1
|
Li Q, Zhu W, Wen X, Zang Z, Da Y, Lu J. Different baseline functional patterns of the frontal cortex in amyotrophic lateral sclerosis patients with Corticospinal tract hyperintensity. Brain Res 2024; 1844:149140. [PMID: 39111522 DOI: 10.1016/j.brainres.2024.149140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Nearly half of the amyotrophic lateral sclerosis (ALS) patients showed hyperintensity of the corticospinal tract (CST+), yet whether brain functional pattern differs between CST+and CST- patients remains obscure. In the current study, 19 ALS CST+, 41 ALS CST- patients and 37 healthy controls (HC) underwent resting state fMRI scans. We estimated local activity and connectivity patterns via the Amplitude of Low Frequency Fluctuations (ALFF) and the Network-Based Statistic (NBS) approaches respectively. The ALS CST+patients did not differ from the CST- patients in amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) score and disease duration. ALFF of the superior frontal gyrus (SFG) and the inferior frontal gyrus pars opercularis (OIFG) were highest in the HC and lowest in the ALS CST- patients, resulting in significant group differences (PFWE<0.05). NBS analysis revealed a frontal network consisting of connections between SFG, OIFG, orbital frontal gyrus, middle cingulate cortex and the basal ganglia, which exhibited HC>ALS CST+ > ALS CST- group differences (PFWE=0.037) as well. The ALFF of the OIFG was significantly correlated with ALSFRS-R (R=0.34, P=0.028) and mean connectivity of the frontal network was trend-wise significantly correlated with disease duration (R=-0.31, P=0.052) in the ALS CST- patients. However, these correlations were insignificant in ALS CST+patients (P values > 0.8). In conclusion, The ALS CST+patients exhibited different patterns of baseline functional activity and connectivity in the frontal cortex which may indicate a functional compensatory effect.
Collapse
Affiliation(s)
- Qianwen Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Zhenxiang Zang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, No. 5, Dewai Ankang Hutong, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No.45, Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
2
|
Sharma R, Mehan S, Khan Z, Das Gupta G, Narula AS. Therapeutic potential of oleanolic acid in modulation of PI3K/Akt/mTOR/STAT-3/GSK-3β signaling pathways and neuroprotection against methylmercury-induced neurodegeneration. Neurochem Int 2024; 180:105876. [PMID: 39368746 DOI: 10.1016/j.neuint.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that gradually deteriorates motor neurons, leading to demyelination, muscle weakness, and eventually respiratory failure. The disease involves several pathological processes, such as increased glutamate levels, mitochondrial dysfunction, and persistent neuroinflammation, often exacerbated by environmental toxins like mercury. This study explores the therapeutic potential of Olea europaea active phytoconstituents oleanolic acid (OLA) against ALS by targeting the overactivated PI3K/Akt/mTOR/STAT-3/GSK-3β signalling pathways. Methods involved in-silico studies, in vitro and in vivo experiments in which varying doses of methylmercury 5 mg/kg, p.o. and OLA (100 and 200 mg/kg, i.p.) were administered to rats for 42 days. Behavioural assessments, gross morphological, histopathological, and neurochemical parameters were measured in cerebrospinal fluid (CSF), blood plasma, and brain homogenates (cerebral cortex, hippocampus, striatum, midbrain, cerebellum) along with complete blood count (CBC) analysis. Results revealed OLA's significant neuroprotective properties. OLA effectively modulated targeted pathways, reducing pro-inflammatory cytokines, restoring normal levels of myelin basic protein (MBP) and neurofilament light chain (NEFL), and reducing histopathological changes. Gross pathological studies indicated less tissue damage, while CBC analysis showed improved hematology parameters. Additionally, the combination of OLA and edaravone (10 mg/kg, i.p.) demonstrated enhanced efficacy, improving motor functions and extending survival in ALS model rats. In conclusion, OLA exhibits significant therapeutic potential for ALS, acting as a potent modulator of key pathological signaling pathways. The findings suggest the feasibility of integrating OLA into existing treatment regimens, potentially improving clinical outcomes for ALS patients. However, further research must validate these findings in human clinical trials.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
3
|
Zhang Q, Ding H. Meta-analysis of resting-state fMRI in cervical spondylosis patients using AES-SDM. Front Neurol 2024; 15:1439939. [PMID: 39381074 PMCID: PMC11460301 DOI: 10.3389/fneur.2024.1439939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Background Resting-state functional magnetic resonance imaging (rs-fMRI) reveals diverse neural activity patterns in cervical spondylosis (CS) patients. However, the reported results are inconsistent. Therefore, our objective was to conduct a meta-analysis to synthesize the findings from existing rs-fMRI studies and identify consistent patterns of neural brain activity alterations in patients with CS. Materials and methods A systematic search was conducted across PubMed, Web of Knowledge, Embase, Google Scholar, and CNKI for rs-fMRI studies that compared CS patients with healthy controls (HCs), up to January 28, 2024. Significant cluster coordinates were extracted for comprehensive analysis. Results We included 16 studies involving 554 CS patients and 488 HCs. CS patients demonstrated decreased brain function in the right superior temporal gyrus and left postcentral gyrus, and increased function in the left superior frontal gyrus. Jackknife sensitivity analysis validated the robustness of these findings, and Egger's test confirmed the absence of significant publication bias (p > 0.05). Meta-regression showed no significant impact of age or disease duration differences on the results. Conclusion This meta-analysis confirms consistent alterations in specific brain regions in CS patients, highlighting the potential of rs-fMRI to refine diagnostic and therapeutic strategies. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024496263.
Collapse
Affiliation(s)
- Qin Zhang
- Guizhou Second People’s Hospital, Guiyang, Guizhou, China
- Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Hui Ding
- Guizhou Second People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Aiello EN, Contarino VE, Conte G, Solca F, Curti B, Maranzano A, Torre S, Casale S, Doretti A, Colombo E, Verde F, Silani V, Liu C, Cinnante C, Triulzi FM, Morelli C, Poletti B, Ticozzi N. QSM-detected iron accumulation in the cerebellar gray matter is selectively associated with executive dysfunction in non-demented ALS patients. Front Neurol 2024; 15:1426841. [PMID: 39364420 PMCID: PMC11448125 DOI: 10.3389/fneur.2024.1426841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background This study aimed to assess whether quantitative susceptibility imaging (QSM)-based measures of iron accumulation in the cerebellum predict cognitive and behavioral features in non-demented amyotrophic lateral sclerosis (ALS) patients. Methods A total of ALS patients underwent 3-T MRI and a clinical assessment using the ALS Functional Rating Scale-Revised (ALSFRS-R) and the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Regression models were applied to each subscale of the cognitive section of the ECAS and the ECAS-Carer Interview to examine the effect of QSM-based measures in white and gray matter (WM; GM) of the cerebellum, separately for right, left, and bilateral cerebellar regions of interest (ROIs). These effects were compared to those of cerebellar volumetrics in WM/GM, right and left hemispheres while controlling for demographics, disease status, and total intracranial volume. Results Higher QSM measures of the cerebellar GM on the left, right, and bilateral sides significantly predicted (ps ≤ 0.003) a greater number of errors on the executive functioning (EF) subscale of the ECAS (ECAS-EF). Moreover, higher GM-related, QSM measures of the cerebellum were associated with an increased probability of a below-cut-off performance on the ECAS-EF (ps ≤ 0.024). No significant effects were observed for QSM measures of the cerebellar WM or for volumetric measures on the ECAS-EF. Other ECAS measures showed no significant effects. Bilateral QSM measures of the cerebellar GM also selectively predicted performance on backward digit span and social cognition tasks. Discussion Iron accumulation within the cerebellar GM, particularly in the cerebellar cortices, may be associated with executive functioning deficits in non-demented ALS patients. Therefore, QSM-based measures could be useful for identifying the neural correlates of extra-motor cognitive deficits in ALS patients.
Collapse
Affiliation(s)
- Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Beatrice Curti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Casale
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Claudia Cinnante
- Department of Diagnostic Imaging, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Fabio Maria Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
5
|
Polverino A, Troisi Lopez E, Liparoti M, Minino R, Romano A, Cipriano L, Trojsi F, Jirsa V, Sorrentino G, Sorrentino P. Altered spreading of fast aperiodic brain waves relates to disease duration in Amyotrophic Lateral Sclerosis. Clin Neurophysiol 2024; 163:14-21. [PMID: 38663099 DOI: 10.1016/j.clinph.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE To test the hypothesis that patients affected by Amyotrophic Lateral Sclerosis (ALS) show an altered spatio-temporal spreading of neuronal avalanches in the brain, and that this may related to the clinical picture. METHODS We obtained the source-reconstructed magnetoencephalography (MEG) signals from thirty-six ALS patients and forty-two healthy controls. Then, we used the construct of the avalanche transition matrix (ATM) and the corresponding network parameter nodal strength to quantify the changes in each region, since this parameter provides key information about which brain regions are mostly involved in the spreading avalanches. RESULTS ALS patients presented higher values of the nodal strength in both cortical and sub-cortical brain areas. This parameter correlated directly with disease duration. CONCLUSIONS In this work, we provide a deeper characterization of neuronal avalanches propagation in ALS, describing their spatio-temporal trajectories and identifying the brain regions most likely to be involved in the process. This makes it possible to recognize the brain areas that take part in the pathogenic mechanisms of ALS. Furthermore, the nodal strength of the involved regions correlates directly with disease duration. SIGNIFICANCE Our results corroborate the clinical relevance of aperiodic, fast large-scale brain activity as a biomarker of microscopic changes induced by neurophysiological processes.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, 80131 Naples, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems of National Research Council, 80078 Pozzuoli, Italy
| | - Marianna Liparoti
- Department of Philosophical, Pedagogical and Economic-Quantitative Sciences, University of Chieti-Pescara G. D'Annunzio, 66100 Chieti, Italy
| | - Roberta Minino
- Department of Medical, Motor and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Antonella Romano
- Department of Medical, Motor and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Lorenzo Cipriano
- Department of Medical, Motor and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, 13005 Marseille, France
| | - Giuseppe Sorrentino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, 80131 Naples, Italy; Institute of Applied Sciences and Intelligent Systems of National Research Council, 80078 Pozzuoli, Italy; Department of Medical, Motor and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy.
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems of National Research Council, 80078 Pozzuoli, Italy; Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, 13005 Marseille, France; Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Li Y, Nie H, Xiang P, Shen W, Yan M, Yan C, Su S, Qian L, Liang Y, Tang W, Yang Z, Li Y, Chen Y. Disrupted individual-level morphological brain network in spinal muscular atrophy types 2 and 3. CNS Neurosci Ther 2024; 30:e14804. [PMID: 38887183 PMCID: PMC11183166 DOI: 10.1111/cns.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Spinal muscular atrophy (SMA) is one of the most common monogenic neuromuscular diseases, and the pathogenesis mechanisms, especially the brain network topological properties, remain unknown. This study aimed to use individual-level morphological brain network analysis to explore the brain neural network mechanisms in SMA. METHODS Individual-level gray matter (GM) networks were constructed by estimating the interregional similarity of GM volume distribution using both Kullback-Leibler divergence-based similarity (KLDs) and Jesen-Shannon divergence-based similarity (JSDs) measurements based on Automated Anatomical Labeling 116 and Hammersmith 83 atlases for 38 individuals with SMA types 2 and 3 and 38 age- and sex-matched healthy controls (HCs). The topological properties were analyzed by the graph theory approach and compared between groups by a nonparametric permutation test. Additionally, correlation analysis was used to assess the associations between altered topological metrics and clinical characteristics. RESULTS Compared with HCs, although global network topology remained preserved in individuals with SMA, brain regions with altered nodal properties mainly involved the right olfactory gyrus, right insula, bilateral parahippocampal gyrus, right amygdala, right thalamus, left superior temporal gyrus, left cerebellar lobule IV-V, bilateral cerebellar lobule VI, right cerebellar lobule VII, and vermis VII and IX. Further correlation analysis showed that the nodal degree of the right cerebellar lobule VII was positively correlated with the disease duration, and the right amygdala was negatively correlated with the Hammersmith Functional Motor Scale Expanded (HFMSE) scores. CONCLUSIONS Our findings demonstrated that topological reorganization may prioritize global properties over nodal properties, and disrupted topological properties in the cortical-limbic-cerebellum circuit in SMA may help to further understand the network pathogenesis underlying SMA.
Collapse
Affiliation(s)
- Yufen Li
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Huirong Nie
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Pei Xiang
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wanqing Shen
- Department of Interventional OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Mengzhen Yan
- Department of Pediatric Intensive Care UnitThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Cui Yan
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shu Su
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Long Qian
- Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina
| | - Yujian Liang
- Department of Pediatric Intensive Care UnitThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wen Tang
- Department of Pediatric Intensive Care UnitThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhiyun Yang
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yijuan Li
- Department of Pediatric Intensive Care UnitThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yingqian Chen
- Department of RadiologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Cheng S, Zeng F, Zhou J, Dong X, Yang W, Yin T, Huang K, Liang F, Li Z. Altered static and dynamic functional brain network in knee osteoarthritis: A resting-state functional magnetic resonance imaging study: Static and dynamic FNC in KOA. Neuroimage 2024; 292:120599. [PMID: 38608799 DOI: 10.1016/j.neuroimage.2024.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to investigate altered static and dynamic functional network connectivity (FNC) and its correlation with clinical symptoms in patients with knee osteoarthritis (KOA). One hundred and fifty-nine patients with KOA and 73 age- and gender-matched healthy subjects (HS) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluations. Group independent component analysis (GICA) was applied, and seven resting-state networks were identified. Patients with KOA had decreased static FNC within the default mode network (DM), visual network (VS), and cerebellar network (CB) and increased static FNC between the subcortical network (SC) and VS (p < 0.05, FDR corrected). Four reoccurring FNC states were identified using k-means clustering analysis. Although abnormalities in dynamic FNCs of KOA patients have been found using the common window size (22 TR, 44 s), but the results of the clustering analysis were inconsistent when using different window sizes, suggesting dynamic FNCs might be an unstable method to compare brain function between KOA patients and HS. These recent findings illustrate that patients with KOA have a wide range of abnormalities in the static and dynamic FNCs, which provided a reference for the identification of potential central nervous therapeutic targets for KOA treatment and might shed light on the other musculoskeletal pain neuroimaging studies.
Collapse
Affiliation(s)
- Shirui Cheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Fang Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Jun Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohui Dong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihua Yang
- Dali Bai Autonomous Prefecture Chinese Medicine Hospital, Dali 671000, China
| | - Tao Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| | - Zhengjie Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
8
|
Zhao Y, Lin J, Qi X, Cao D, Zhu F, Chen L, Tan Z, Mo T, Zeng H. To explore the potential mechanisms of cognitive impairment in children with MRI-negative pharmacoresistant epilepsy due to focal cortical dysplasia: A pilot study from gray matter structure view. Heliyon 2024; 10:e26609. [PMID: 38404806 PMCID: PMC10884915 DOI: 10.1016/j.heliyon.2024.e26609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Objectives To investigate the characteristics of brain structure in children with focal cortical dysplasia (FCD)-induced pharmacoresistant epilepsy, and explore the potential mechanisms of cognitive impairment from the view of gray matter alteration. Methods 25 pharmacoresistant pediatric patients with pathologically confirmed focal cortical dysplasia (FCD), and 25 gender-matched healthy controls were included in this study. 3.0T MRI data and intelligence tests using the Wechsler Intelligence Scale for Children-Forth Edition (WISC-IV) were generated for all subjects. Voxel-based morphometry (VBM)-diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) and surface-based morphometry (SBM) analyses were performed to analyze gray matter volume and cortical structure. Two-sample t-tests were used to compare the differences in gray matter volume (P<0.05, FWE) and cortical thickness (P<0.001, FWE) between the two groups. Also, the Spearman rank correlation analyses were employed to determine the relationship between structural alterations and neuropsychological results. Results The WISC-IV scores of the FCD group were significantly lower than those of the HC group in terms of full-scale intelligence quotient (FSIQ), verbal comprehension index (VCI), perceptual reasoning index (PRI), working memory index (WMI), and processing speed index (PSI) (all P<0.01). Compared with the HC group, in the FCD group, the gray matter volume (GMV) reduced significantly in the left cerebellum_8, cerebellum_Crus2, and bilateral thalamus (P<0.05, FWE); the GMV increased in the bilateral medial frontal gyrus, right precuneus, and left inferior temporal gyrus (P<0.05, FWE), and the cortical thickness increased in the bilateral frontal, parietal, and temporal areas (P<0.001, FWE). Correlation analyses showed that the age of seizure onset had positive correlations with the WISC-IV scores significantly. Meanwhile, the cortex thicknesses of the left pars opercularis gyrus, left middle temporal gyrus, and right inferior temporal gyrus had negative correlations with the WISC-IV scores significantly. Conclusion FCD patients showed subtle structural abnormalities in multiple brain regions, with significant involvement of the primary visual cortex and language function cortex. And we also demonstrated a crucial correlation between gray matter structural alteration and cognitive impairment.
Collapse
Affiliation(s)
- Yilin Zhao
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Jieqiong Lin
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xinxin Qi
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
- China Medical University, Shenyang, China
| | - Dezhi Cao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Fengjun Zhu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Zeshi Tan
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Xuan X, Zheng G, Zhu W, Sun Q, Zeng Y, Du J, Huang X. Alterations in regional homogeneity and functional connectivity in the cerebellum of patients with sporadic amyotrophic lateral sclerosis. Behav Brain Res 2024; 458:114749. [PMID: 37931706 DOI: 10.1016/j.bbr.2023.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE The purpose of this study was to examine the cerebellum's local and global functional characteristics in individuals with sporadic amyotrophic lateral sclerosis (sALS) and their correlation with clinical data. METHODS Resting-state functional magnetic resonance imaging was performed on 39 patients with sALS and on 23 healthy controls. Regional homogeneity (ReHo) in the cerebellum of all participants was analyzed, and the cerebellar regions with differences in ReHo were considered regions of interest (ROIs). In addition, the functional connectivity between the ROIs and other brain regions was analyzed. RESULTS In patients with sALS, ReHo increased in parts of the posterior cerebellar lobe. Then, the two regions with increased ReHo of the cerebellum were used as seeds, and further analysis revealed that the connectivity of the right cerebellum to the right medial superior frontal gyrus, left lingual gyrus (calcarine sulcus), left precentral gyrus, left supplementary motor area, and right Crus II was significantly increased. CONCLUSION The results demonstrate that resting-state functional connectivity changes in both motor and extra-motor regions of the cerebellum in patients with sALS, and that the cerebellum plays a pathophysiological role in sALS.
Collapse
Affiliation(s)
- Xuan Xuan
- Medical School of Chinese PLA, Beijing, China; Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China; Department of Neurology, Strategic Support Force Medical Center, Beijing, China
| | - Guangling Zheng
- Department of Radiology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qionghua Sun
- Department of Geriatrics of the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yawei Zeng
- Department of Radiology, Strategic Support Force Medical Center, Beijing, China
| | - Juan Du
- Department of Neurology, Strategic Support Force Medical Center, Beijing, China.
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China; Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
10
|
Ai Y, Li F, Hou Y, Li X, Li W, Qin K, Suo X, Lei D, Shang H, Gong Q. Differential cortical gray matter changes in early- and late-onset patients with amyotrophic lateral sclerosis. Cereb Cortex 2024; 34:bhad426. [PMID: 38061694 DOI: 10.1093/cercor/bhad426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 01/19/2024] Open
Abstract
Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.
Collapse
Affiliation(s)
- Yuan Ai
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xiuli Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Wenbin Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Kun Qin
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Du Lei
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, Xiamen, Fujian 361021, China
| |
Collapse
|
11
|
Solovieva OA, Gruden MA, Kudrin VS, Mikhailova NP, Narkevich VB, Sherstnev VV, Storozheva ZI. Motor and Cognitive Functions in Aging C57BL/6 Mice: Association with Activity of the Monoaminergic Systems in the Cerebellum and Frontal Cortex. Bull Exp Biol Med 2023; 175:739-743. [PMID: 37978148 DOI: 10.1007/s10517-023-05936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/19/2023]
Abstract
The activity in the open field, short- and long-term memory in the novel object recognition test, and gait features were evaluated in 6- and 12-month-old male C57BL/6 mice. The levels of norepinephrine, dopamine, serotonin, and their metabolites were determined in the cerebellum and frontal cortex. In the observed age range, a decrease in locomotion speed, impairment of gait initiation and stability, and long-term memory deficit were revealed. In the cerebral cortex, reduced levels of dopamine and its metabolites and accelerated metabolism of all neurotransmitters under study were found. In the cerebellum, the content of all studied monoamines was elevated, while dopamine metabolism was decelerated. Analysis of correlations between the neurochemical and behavioral parameters showed that the mechanisms of compensation of brain functions during the early aging may be associated with an increase in activity of the monoaminergic systems in the cerebellum.
Collapse
Affiliation(s)
- O A Solovieva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - M A Gruden
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - V S Kudrin
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - N P Mikhailova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - V B Narkevich
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - V V Sherstnev
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Z I Storozheva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| |
Collapse
|
12
|
Chipika RH, Mulkerrin G, Pradat PF, Murad A, Ango F, Raoul C, Bede P. Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration. Neural Regen Res 2022; 17:2335-2341. [PMID: 35535867 PMCID: PMC9120698 DOI: 10.4103/1673-5374.336139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition. The clinical picture is dominated by upper and lower motor neuron degeneration, but extra-motor pathology is increasingly recognized, including cerebellar pathology. Post-mortem and neuroimaging studies primarily focus on the characterization of supratentorial disease, despite emerging evidence of cerebellar degeneration in amyotrophic lateral sclerosis. Cardinal clinical features of amyotrophic lateral sclerosis, such as dysarthria, dysphagia, cognitive and behavioral deficits, saccade abnormalities, gait impairment, respiratory weakness and pseudobulbar affect are likely to be exacerbated by co-existing cerebellar pathology. This review summarizes in vivo and post mortem evidence for cerebellar degeneration in amyotrophic lateral sclerosis. Structural imaging studies consistently capture cerebellar grey matter volume reductions, diffusivity studies readily detect both intra-cerebellar and cerebellar peduncle white matter alterations and functional imaging studies commonly report increased functional connectivity with supratentorial regions. Increased functional connectivity is commonly interpreted as evidence of neuroplasticity representing compensatory processes despite the lack of post-mortem validation. There is a scarcity of post-mortem studies focusing on cerebellar alterations, but these detect pTDP-43 in cerebellar nuclei. Cerebellar pathology is an overlooked facet of neurodegeneration in amyotrophic lateral sclerosis despite its contribution to a multitude of clinical symptoms, widespread connectivity to spinal and supratentorial regions and putative role in compensating for the degeneration of primary motor regions.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Grainne Mulkerrin
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Aizuri Murad
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabrice Ango
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
13
|
Zhang X, Li R, Xia Y, Zhao H, Cai L, Sha J, Xiao Q, Xiang J, Zhang C, Xu K. Topological patterns of motor networks in Parkinson’s disease with different sides of onset: A resting-state-informed structural connectome study. Front Aging Neurosci 2022; 14:1041744. [DOI: 10.3389/fnagi.2022.1041744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) has a characteristically unilateral pattern of symptoms at onset and in the early stages; this lateralization is considered a diagnostically important diagnosis feature. We aimed to compare the graph-theoretical properties of whole-brain networks generated by using resting-state functional MRI (rs-fMRI), diffusion tensor imaging (DTI), and the resting-state-informed structural connectome (rsSC) in patients with left-onset PD (LPD), right-onset PD (RPD), and healthy controls (HCs). We recruited 26 patients with PD (13 with LPD and 13 with RPD) as well as 13 age- and sex-matched HCs. Rs-fMRI and DTI were performed in all subjects. Graph-theoretical analysis was used to calculate the local and global efficiency of a whole-brain network generated by rs-fMRI, DTI, and rsSC. Two-sample t-tests and Pearson correlation analysis were conducted. Significantly decreased global and local efficiency were revealed specifically in LPD patients compared with HCs when the rsSC network was used; no significant intergroup difference was found by using rs-fMRI or DTI alone. For rsSC network analysis, multiple network metrics were found to be abnormal in LPD. The degree centrality of the left precuneus was significantly correlated with the Unified Parkinson’s Disease Rating Scale (UPDRS) score and disease duration (p = 0.030, r = 0.599; p = 0.037, r = 0.582). The topological properties of motor-related brain networks can differentiate LPD and RPD. Nodal metrics may serve as important structural features for PD diagnosis and monitoring of disease progression. Collectively, these findings may provide neurobiological insights into the lateralization of PD onset.
Collapse
|
14
|
Hermann A, Tarakdjian GN, Temp AGM, Kasper E, Machts J, Kaufmann J, Vielhaber S, Prudlo J, Cole JH, Teipel S, Dyrba M. Cognitive and behavioural but not motor impairment increases brain age in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac239. [PMID: 36246047 PMCID: PMC9556938 DOI: 10.1093/braincomms/fcac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/14/2022] Open
Abstract
Age is the most important single risk factor of sporadic amyotrophic lateral sclerosis. Neuroimaging together with machine-learning algorithms allows estimating individuals' brain age. Deviations from normal brain-ageing trajectories (so called predicted brain age difference) were reported for a number of neuropsychiatric disorders. While all of them showed increased predicted brain-age difference, there is surprisingly few data yet on it in motor neurodegenerative diseases. In this observational study, we made use of previously trained algorithms of 3377 healthy individuals and derived predicted brain age differences from volumetric MRI scans of 112 amyotrophic lateral sclerosis patients and 70 healthy controls. We correlated predicted brain age difference scores with voxel-based morphometry data and multiple different motoric disease characteristics as well as cognitive/behavioural changes categorized according to Strong and Rascovsky. Against our primary hypothesis, there was no higher predicted brain-age difference in the amyotrophic lateral sclerosis patients as a group. None of the motoric phenotypes/characteristics influenced predicted brain-age difference. However, cognitive/behavioural impairment led to significantly increased predicted brain-age difference, while slowly progressive as well as cognitive/behavioural normal amyotrophic lateral sclerosis patients had even younger brain ages than healthy controls. Of note, the cognitive/behavioural normal amyotrophic lateral sclerosis patients were identified to have increased cerebellar brain volume as potential resilience factor. Younger brain age was associated with longer survival. Our results raise the question whether younger brain age in amyotrophic lateral sclerosis with only motor impairment provides a cerebral reserve against cognitive and/or behavioural impairment and faster disease progression. This new conclusion needs to be tested in subsequent samples. In addition, it will be interesting to test whether a potential effect of cerebral reserve is specific for amyotrophic lateral sclerosis or can also be found in other neurodegenerative diseases with primary motor impairment.
Collapse
Affiliation(s)
- Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Rostock/Greifswald, 18147 Rostock, Germany
| | - Gaël Nils Tarakdjian
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Rostock/Greifswald, 18147 Rostock, Germany
| | - Anna Gesine Marie Temp
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Rostock/Greifswald, 18147 Rostock, Germany
| | - Elisabeth Kasper
- Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Judith Machts
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences CBBS, 39104 Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Magdeburg, 39120 Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stefan Vielhaber
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Magdeburg, 39120 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Johannes Prudlo
- Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, UCL, London, UK
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Rostock/Greifswald, 18147 Rostock, Germany
- Department of Psychosomatic Medicine, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Martin Dyrba
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)Rostock/Greifswald, 18147 Rostock, Germany
| |
Collapse
|
15
|
Brain Connectivity and Network Analysis in Amyotrophic Lateral Sclerosis. Neurol Res Int 2022; 2022:1838682. [PMID: 35178253 PMCID: PMC8844436 DOI: 10.1155/2022/1838682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment or cure. ALS is characterized by the death of lower motor neurons (LMNs) in the spinal cord and upper motor neurons (UMNs) in the brain and their networks. Since the lower motor neurons are under the control of UMN and the networks, cortical degeneration may play a vital role in the pathophysiology of ALS. These changes that are not apparent on routine imaging with CT scans or MRI brain can be identified using modalities such as diffusion tensor imaging, functional MRI, arterial spin labelling (ASL), electroencephalogram (EEG), magnetoencephalogram (MEG), functional near-infrared spectroscopy (fNIRS), and positron emission tomography (PET) scan. They can help us generate a representation of brain networks and connectivity that can be visualized and parsed out to characterize and quantify the underlying pathophysiology in ALS. In addition, network analysis using graph measures provides a novel way of understanding the complex network changes occurring in the brain. These have the potential to become biomarker for the diagnosis and treatment of ALS. This article is a systematic review and overview of the various connectivity and network-based studies in ALS.
Collapse
|
16
|
Thome J, Steinbach R, Grosskreutz J, Durstewitz D, Koppe G. Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics. Hum Brain Mapp 2022; 43:681-699. [PMID: 34655259 PMCID: PMC8720197 DOI: 10.1002/hbm.25679] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging studies corroborate the importance of neuroimaging biomarkers and machine learning to improve diagnostic classification of amyotrophic lateral sclerosis (ALS). While most studies focus on structural data, recent studies assessing functional connectivity between brain regions by linear methods highlight the role of brain function. These studies have yet to be combined with brain structure and nonlinear functional features. We investigate the role of linear and nonlinear functional brain features, and the benefit of combining brain structure and function for ALS classification. ALS patients (N = 97) and healthy controls (N = 59) underwent structural and functional resting state magnetic resonance imaging. Based on key hubs of resting state networks, we defined three feature sets comprising brain volume, resting state functional connectivity (rsFC), as well as (nonlinear) resting state dynamics assessed via recurrent neural networks. Unimodal and multimodal random forest classifiers were built to classify ALS. Out-of-sample prediction errors were assessed via five-fold cross-validation. Unimodal classifiers achieved a classification accuracy of 56.35-61.66%. Multimodal classifiers outperformed unimodal classifiers achieving accuracies of 62.85-66.82%. Evaluating the ranking of individual features' importance scores across all classifiers revealed that rsFC features were most dominant in classification. While univariate analyses revealed reduced rsFC in ALS patients, functional features more generally indicated deficits in information integration across resting state brain networks in ALS. The present work undermines that combining brain structure and function provides an additional benefit to diagnostic classification, as indicated by multimodal classifiers, while emphasizing the importance of capturing both linear and nonlinear functional brain properties to identify discriminative biomarkers of ALS.
Collapse
Affiliation(s)
- Janine Thome
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
- Clinic for Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| | - Robert Steinbach
- Hans Berger Department of NeurologyJena University HospitalJenaGermany
| | - Julian Grosskreutz
- Precision Neurology, Department of NeurologyUniversity of LuebeckLuebeckGermany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| | - Georgia Koppe
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
- Clinic for Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty MannheimHeidelberg UniversityGermany
| |
Collapse
|
17
|
Li Q, Zhu W, Wen X, Zang Z, Da Y, Lu J. Different sensorimotor mechanism in fast and slow progression amyotrophic lateral sclerosis. Hum Brain Mapp 2021; 43:1710-1719. [PMID: 34931392 PMCID: PMC8886636 DOI: 10.1002/hbm.25752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022] Open
Abstract
The huge heterogeneity of the disease progression rate may cause inconsistent findings between local activity and functional connectivity of the primary sensorimotor area (PSMA) in amyotrophic lateral sclerosis (ALS). For illustration of this hypothesis, resting-state fMRI (RS-fMRI) data were collected and analyzed on 38 "definite" or "probable" ALS patients (19 fast and 19 slow, cut off median = 0.41) and 37 matched healthy controls. Amplitude of low frequency fluctuations (ALFFs) and functional connectivity strength (FCS) were analyzed within the PSMA. There was a decreased ALFF (pFDR <.05) and FCS (p = .022) in all ALS patients. The two metrics shared about 50% of variance (R = .7) and both showed significant positive correlation with ALS Functional Rating Scale-Revised (ALSFRS-R) in the fast (p values <.034) but not in the slow progression groups. Interestingly, when regressing out the ALFF, the PSMA network FCS, especially the inter-hemisphere FCS, showed negative correlation with the ALSFRS-R score in the slow (R = -.54, p = .026) but not the fast progression group. In summary, the current results suggest that RS-fMRI local activity and network functional connectivity accounts for the severity differently in the slow and fast progression ALS patients.
Collapse
Affiliation(s)
- Qianwen Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
18
|
Tennakoon A, Katharesan V, Musgrave IF, Koblar SA, Faull RLM, Curtis MA, Johnson IP. Normal aging, motor neurone disease, and Alzheimer's disease are characterized by cortical changes in inflammatory cytokines. J Neurosci Res 2021; 100:653-669. [PMID: 34882833 DOI: 10.1002/jnr.24996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
The role of increased brain inflammation in the development of neurodegenerative diseases is unclear. Here, we have compared cytokine changes in normal aging, motor neurone disease (MND), and Alzheimer's disease (AD). After an initial analysis, six candidate cytokines, interleukin (IL)- 4, 5, 6, 10, macrophage inhibitory protein (MIP)-1α, and fibroblast growth factor (FGF)-2, showing greatest changes were assayed in postmortem frozen human superior frontal gyri (n = 12) of AD patients, aging and young adult controls along with the precentral gyrus (n = 12) of MND patients. Healthy aging was associated with decreased anti-inflammatory IL-10 and FGF-2 levels. AD prefrontal cortex was associated with increased levels of IL-4, IL-5, and FGF-2, with the largest increase seen for FGF-2. Notwithstanding differences in the specific frontal lobe gyrus sampled, MND patients' primary motor cortex (precentral gyrus) was associated with increased levels of IL-5, IL-6, IL-10, and FGF-2 compared to the aging prefrontal cortex (superior frontal gyrus). Immunocytochemistry showed that FGF-2 is expressed in neurons, astrocytes, and microglia in normal aging prefrontal cortex, AD prefrontal cortex, and MND motor cortex. We report that healthy aging and age-related neurodegenerative diseases have different cortical inflammatory signatures that are characterized by increased levels of anti-inflammatory cytokines and call into question the view that increased inflammation underlies the development of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Anuradha Tennakoon
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Viythia Katharesan
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Simon Andrea Koblar
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Maurice Anthony Curtis
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Ian Paul Johnson
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
19
|
Xu H, Zhu H, Luo L, Zhang R. Altered gray matter volume in MRI-negative focal to bilateral tonic-clonic seizures. Acta Neurol Belg 2021; 121:1525-1533. [PMID: 32449136 DOI: 10.1007/s13760-020-01383-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
To investigate cortical changes in MRI-negative patients with focal to bilateral tonic-clonic seizures (FBTCS). High-resolution three-dimensional T1-weighted MRI were collected with a GE 3.0-T MRI scanner from 26 patients with FBTCS and 21 healthy volunteers at Nanjing Brain Hospital. Voxel-based morphometry was performed on T1-weighted MRI of all subjects. A two-sample t test was performed to compare the GMV of two groups. Age and gender were taken as covariables, so that brain regions with significant differences, as compared by two-sample t test, between the two group were obtained. These regions were extracted as the regions of interest (ROIs) used for correlation analysis between ROIs and clinical variables. There is no significant difference in GMF between two groups. In FBTCS, regions with decreased GMV are bilateral thalamus, bilateral orbitofrontal cortex, left medical cingulate gyrus, and right supplementary motor area. GMV is increased within the bilateral para-hippocampal regions (voxel-wise FDR-corrected, P < 0.05). The GMVs are significantly negatively correlated with disease duration in the left thalamus and the left para-hippocampal region (P < 0.05). Seizures may lead to the loss of neurons and the decrease of GMV in FBTCS. The increase of GMV in some regions might be due to inflammatory responses in the early stages of epileptic seizures.
Collapse
Affiliation(s)
- Honghao Xu
- Department of Functional Neurosurgery, The Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China
| | - Haitao Zhu
- Department of Functional Neurosurgery, The Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China
| | - Lei Luo
- Department of Functional Neurosurgery, The Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China
| | - Rui Zhang
- Department of Functional Neurosurgery, The Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
20
|
Zhou XY, Lu JY, Liu FT, Wu P, Zhao J, Ju ZZ, Tang YL, Shi QY, Lin HM, Wu JJ, Yen TC, Zuo CT, Sun YM, Wang J. In Vivo 18 F-APN-1607 Tau Positron Emission Tomography Imaging in MAPT Mutations: Cross-Sectional and Longitudinal Findings. Mov Disord 2021; 37:525-534. [PMID: 34842301 DOI: 10.1002/mds.28867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration with tauopathy caused by MAPT (microtubule-associated protein tau) mutations is a highly heterogenous disorder. The ability to visualize and longitudinally monitor tau deposits may be beneficial to understand disease pathophysiology and predict clinical trajectories. OBJECTIVE The aim of this study was to investigate the cross-sectional and longitudinal 18 F-APN-1607 positron emission tomography/computed tomography (PET/CT) imaging findings in MAPT mutation carriers. METHODS Seven carriers of MAPT mutations (six within exon 10 and one outside of exon 10) and 15 healthy control subjects were included. All participants underwent 18 F-APN-1607 PET/CT at baseline. Three carriers of exon 10 mutations received follow-up 18 F-APN-1607 PET/CT scans. Standardized uptake value ratio (SUVR) maps were obtained using the cerebellar gray matter as the reference region. SUVR values observed in MAPT mutation carriers were normalized to data from healthy control subjects. A regional SUVR z score ≥ 2 was used as the criterion to define positive 18 F-APN-1607 PET/CT findings. RESULTS Although the seven study patients had heterogenous clinical phenotypes, all showed a significant 18 F-APN-1607 uptake characterized by high-contrast signals. However, the anatomical localization of tau deposits differed in patients with distinct clinical symptoms. Follow-up imaging data, which were available for three patients, demonstrated worsening trends in patterns of tau accumulation over time, which were paralleled by a significant clinical deterioration. CONCLUSIONS Our data represent a promising step in understanding the usefulness of 18 F-APN-1607 PET/CT imaging for detecting tau accumulation in MAPT mutation carriers. Our preliminary follow-up data also suggest the potential value of 18 F-APN-1607 PET/CT for monitoring the longitudinal trajectories of frontotemporal lobar degeneration caused by MAPT mutations. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Yi Shi
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Mei Lin
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Kocar TD, Müller HP, Ludolph AC, Kassubek J. Feature selection from magnetic resonance imaging data in ALS: a systematic review. Ther Adv Chronic Dis 2021; 12:20406223211051002. [PMID: 34729157 PMCID: PMC8521429 DOI: 10.1177/20406223211051002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: With the advances in neuroimaging in amyotrophic lateral sclerosis (ALS), it has been speculated that multiparametric magnetic resonance imaging (MRI) is capable to contribute to early diagnosis. Machine learning (ML) can be regarded as the missing piece that allows for the useful integration of multiparametric MRI data into a diagnostic classifier. The major challenges in developing ML classifiers for ALS are limited data quantity and a suboptimal sample to feature ratio which can be addressed by sound feature selection. Methods: We conducted a systematic review to collect MRI biomarkers that could be used as features by searching the online database PubMed for entries in the recent 4 years that contained cross-sectional neuroimaging data of subjects with ALS and an adequate control group. In addition to the qualitative synthesis, a semi-quantitative analysis was conducted for each MRI modality that indicated which brain regions were most commonly reported. Results: Our search resulted in 151 studies with a total of 221 datasets. In summary, our findings highly resembled generally accepted neuropathological patterns of ALS, with degeneration of the motor cortex and the corticospinal tract, but also in frontal, temporal, and subcortical structures, consistent with the neuropathological four-stage model of the propagation of pTDP-43 in ALS. Conclusions: These insights are discussed with respect to their potential for MRI feature selection for future ML-based neuroimaging classifiers in ALS. The integration of multiparametric MRI including DTI, volumetric, and texture data using ML may be the best approach to generate a diagnostic neuroimaging tool for ALS.
Collapse
Affiliation(s)
- Thomas D Kocar
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| |
Collapse
|
22
|
Brain functional and structural characteristics of patients with seizure recurrence following drug withdrawal. Neuroradiology 2021; 63:2087-2097. [PMID: 34195875 DOI: 10.1007/s00234-021-02755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE We aimed to analyze the characteristics of brain function and microstructure linked to epilepsy relapse after drug withdrawal in patients with focal epilepsy. METHODS Resting-state functional magnetic resonance imaging and high-resolution T1-weighted images were acquired within 1 month prior to drug withdrawal from 15 patients who did not have epilepsy relapse (PER - group) and 16 patients who subsequently had epilepsy relapse (PER + group). Additionally, 23 healthy participants undergoing the same scanning protocol were included as controls. Fractional amplitude of low-frequency fluctuation (fALFF) and gray matter density (GMD) were compared among groups. Subgroup and correlation analyses were also performed. RESULTS There were no significant differences in fALFF between patient groups, but the PER + group showed lower GMD in the bilateral calcarine, left precuneus, and right superior temporal gyrus than the PER - group (Gaussian random field correction, voxel-level P < 0.001 and cluster-level P < 0.05). Both increased seizure number and polytherapy were associated with lower GMD; also, patients using other antiseizure medications showed lower GMD than those using only levetiracetam (Gaussian random field correction, voxel-level P < 0.001, and cluster-level P < 0.05). The active period and disease duration showed both positive and negative correlations with GMD, while the seizure-free period mainly showed positive correlations with GMD (uncorrected, P < 0.001). CONCLUSION Gray matter microstructure, but not local functional activity, showed distinct characteristics between patients with and without epilepsy relapse and may serve as a potential biomarker for predicting seizure recurrence upon drug withdrawal.
Collapse
|
23
|
Cheng L, Yuan Y, Tang X, Zhou Y, Luo C, Liu D, Zhang Y, Zhang J. Structural and functional underpinnings of precentral abnormalities in amyotrophic lateral sclerosis. Eur J Neurol 2021; 28:1528-1536. [PMID: 33404153 DOI: 10.1111/ene.14717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons. Studies using various magnetic resonance imaging (MRI) analytical approaches have consistently identified significant precentral abnormalities in ALS, whereas their structural and functional underpinnings remain poorly understood. METHODS Using cortical thickness, fractional anisotropy (FA), and effective connectivity, we performed a multimodal MRI study to examine the structural and functional alterations associated with precentral abnormalities in patients with ALS (n = 60) compared with healthy controls (n = 60). RESULTS Cortical thickness analysis revealed significant cortical thinning in the right precentral gyrus (PCG), superior frontal gyrus, and superior temporal gyrus in patients with ALS. Tractwise white matter microstructure analyses revealed decreased FA in the tracts connected to the PCG cluster in patients with ALS involving the right corticospinal tract and the middle posterior body of the corpus callosum. Additionally, the cortical thickness of the PCG cluster was found to be positively correlated with FA of the tracts connected to the PCG cluster, suggesting that these two structural features are tightly coupled. Using spectral dynamic causal modelling, effective connectivity analysis among the three regions with cortical thinning revealed decreased self-inhibitory influence in the PCG cluster in patients with ALS, which might be an endophenotypic manifestation of an imbalance in inhibitory and excitatory neurotransmitters in this region. CONCLUSIONS The present data shed new light on the structural and functional underpinnings of precentral abnormalities in ALS.
Collapse
Affiliation(s)
- Luqi Cheng
- Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yumin Yuan
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xie Tang
- Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chunxia Luo
- Department of Neurology, First Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, and Chongqing Cancer Hospital, Chongqing, China
| | - Yuanchao Zhang
- Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, and Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
24
|
Gomes CA, Steiner KM, Ludolph N, Spisak T, Ernst TM, Mueller O, Göricke SL, Labrenz F, Ilg W, Axmacher N, Timmann D. Resection of cerebellar tumours causes widespread and functionally relevant white matter impairments. Hum Brain Mapp 2021; 42:1641-1656. [PMID: 33410575 PMCID: PMC7978119 DOI: 10.1002/hbm.25317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022] Open
Abstract
Several diffusion tensor imaging studies reveal that white matter (WM) lesions are common in children suffering from benign cerebellar tumours who are treated with surgery only. The clinical implications of WM alterations that occur as a direct consequence of cerebellar disease have not been thoroughly studied. Here, we analysed structural and diffusion imaging data from cerebellar patients with chronic surgical lesions after resection for benign cerebellar tumours. We aimed to elucidate the impact of focal lesions of the cerebellum on WM integrity across the entire brain, and to investigate whether WM deficits were associated with behavioural impairment in three different motor tasks. Lesion symptom mapping analysis suggested that lesions in critical cerebellar regions were related to deficits in savings during an eyeblink conditioning task, as well as to deficits in motor action timing. Diffusion imaging analysis of cerebellar WM indicated that better behavioural performance was associated with higher fractional anisotropy (FA) in the superior cerebellar peduncle, cerebellum's main outflow path. Moreover, voxel‐wise analysis revealed a global pattern of WM deficits in patients within many cerebral WM tracts critical for motor and non‐motor function. Finally, we observed a positive correlation between FA and savings within cerebello‐thalamo‐cortical pathways in patients but not in controls, showing that saving effects partly depend on extracerebellar areas, and may be recruited for compensation. These results confirm that the cerebellum has extended connections with many cerebral areas involved in motor/cognitive functions, and the observed WM changes likely contribute to long‐term clinical deficits of posterior fossa tumour survivors.
Collapse
Affiliation(s)
- Carlos Alexandre Gomes
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Katharina M Steiner
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nicolas Ludolph
- Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience (HIH), Eberhard Karls University, Tübingen, Germany
| | - Tamas Spisak
- Predictive Neuroimaging Lab, Institute for Artificial Intelligence in Medicine - Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, Essen, Germany
| | - Thomas M Ernst
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Oliver Mueller
- Department of Neurosurgery, Klinikum Dortmund, Dortmund, Germany.,Department of Neurosurgery, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Franziska Labrenz
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Winfried Ilg
- Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience (HIH), Eberhard Karls University, Tübingen, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Detection of White Matter Ultrastructural Changes for Amyotrophic Lateral Sclerosis Characterization: A Diagnostic Study from Dti-Derived Data. Brain Sci 2020; 10:brainsci10120996. [PMID: 33339434 PMCID: PMC7766961 DOI: 10.3390/brainsci10120996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), magnetic resonance imaging (MRI) allows investigation at the microstructural level, employing techniques able to reveal white matter changes. In the current study, a diffusion tensor imaging (DTI) analysis, with a collection of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) indexes, was performed in ALS patients to correlate geno- and phenotype features with MRI data, to investigate an in-vivo correlation of different neuropathological patterns. All patients who underwent the MR-DTI analysis were retrospectively recruited. MRI scan was collected within three months from diagnosis. FA and ADC values were collected in corpus callosum (CC), corona radiata (CR), cerebral peduncle (CR), cerebellar peduncle (CbP) and corticospinal tract at posterior limb of internal capsule (CST). DTI analysis performed in the whole ALS cohort revealed significant FA reduction and ADC increase in all selected regions, as widespread changes. Moreover, we observed a higher value of FA in rCR in bulbar patients. A positive correlation between ALS Functional Rating Scale-Revised and FA in rCP was evident. In consideration of the non-invasiveness, the reliability and the easy reproducibility of the method, we believe that brain MRI with DTI analyses may represent a valid tool usable as a diagnostic marker in ALS.
Collapse
|
26
|
Qu H, Tang H, Pan J, Zhao Y, Wang W. Alteration of Cortical and Subcortical Structures in Children With Profound Sensorineural Hearing Loss. Front Hum Neurosci 2020; 14:565445. [PMID: 33362488 PMCID: PMC7756106 DOI: 10.3389/fnhum.2020.565445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Profound sensorineural hearing loss (SNHL) is an auditory disability associated with auditory and cognitive dysfunction. Due to distinct pathogenesis, some associated structural and functional changes within the brain have been investigated in previous studies, but whole-brain structural alterations are incompletely understood. We extended the exploration of neuroanatomic differences in whole-brain structure in children with profound SNHL who are primarily users of Chinese sign language (CSL). We employed surface-based morphometry (SBM) and subcortical analyses. T1-weighted magnetic resonance images of 26 children with profound SNHL and 27 age- and sex-matched children with normal hearing were analyzed. Compared with the normal control (NC) group, children with profound SNHL showed diverse structural changes in surface-based and subcortical analyses, including decreased cortical thickness in the left postcentral gyrus, superior parietal lobule, paracentral lobule, precuneus, the right transverse temporal gyri, and the middle temporal gyrus; a noticeable increase in the Local Gyrification Index (LGI) in the left precuneus and superior parietal lobule; and diverse changes in gray-matter volume (GMV) in different brain regions. Surface-based vertex analyses revealed regional contractions in the right thalamus, putamen, pallidum, and the brainstem of children with profound SNHL when compared with those in the NC group. Volumetric analyses showed decreased volumes of the right thalamus and pallidum in children with profound SNHL. Our data suggest that children with profound SNHL are associated with diffuse cerebral dysfunction to cortical and subcortical nuclei, and revealed neuroplastic reorganization in the precuneus, superior parietal lobule, and temporal gyrus. Our study provides robust evidence for changes in connectivity and structure in the brain associated with hearing loss.
Collapse
Affiliation(s)
- Hang Qu
- Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hui Tang
- College of Education, Central China Normal University, Wuhan, China
| | - Jiahao Pan
- Center for Orthopedic and Biomechanics Research, Boise State University, Boise, ID, United States
| | - Yi Zhao
- Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Wei Wang
- Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Cheng L, Tang X, Luo C, Liu D, Zhang Y, Zhang J. Fiber-specific white matter reductions in amyotrophic lateral sclerosis. Neuroimage Clin 2020; 28:102516. [PMID: 33396003 PMCID: PMC7724379 DOI: 10.1016/j.nicl.2020.102516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons. Studies using metrics derived from the diffusion tensor model have documented decreased fractional anisotropy (FA) and increased mean diffusivity in the corticospinal tract (CST) and the corpus callosum (CC) in ALS. These studies, however, only focused on microstructural white matter (WM) changes, while the macrostructural alterations of WM tracts in ALS remain unknown. Moreover, studies conducted based on the diffusion tensor model cannot provide information related to specific fiber bundles and fail to clarify which biological characteristics are changing. Using a novel fixel-based analytical method that can characterize the fiber density (FD) and the fiber-bundle cross-section (FC), this study investigated both microstructural and macrostructural changes in the WM in a large cohort of patients with ALS (N = 60) compared with demographically matched healthy controls (N = 60). Compared with healthy controls, we found decreased FD, FC and fiber density and cross-section (FDC, a combined measure of the FD and FC) values in the bilateral CST and the middle posterior body of the CC in patients with ALS, suggesting not only microstructural but also macrostructural abnormalities in these fiber bundles. Additionally, we found that the mean FD and FDC values in the bilateral CST were positively correlated with the revised ALS Functional Rating Scale, indicating that these two indices may serve as potential markers for assessing the clinical severity of ALS. Thus, these findings provide initial evidence for the existence of microstructural and macrostructural abnormalities of the fiber bundles in ALS.
Collapse
Affiliation(s)
- Luqi Cheng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xie Tang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Chunxia Luo
- Department of Neurology, The First Affiliated Hospital, Third Military Medical University, Chongqing 400308, PR China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, PR China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
28
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Involvement of the dentate nucleus in the pathophysiology of amyotrophic lateral sclerosis: A multi-center and multi-modal neuroimaging study. NEUROIMAGE-CLINICAL 2020; 28:102385. [PMID: 32871387 PMCID: PMC7476068 DOI: 10.1016/j.nicl.2020.102385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
This original research article highlights cerebellar structural and functional connectivity abnormalities implicated in the pathophysiology of ALS. In this study, resting-state functional MRI (rs-FMRI), diffusion tensor imaging (DTI), and 3D T1W structural images were examined. Functional connectivity was investigated between the cerebral cortex and cerebellum targeting the dentate nucleus (DN). Microstructural white matter diffusivity was examined along the cerebellar peduncles connecting the DN with the cerebral cortex and brain stem. Grey matter volumes of the cerebellar lobules and DN were determined. Overall, we provide evidence supporting involvement of the DN and associated cerebellar white matter tracts in the pathophysiology of ALS.
Amyotrophic lateral sclerosis (ALS) is characterized primarily by motor neuron but also frontotemporal lobar degeneration. Although the cerebellum is involved in both motor and cognitive functions, little is known of its role in ALS. We targeted the dentate nucleus (DN) in the cerebellum and the associated white matter fibers tracts connecting the DN to the rest of the brain using multimodal imaging techniques to examine the cerebellar structural and functional connectivity patterns in ALS patients and hypothesized that the DN is implicated in the pathophysiology of ALS. A cohort of 127 participants (56 healthy subjects (HS); 71 ALS patients) were recruited across Canada through the Canadian ALS Neuroimaging Consortium (CALSNIC). Resting state functional MRI, diffusion tensor imaging (DTI), and 3D weighted T1 structural images were acquired on a 3-tesla scanner. The DN in the cerebellum was used as a seed to evaluate the whole brain cerebral resting-state functional connectivity (rsFC). The superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP) and inferior cerebellar peduncle (ICP) were used as a region of interest in DTI to evaluate the structural integrity of the DN with the cortex and brain stem. Cerebellar volumetric analysis was done to examine the lobular and DN grey matter (GM) changes in ALS patients. Lastly, an association between DN rsFC and structural alterations were explored. DN rsFC was reduced with cerebrum (supplementary motor area, precentral gyrus, frontal, posterior parietal, temporal), lobule IV, and brain stem, and increased with parieto-occipital region. DN rsFC and white matter (WM) diffusivity alterations at SCP, MCP, and ICP were accompanied by correlations with ALSFRS-R. There were no DN volumetric changes. Notably, DN rsFC correlated with WM abnormalities at superior cerebellar peduncle. The DN plays a pathophysiological role in ALS. Impaired rsFC is likely due to the observed cerebellar peduncular WM damage given the lack of GM atrophy of the DN. This study demonstrates altered cerebellar rsFC connectivity with motor and extra-motor regions in ALS, and impaired rsFC is likely due to the observed cerebellar peduncular WM damage given the lack of GM atrophy of the DN. The correlation between the altered DN connectivity, and the behavioral data support the hypothesis that the DN plays a pathophysiological role in ALS.
Collapse
|
30
|
Canosa A, D'Ovidio F, Calvo A, Moglia C, Manera U, Torrieri MC, Vasta R, Cistaro A, Gallo S, Iazzolino B, Nobili FM, Casale F, Chiò A, Pagani M. Lifetime sport practice and brain metabolism in Amyotrophic Lateral Sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102312. [PMID: 32622315 PMCID: PMC7334468 DOI: 10.1016/j.nicl.2020.102312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
The possible impact of lifetime physical activity on the risk of ALS is debated. Brain18F-FDG-PET is a marker of neuronal integrity in vivo. We compared cases who did not practice sport (N), cases who did (Y) and controls. N had more extensive changes in areas involved in ALS at the same disability level. N might cope better with the neurodegenerative process compared to Y.
Objective To evaluate the metabolic correlates of lifetime sport practice in ALS through brain 18F-FDG-PET. Methods 131 patients completed a questionnaire about lifetime exposures, including physical activity related to sports, hobbies and occupations, and underwent brain 18F-FDG-PET. Exposure to sports was expressed as MET (Metabolic Equivalent of Task). We considered only regular practice (at least 2 h/week, for at least three months). We compared brain metabolism between two groups: subjects who did not report regular sport practice during life (N-group) and patients who did (Y-group). The resulting significant clusters were used in each group as seed regions in an interregional correlation analysis (IRCA) to evaluate the impact of lifetime sport practice on brain networks typically involved by the neurodegenerative process of ALS. Each group was compared to healthy controls (HC, n = 40). Results We found a significant, relative cerebellar hypermetabolism in the N-group compared to the Y-group. The metabolism of such cerebellar cluster resulted correlated to more significant and widespread metabolic changes in areas known to be affected by ALS (i.e. frontotemporal regions and corticospinal tracts) in the N-group as compared to the Y-group, despite the same level of disability as expressed by the ALS FRS-R. Such findings resulted independent of age, sex, site of onset (bulbar/spinal), presence/absence of C9ORF72 expansion, cognitive status and physical activity related to hobbies and occupations. When compared to HC, the N-group showed more widespread metabolic changes than the Y-group in cortical regions known to be relatively hypometabolic in ALS patients as compared to HC. Conclusions We hypothesize that patients of the N-group might cope better with the neurodegenerative process, since they show more widespread metabolic changes as compared to the Y-group, despite the same level of disability. Nevertheless, further studies are necessary to corroborate this hypothesis.
Collapse
Affiliation(s)
- Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy.
| | - Fabrizio D'Ovidio
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Umberto Manera
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria Claudia Torrieri
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Rosario Vasta
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Angelina Cistaro
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Nuclear Medicine Advisor for the ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Silvia Gallo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Barbara Iazzolino
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Flavio Mariano Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Casale
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Adriano Chiò
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy; Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Ceccanti M, Pozzilli V, Cambieri C, Libonati L, Onesti E, Frasca V, Fiorini I, Petrucci A, Garibaldi M, Palma E, Bendotti C, Fabbrizio P, Trolese MC, Nardo G, Inghilleri M. Creatine Kinase and Progression Rate in Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9051174. [PMID: 32397320 PMCID: PMC7291088 DOI: 10.3390/cells9051174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with no recognized clinical prognostic factor. Creatinine kinase (CK) increase in these patients is already described with conflicting results on prognosis and survival. In 126 ALS patients who were fast or slow disease progressors, CK levels were assayed for 16 months every 4 months in an observational case-control cohort study with prospective data collection conducted in Italy. CK was also measured at baseline in 88 CIDP patients with secondary axonal damage and in two mouse strains (129SvHSD and C57-BL) carrying the same SOD1G93A transgene expression but showing a fast (129Sv-SOD1G93A) and slow (C57-SOD1G93A) ALS progression rate. Higher CK was found in ALS slow progressors compared to fast progressors in T1, T2, T3, and T4, with a correlation with Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) scores. Higher CK was found in spinal compared to bulbar-onset patients. Transgenic and non-transgenic C57BL mice showed higher CK levels compared to 129SvHSD strain. At baseline mean CK was higher in ALS compared to CIDP. CK can predict the disease progression, with slow progressors associated with higher levels and fast progressors to lower levels, in both ALS patients and mice. CK is higher in ALS patients compared to patients with CIDP with secondary axonal damage; the higher levels of CK in slow progressors patients, but also in C57BL transgenic and non-transgenic mice designs CK as a predisposing factor for disease rate progression.
Collapse
Affiliation(s)
- Marco Ceccanti
- Rare Neuromuscular Diseases Centre, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (V.P.); (C.C.); (L.L.); (E.O.); (V.F.); (I.F.)
| | - Valeria Pozzilli
- Rare Neuromuscular Diseases Centre, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (V.P.); (C.C.); (L.L.); (E.O.); (V.F.); (I.F.)
| | - Chiara Cambieri
- Rare Neuromuscular Diseases Centre, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (V.P.); (C.C.); (L.L.); (E.O.); (V.F.); (I.F.)
| | - Laura Libonati
- Rare Neuromuscular Diseases Centre, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (V.P.); (C.C.); (L.L.); (E.O.); (V.F.); (I.F.)
| | - Emanuela Onesti
- Rare Neuromuscular Diseases Centre, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (V.P.); (C.C.); (L.L.); (E.O.); (V.F.); (I.F.)
| | - Vittorio Frasca
- Rare Neuromuscular Diseases Centre, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (V.P.); (C.C.); (L.L.); (E.O.); (V.F.); (I.F.)
| | - Ilenia Fiorini
- Rare Neuromuscular Diseases Centre, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (V.P.); (C.C.); (L.L.); (E.O.); (V.F.); (I.F.)
| | - Antonio Petrucci
- Centre for Neuromuscular and Neurological Rare Diseases, San Camillo Forlanini Hospital, 00152 Rome, Italy;
| | - Matteo Garibaldi
- Neuromuscular Disease Centre, Department of Neurology, Mental Health and Sensory Organs (NESMOS), Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy;
| | - Caterina Bendotti
- Laboratory Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Famacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.B.); (P.F.); (M.C.T.); (G.N.)
| | - Paola Fabbrizio
- Laboratory Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Famacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.B.); (P.F.); (M.C.T.); (G.N.)
| | - Maria Chiara Trolese
- Laboratory Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Famacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.B.); (P.F.); (M.C.T.); (G.N.)
| | - Giovanni Nardo
- Laboratory Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Famacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.B.); (P.F.); (M.C.T.); (G.N.)
| | - Maurizio Inghilleri
- Rare Neuromuscular Diseases Centre, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (V.P.); (C.C.); (L.L.); (E.O.); (V.F.); (I.F.)
- Correspondence: ; Tel.: +39-0-6499-14122
| |
Collapse
|
32
|
Chen QF, Zhang XH, Huang NX, Chen HJ. Identification of Amyotrophic Lateral Sclerosis Based on Diffusion Tensor Imaging and Support Vector Machine. Front Neurol 2020; 11:275. [PMID: 32411072 PMCID: PMC7198809 DOI: 10.3389/fneur.2020.00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: White matter (WM) impairments involving both motor and extra-motor areas have been well-documented in amyotrophic lateral sclerosis (ALS). This study tested the potential of diffusion measurements in WM for identifying ALS based on support vector machine (SVM). Methods: Voxel-wise fractional anisotropy (FA) values of diffusion tensor images (DTI) were extracted from 22 ALS patients and 26 healthy controls and served as discrimination features. The revised ALS Functional Rating Scale (ALSFRS-R) was employed to assess ALS severity. Feature ranking and selection were based on Fisher scores. A linear kernel SVM algorithm was applied to build the classification model, from which the classification performance was evaluated. To promote classifier generalization ability, a leave-one-out cross-validation (LOOCV) method was adopted. Results: By using the 2,400~3,400 ranked features as optimal features, the highest classification accuracy of 83.33% (sensitivity = 77.27% and specificity = 88.46%, P = 0.0001) was achieved, with an area under receiver operating characteristic curve of 0.862. The predicted function value was positively correlated with patient ALSFRS-R scores (r = 0.493, P = 0.020). In the optimized SVM model, FA values from several regions mostly contributed to classification, primarily involving the corticospinal tract pathway, postcentral gyrus, and frontal and parietal areas. Conclusions: Our results suggest the feasibility of ALS diagnosis based on SVM analysis and diffusion measurements of WM. Additional investigations using a larger cohort is recommended in order to validate the results of this study.
Collapse
Affiliation(s)
- Qiu-Feng Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
33
|
Qiu T, Zhang Y, Tang X, Liu X, Wang Y, Zhou C, Luo C, Zhang J. Precentral degeneration and cerebellar compensation in amyotrophic lateral sclerosis: A multimodal MRI analysis. Hum Brain Mapp 2019; 40:3464-3474. [PMID: 31020731 PMCID: PMC6865414 DOI: 10.1002/hbm.24609] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and intractable neurodegenerative disease of human motor system characterized by progressive muscular weakness and atrophy. A considerable body of research has demonstrated significant structural and functional abnormalities of the primary motor cortex in patients with ALS. In contrast, much less attention has been paid to the abnormalities of cerebellum in this disease. Using multimodal magnetic resonance imagining data of 60 patients with ALS and 60 healthy controls, we examined changes in gray matter volume (GMV), white matter (WM) fractional anisotropy (FA), and functional connectivity (FC) in patients with ALS. Compared with healthy controls, patients with ALS showed decreased GMV in the left precentral gyrus and increased GMV in bilateral cerebellum, decreased FA in the left corticospinal tract and body of corpus callosum, and decreased FC in multiple brain regions, involving bilateral postcentral gyrus, precentral gyrus and cerebellum anterior lobe, among others. Meanwhile, we found significant intermodal correlations among GMV of left precentral gyrus, FA of altered WM tracts, and FC of left precentral gyrus, and that WM microstructural alterations seem to play important roles in mediating the relationship between GMV and FC of the precentral gyrus, as well as the relationship between GMVs of the precentral gyrus and cerebellum. These findings provided evidence for the precentral degeneration and cerebellar compensation in ALS, and the involvement of WM alterations in mediating the relationship between pathologies of the primary motor cortex and cerebellum, which may contribute to a better understanding of the pathophysiology of ALS.
Collapse
Affiliation(s)
- Ting Qiu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xie Tang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xiaoping Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Chaoyang Zhou
- Department of RadiologySouthwest Hospital, Third Military Medical UniversityChongqingPeople's Republic of China
| | - Chunxia Luo
- Department of NeurologySouthwest Hospital, Third Military Medical UniversityChongqingPeople's Republic of China
| | - Jiuquan Zhang
- Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingPeople's Republic of China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University)Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqingPeople's Republic of China
| |
Collapse
|