. The results show that the abnormal EC mainly concentrated on the frontolimbic circuitry and default mode network (DMN). With relief of the clinical symptom, these abnormal ECs also change toward normalization. In addition, the EC strength of right amygdala subregions at baseline showed significant predictive ability for symptom improvement using a regularized least-squares regression predict model. These findings indicated that the EC of right amygdala subregions may be functionally related in symptom improvement of MDD. It may aid us to understand the neurological mechanism of pharmacotherapy and can be used as a promising predictor for symptom improvement in MDD.
Collapse
Affiliation(s)
- Yang Xiao
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Lei Zhao
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Donglin Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Zhonglin Tan
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Lan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Changxiao Kuai
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yan Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Hanxiaoran Li
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Chenyuan Pan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Sufen Fu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiwen Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Dai P, Zhou X, Ou Y, Xiong T, Zhang J, Chen Z, Zou B, Wei X, Wu Y, Xiao M. Altered Effective Connectivity of Children and Young Adults With Unilateral Amblyopia: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2021; 15:657576. [PMID: 34295218 PMCID: PMC8290343 DOI: 10.3389/fnins.2021.657576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
The altered functional connectivity (FC) in amblyopia has been investigated by many studies, but the specific causality of brain connectivity needs to be explored further to understand the brain activity of amblyopia. We investigated whether the effective connectivity (EC) of children and young adults with amblyopia was altered. The subjects included 16 children and young adults with left eye amblyopia and 17 healthy controls (HCs). The abnormalities between the left/right primary visual cortex (PVC) and the other brain regions were investigated in a voxel-wise manner using the Granger causality analysis (GCA). According to the EC results in the HCs and the distribution of visual pathways, 12 regions of interest (ROIs) were selected to construct an EC network. The alteration of the EC network of the children and young adults with amblyopia was analyzed. In the voxel-wise manner analysis, amblyopia showed significantly decreased EC between the left/right of the PVC and the left middle frontal gyrus/left inferior frontal gyrus compared with the HCs. In the EC network analysis, compared with the HCs, amblyopia showed significantly decreased EC from the left calcarine fissure, posterior cingulate gyrus, left lingual gyrus, right lingual gyrus, and right fusiform gyrus to the right calcarine fissure. Amblyopia also showed significantly decreased EC from the right inferior frontal gyrus and right lingual gyrus to the left superior temporal gyrus compared with the HCs in the EC network analysis. The results may indicate that amblyopia altered the visual feedforward and feedback pathway, and amblyopia may have a greater relevance with the feedback pathway than the feedforward pathway. Amblyopia may also correlate with the feedforward of the third visual pathway.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Xiaoyan Zhou
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Yilin Ou
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Tong Xiong
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Jinlong Zhang
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China
| | - Xin Wei
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Manyi Xiao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
13
|
Fan L, Klein H, Bass E, Springfield C, Pinkham A. Amygdala hyperconnectivity in the paranoid state: A transdiagnostic study. J Psychiatr Res 2021; 138:117-124. [PMID: 33848967 PMCID: PMC8192453 DOI: 10.1016/j.jpsychires.2021.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Paranoia significantly contributes to social impairments across clinical diagnoses, and amygdala dysfunction has been identified as a neurobiological marker of paranoia among individuals with schizophrenia. Therefore, we aimed to investigate amygdala functional connectivity (FC) in paranoia across diagnoses. METHODS Forty-five patients with recent history of clinically significant paranoid ideation and a current DSM-5 diagnosis of any disorder underwent resting-state functional magnetic resonance imaging either in a paranoid (N = 23) or non-paranoid (N = 22) state. Amygdala FC were compared between paranoid and non-paranoid patients. Supplemental correlation analyses between amygdala FC and paranoia score were performed separately in patients and a non-equivalent healthy control (HC; N = 60) group. RESULTS Increased FC was found between right amygdala and the prefrontal cortex (PFC) [bilateral medial superior frontal gyrus, anterior cingulate, medial frontal gyrus, the triangular part and the opercular part of the inferior frontal gyrus (IFG); right orbital part of IFG], the frontal cortex (bilateral median cingulate, left precentral gyrus), and subcortical areas (right insula) in the paranoid group compared with the non-paranoid group. No significant between-group differences were observed in left amygdala FC. FC between right amygdala and PFC and frontal cortex was positively correlated with paranoia in patient and HC groups. CONCLUSION Paranoia is associated with right amygdala hyperconnectivity with PFC, frontal cortex, and insula. This hyperconnectivity was evident regardless of diagnosis and therefore identify a likely transdiagnostic neural mechanism, which may help to identify treatment targets that could potentially improve the social functioning of individuals with clinical diagnoses.
Collapse
Affiliation(s)
- Linlin Fan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Hans Klein
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Emily Bass
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Cassi Springfield
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Amy Pinkham
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, USA.
| |
Collapse
|
14
|
Berry SC, Wise RG, Lawrence AD, Lancaster TM. Extended-amygdala intrinsic functional connectivity networks: A population study. Hum Brain Mapp 2021; 42:1594-1616. [PMID: 33314443 PMCID: PMC7978137 DOI: 10.1002/hbm.25314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Pre-clinical and human neuroimaging research implicates the extended-amygdala (ExtA) (including the bed nucleus of the stria terminalis [BST] and central nucleus of the amygdala [CeA]) in networks mediating negative emotional states associated with stress and substance-use behaviours. The extent to which individual ExtA structures form a functionally integrated unit is controversial. We utilised a large sample (n > 1,000 healthy young adult humans) to compare the intrinsic functional connectivity networks (ICNs) of the BST and CeA using task-free functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. We assessed whether inter-individual differences within these ICNs were related to two principal components representing negative disposition and alcohol use. Building on recent primate evidence, we tested whether within BST-CeA intrinsic functional connectivity (iFC) was heritable and further examined co-heritability with our principal components. We demonstrate the BST and CeA to have discrete, but largely overlapping ICNs similar to previous findings. We found no evidence that within BST-CeA iFC was heritable; however, post hoc analyses found significant BST iFC heritability with the broader superficial and centromedial amygdala regions. There were no significant correlations or co-heritability associations with our principal components either across the ICNs or for specific BST-Amygdala iFC. Possible differences in phenotype associations across task-free, task-based, and clinical fMRI are discussed, along with suggestions for more causal investigative paradigms that make use of the now well-established ExtA ICNs.
Collapse
Affiliation(s)
- Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Richard G. Wise
- Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences"G. D'Annunzio University" of Chieti‐PescaraChietiItaly
| | - Andrew D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | | |
Collapse
|
15
|
Hofmann D, Straube T. Effective connectivity between bed nucleus of the stria terminalis and amygdala: Reproducibility and relation to anxiety. Hum Brain Mapp 2020; 42:824-836. [PMID: 33155747 PMCID: PMC7814768 DOI: 10.1002/hbm.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
In a previous study, we investigated the resting‐state fMRI effective connectivity (EC) between the bed nucleus of the stria terminalis (BNST) and the laterobasal (LB), centromedial (CM), and superficial (SF) amygdala. We found strong negative EC from all amygdala nuclei to the BNST, while the BNST showed positive EC to the amygdala. However, the validity of these findings remains unclear, since a reproduction in different samples has not been done. Moreover, the association of EC with measures of anxiety offers deeper insight, due to the known role of the BNST and amygdala in fear and anxiety. Here, we aimed to reproduce our previous results in three additional samples. We used spectral Dynamic Causal Modeling to estimate the EC between the BNST, the LB, CM, and SF, and its association with two measures of self‐reported anxiety. Our results revealed consistency over samples with regard to the negative EC from the amygdala nuclei to the BNST, while the positive EC from BNST to the amygdala was also found, but weaker and more heterogenic. Moreover, we found the BNST‐BNST EC showing a positive and the CM‐BNST EC, showing a negative association with anxiety. Our study suggests a reproducible pattern of negative EC from the amygdala to the BNST along with weaker positive EC from the BNST to the amygdala. Moreover, less BNST self‐inhibition and more inhibitory influence from the CM to the BNST seems to be a pattern of EC that is related to higher anxiety.
Collapse
Affiliation(s)
- David Hofmann
- University Hospital Muenster, Institute of Medical Psychology and Systems Neuroscience, Muenster, Germany
| | - Thomas Straube
- University Hospital Muenster, Institute of Medical Psychology and Systems Neuroscience, Muenster, Germany
| |
Collapse
|
16
|
Pedersen WS, Schaefer SM, Gresham LK, Lee SD, Kelly MP, Mumford JA, Oler JA, Davidson RJ. Higher resting-state BNST-CeA connectivity is associated with greater corrugator supercilii reactivity to negatively valenced images. Neuroimage 2019; 207:116428. [PMID: 31809887 DOI: 10.1016/j.neuroimage.2019.116428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA) are hypothesized to be the output nodes of the extended amygdala threat response, integrating multiple signals to coordinate the threat response via outputs to the hypothalamus and brainstem. The BNST and CeA are structurally and functionally connected, suggesting interactions between these regions may regulate how the response to provocation unfolds. However, the relationship between human BNST-CeA connectivity and the behavioral response to affective stimuli is little understood. To investigate whether individual differences in BNST-CeA connectivity are related to the affective response to negatively valenced stimuli, we tested relations between resting-state BNST-CeA connectivity and both facial electromyographic (EMG) activity of the corrugator supercilii muscle and eyeblink startle magnitude during affective image presentation within the Refresher sample of the Midlife in the United States (MIDUS) study. We found that higher right BNST-CeA connectivity was associated with greater corrugator activity to negative, but not positive, images. There was a trend-level association between right BNST-CeA connectivity and trait negative affect. Eyeblink startle magnitude was not significantly related to BNST-CeA connectivity. These results suggest that functional interactions between BNST and CeA contribute to the behavioral response to negative emotional events.
Collapse
|
17
|
Hofmann D, Straube T. Resting-state fMRI effective connectivity between the bed nucleus of the stria terminalis and amygdala nuclei. Hum Brain Mapp 2019; 40:2723-2735. [PMID: 30829454 DOI: 10.1002/hbm.24555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) and the laterobasal nucleus (LB), centromedial nucleus (CM), and superficial nucleus (SF) of the amygdala form an interconnected dynamical system, whose combined activity mediates a variety of behavioral and autonomic responses in reaction to homeostatic challenges. Although previous research provided deeper insight into the structural and functional connections between these nuclei, studies investigating their resting-state functional magnetic resonance imaging (fMRI) connectivity were solely based on undirected connectivity measures. Here, we used high-quality data of 391 subjects from the Human Connectome Project to estimate the effective connectivity (EC) between the BNST, the LB, CM, and SF through spectral dynamic causal modeling, the relation of the EC estimates with age and sex as well as their stability over time. Our results reveal a time-stable asymmetric EC structure with positive EC between all amygdala nuclei, which strongly inhibited the BNST while the BNST exerted positive influence onto all amygdala nuclei. Simulation of the impulse response of the estimated system showed that this EC structure shapes partially antagonistic (out of phase) activity flow between the BNST and amygdala nuclei. Moreover, the BNST-LB and BNST-CM EC parameters were less negative in males. In conclusion, our data points toward partially separated information processing between BNST and amygdala nuclei in the resting-state.
Collapse
Affiliation(s)
- David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| |
Collapse
|