1
|
Shimozono T, Shiiba T, Takano K. Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson's disease. Eur Radiol 2024; 34:7921-7933. [PMID: 38958697 DOI: 10.1007/s00330-024-10886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES To clarify the association between a radiomics score (Rad-score) derived from T1-weighted signal intensity to T2-weighted signal intensity (T1-w/T2-w) ratio images and the progression of motor symptoms in Parkinson's disease (PD). MATERIALS AND METHODS This retrospective study included patients with PD enrolled in the Parkinson's Progression Markers Initiative. The Movement Disorders Society-Unified Parkinson's Disease Rating Scale Part III score ≥ 33 and/or Hoehn and Yahr stage ≥ 3 indicated motor function decline. The Rad-score was constructed using radiomics features extracted from T1-w/T2-w ratio images. The Kaplan-Meier analysis and Cox regression analyses were used to assess the time differences in motor function decline between the high and low Rad-score groups. RESULTS A total of 171 patients with PD were divided into training (n = 101, mean age at baseline, 61.6 ± 9.3 years) and testing (n = 70, mean age at baseline, 61.6 ± 10 years). The patients in the high Rad-score group had a shorter time to motor function decline than those in the low Rad-score group in the training dataset (log-rank test, p < 0.001) and testing dataset (log-rank test, p < 0.001). The multivariate Cox regression using the Rad-score and clinical factors revealed a significant association between the Rad-score and motor function decline in the training dataset (HR = 2.368, 95%CI:1.423-3.943, p < 0.001) and testing dataset (HR = 2.931, 95%CI:1.472-5.837, p = 0.002). CONCLUSION Rad-scores based on radiomics features derived from T1-w/T2-w ratio images were associated with the progression of motor symptoms in PD. CLINICAL RELEVANCE STATEMENT The radiomics score derived from the T1-weighted/T2-weighted ratio images offers a predictive tool for assessing the progression of motor symptom in patients with PD. KEY POINTS Radiomics score derived from T1-weighted/T2-weighted ratio images is correlated with the motor symptoms of Parkinson's disease. A high radiomics score correlated with faster motor function decline in patients with Parkinson's disease. The proposed radiomics score offers predictive insight into the progression of motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Takuya Shimozono
- Department of Neuroimaging and Brain Science, Major in Health Science, Graduate School of Health Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takuro Shiiba
- Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Kazuki Takano
- Department of Molecular Imaging, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
2
|
Serrarens C, Ruiz-Fernandez J, Otter M, Campforts BCM, Stumpel CTRM, Linden DEJ, van Amelsvoort TAMJ, Kashyap S, Vingerhoets C. Intracortical myelin across laminae in adult individuals with 47,XXX: a 7 Tesla MRI study. Cereb Cortex 2024; 34:bhae343. [PMID: 39183364 PMCID: PMC11345119 DOI: 10.1093/cercor/bhae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
47,XXX (Triple X syndrome) is a sex chromosome aneuploidy characterized by the presence of a supernumerary X chromosome in affected females and is associated with a variable cognitive, behavioral, and psychiatric phenotype. The effect of a supernumerary X chromosome in affected females on intracortical microstructure is currently unknown. Therefore, we conducted 7 Tesla structural MRI and compared T1 (ms), as a proxy for intracortical myelin (ICM), across laminae of 21 adult women with 47,XXX and 22 age-matched typically developing females using laminar analyses. Relationships between phenotypic traits and T1 values in 47,XXX were also investigated. Adults with 47,XXX showed higher bilateral T1 across supragranular laminae in the banks of the superior temporal sulcus, and in the right inferior temporal gyrus, suggesting decreases of ICM primarily within the temporal cortex in 47,XXX. Higher social functioning in 47,XXX was related to larger inferior temporal gyrus ICM content. Our findings indicate an effect of a supernumerary X chromosome in adult-aged women on ICM across supragranular laminae within the temporal cortex. These findings provide insight into the role of X chromosome dosage on ICM across laminae. Future research is warranted to further explore the functional significance of altered ICM across laminae in 47,XXX.
Collapse
Affiliation(s)
- Chaira Serrarens
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Julia Ruiz-Fernandez
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- INSERM U1299, Centre Borelli UMR 9010, ENS-Paris-Saclay, Université Paris Saclay, Paris, France
| | - Maarten Otter
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- Medical Department, SIZA, Arnhem, 6800 AM, The Netherlands
| | - Bea C M Campforts
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, 6229 ER, The Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- ‘s Heeren Loo Zorggroep, Amersfoort, 3818 LA, The Netherlands
| |
Collapse
|
3
|
Jørgensen KN, Nerland S, Slapø NB, Norbom LB, Mørch-Johnsen L, Wortinger LA, Barth C, Andreou D, Maximov II, Geier OM, Andreassen OA, Jönsson EG, Agartz I. Assessing regional intracortical myelination in schizophrenia spectrum and bipolar disorders using the optimized T1w/T2w-ratio. Psychol Med 2024; 54:2369-2379. [PMID: 38563302 DOI: 10.1017/s0033291724000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Dysmyelination could be part of the pathophysiology of schizophrenia spectrum (SCZ) and bipolar disorders (BPD), yet few studies have examined myelination of the cerebral cortex. The ratio of T1- and T2-weighted magnetic resonance images (MRI) correlates with intracortical myelin. We investigated the T1w/T2w-ratio and its age trajectories in patients and healthy controls (CTR) and explored associations with antipsychotic medication use and psychotic symptoms. METHODS Patients with SCZ (n = 64; mean age = 30.4 years, s.d. = 9.8), BPD (n = 91; mean age 31.0 years, s.d. = 10.2), and CTR (n = 155; mean age = 31.9 years, s.d. = 9.1) who participated in the TOP study (NORMENT, University of Oslo, Norway) were clinically assessed and scanned using a General Electric 3 T MRI system. T1w/T2w-ratio images were computed using an optimized pipeline with intensity normalization and field inhomogeneity correction. Vertex-wise regression models were used to compare groups and examine group × age interactions. In regions showing significant differences, we explored associations with antipsychotic medication use and psychotic symptoms. RESULTS No main effect of diagnosis was found. However, age slopes of the T1w/T2w-ratio differed significantly between SCZ and CTR, predominantly in frontal and temporal lobe regions: Lower T1w/T2w-ratio values with higher age were found in CTR, but not in SCZ. Follow-up analyses revealed a more positive age slope in patients who were using antipsychotics and patients using higher chlorpromazine-equivalent doses. CONCLUSIONS While we found no evidence of reduced intracortical myelin in SCZ or BPD relative to CTR, different regional age trajectories in SCZ may suggest a promyelinating effect of antipsychotic medication.
Collapse
Affiliation(s)
- Kjetil Nordbø Jørgensen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Stener Nerland
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora Berz Slapø
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Laura Anne Wortinger
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Claudia Barth
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver M Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik G Jönsson
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Agartz
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
4
|
Park Y, Lee MJ, Yoo S, Kim CY, Namgung JY, Park Y, Park H, Lee EC, Yoon YD, Paquola C, Bernhardt BC, Park BY. GAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox. Neuroimage 2024; 291:120595. [PMID: 38554782 DOI: 10.1016/j.neuroimage.2024.120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.
Collapse
Affiliation(s)
- Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Yunseo Park
- Department of Data Science, Inha University, Incheon, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | | | | | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Statistics and Data Science, Inha University, Incheon, South Korea.
| |
Collapse
|
5
|
Romanò F, Valsasina P, Pagani E, De Simone A, Parolin E, Filippi M, Rocca MA. Structural and functional correlates of disability, motor and cognitive performances in multiple sclerosis: Focus on the globus pallidus. Mult Scler Relat Disord 2024; 86:105576. [PMID: 38579567 DOI: 10.1016/j.msard.2024.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES To explore structural and functional alterations of external (GPe) and internal (GPi) globus pallidus in people with multiple sclerosis (pwMS) compared to healthy controls (HC) and analyze their relationship with measures of clinical disability, motor and cognitive impairment. METHODS Sixty pwMS and 30 HC comparable for age and sex underwent 3.0T MRI, including conventional, diffusion tensor MRI and resting state (RS) functional MRI. Expanded Disability Status Scale (EDSS) scores were rated and timed 25-foot walk (T25FW) test, nine-hole peg test (9HPT), and paced auditory serial addition test (PASAT) were administered. Two operators segmented the GP into GPe and GPi. Volumes, T1/T2 ratio, diffusivity indices and seed-based RS functional connectivity (FC) of the GP and its components were assessed. RESULTS PwMS had no atrophy or altered diffusivity measures of the GP. Compared to HC, pwMS had higher T1/T2 ratio in both GP regions, which correlated with EDSS score (r = 0.26-0.39, p = 0.01-0.05). RS FC analysis highlighted component-specific functional alterations in pwMS: the GPe had decreased RS FC with fronto-parietal cortices, whereas the GPi had decreased intra-GP RS FC and increased RS FC with the thalamus. Worse EDSS, 9HPT, T25FW and PASAT scores were associated with GP RS FC modifications (r=-0.51‒0.51, p < 0.001). CONCLUSIONS Structural GP involvement in MS was homogeneous across its portions. Increased T1/T2 ratio values, possibly representing iron accumulation, were related to more severe disability. RS FC alterations of the GPe and GPi were consistent with their roles within the basal ganglia network and correlated with worse functional status, suggesting less efficient communication between structures.
Collapse
Affiliation(s)
- Francesco Romanò
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alice De Simone
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Parolin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Fang M, Huang H, Yang J, Zhang S, Wu Y, Huang CC. Changes in microstructural similarity of hippocampal subfield circuits in pathological cognitive aging. Brain Struct Funct 2024; 229:311-321. [PMID: 38147082 DOI: 10.1007/s00429-023-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/02/2023] [Indexed: 12/27/2023]
Abstract
The hippocampal networks support multiple cognitive functions and may have biological roles and functions in pathological cognitive aging (PCA) and its associated diseases, which have not been explored. In the current study, a total of 116 older adults with 39 normal controls (NC) (mean age: 52.3 ± 13.64 years; 16 females), 39 mild cognitive impairment (MCI) (mean age: 68.15 ± 9.28 years, 14 females), and 38 dementia (mean age: 73.82 ± 8.06 years, 8 females) were included. The within-hippocampal subfields and the cortico-hippocampal circuits were assessed via a micro-structural similarity network approach using T1w/T2w ratio and regional gray matter tissue probability maps, respectively. An analysis of covariance was conducted to identify between-group differences in structural similarities among hippocampal subfields. The partial correlation analyses were performed to associate changes in micro-structural similarities with cognitive performance in the three groups, controlling the effect of age, sex, education, and cerebral small-vessel disease. Compared with the NC, an altered T1w/T2w ratio similarity between left CA3 and left subiculum was observed in the mild cognitive impairment (MCI) and dementia. The left CA3 was the most impaired region correlated with deteriorated cognitive performance. Using these regions as seeds for GM similarity comparisons between hippocampal subfields and cortical regions, group differences were observed primarily between the left subiculum and several cortical regions. By utilizing T1w/T2w ratio as a proxy measure for myelin content, our data suggest that the imbalanced synaptic weights within hippocampal CA3 provide a substrate to explain the abnormal firing characteristics of hippocampal neurons in PCA. Furthermore, our work depicts specific brain structural characteristics of normal and pathological cognitive aging and suggests a potential mechanism for cognitive aging heterogeneity.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanghuang Huang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Shuying Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Yujie Wu
- Changning Mental Health Center, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
7
|
Boaventura M, Sastre-Garriga J, Rimkus CDM, Rovira À, Pareto D. T1/T2-weighted ratio: A feasible MRI biomarker in multiple sclerosis. Mult Scler 2024; 30:283-291. [PMID: 38389172 DOI: 10.1177/13524585241233448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
T1/T2-weighted ratio is a novel magnetic resonance imaging (MRI) biomarker based on conventional sequences, related to microstructural integrity and with increasing use in multiple sclerosis (MS) research. Different from other advanced MRI techniques, this method has the advantage of being based on routinely acquired MRI sequences, a feature that enables analysis of retrospective cohorts with considerable clinical value. This article provides an overview of this method, describing the previous cross-sectional and longitudinal findings in the main MS clinical phenotypes and in different brain tissues: focal white matter (WM) lesions, normal-appearing white matter (NAWM), cortical gray matter (GM), and deep normal-appearing gray matter (NAGM). We also discuss the clinical associations, possible reasons for conflicting results, correlations with other MRI-based measures, and histopathological associations. We highlight the limitations of the biomarker itself and the methodology of each study. Finally, we update the reader on its potential use as an imaging biomarker in research.
Collapse
Affiliation(s)
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | | | - Àlex Rovira
- Section of Neuroradiology. Department of Radiology (IDI). Vall d'Hebron University Hospital, Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology. Department of Radiology (IDI). Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
8
|
Da X, Hempel E, Ou Y, Rowe OE, Malchano Z, Hajós M, Kern R, Megerian JT, Cimenser A. Noninvasive Gamma Sensory Stimulation May Reduce White Matter and Myelin Loss in Alzheimer's Disease. J Alzheimers Dis 2024; 97:359-372. [PMID: 38073386 PMCID: PMC10789351 DOI: 10.3233/jad-230506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) demonstrate progressive white matter atrophy and myelin loss. Restoring myelin content or preventing demyelination has been suggested as a therapeutic approach for AD. OBJECTIVE Herein, we investigate the effects of non-invasive, combined visual and auditory gamma-sensory stimulation on white matter atrophy and myelin content loss in patients with AD. METHODS In this study, we used the magnetic resonance imaging (MRI) data from the OVERTURE study (NCT03556280), a randomized, controlled, clinical trial in which active treatment participants received daily, non-invasive, combined visual and auditory, 40 Hz stimulation for six months. A subset of OVERTURE participants who meet the inclusion criteria for detailed white matter (N = 38) and myelin content (N = 36) assessments are included in the analysis. White matter volume assessments were performed using T1-weighted MRI, and myelin content assessments were performed using T1-weighted/T2-weighted MRI. Treatment effects on white matter atrophy and myelin content loss were assessed. RESULTS Combined visual and auditory gamma-sensory stimulation treatment is associated with reduced total and regional white matter atrophy and myelin content loss in active treatment participants compared to sham treatment participants. Across white matter structures evaluated, the most significant changes were observed in the entorhinal region. CONCLUSIONS The study results suggest that combined visual and auditory gamma-sensory stimulation may modulate neuronal network function in AD in part by reducing white matter atrophy and myelin content loss. Furthermore, the entorhinal region MRI outcomes may have significant implications for early disease intervention, considering the crucial afferent connections to the hippocampus and entorhinal cortex.
Collapse
Affiliation(s)
- Xiao Da
- Cognito Therapeutics, Inc., Cambridge, MA, USA
| | - Evan Hempel
- Cognito Therapeutics, Inc., Cambridge, MA, USA
| | - Yangming Ou
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | | | - Mihály Hajós
- Cognito Therapeutics, Inc., Cambridge, MA, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ralph Kern
- Cognito Therapeutics, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
9
|
Zhang X, Wang Z, Zheng D, Cao X, Qi W, Yuan Q, Zhang D, Liang X, Ruan Y, Zhang S, Tang W, Huang Q, Xue C. Aberrant spontaneous static and dynamic amplitude of low-frequency fluctuations in cerebral small vessel disease with or without mild cognitive impairment. Brain Behav 2023; 13:e3279. [PMID: 37815202 PMCID: PMC10726894 DOI: 10.1002/brb3.3279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is considered an age-related degenerative neurological disorder and the most common risk factor for vascular cognitive impairment (VCI). The amplitude of fluctuation of low frequency (ALFF) can detect altered intrinsic brain activity in CSVD. This study explored the static and dynamic ALFFs in the early stage of CSVD with (CSVD-M) or without (CSVD-W) mild cognitive impairment (MCI) in these patients and how these changes contribute to cognitive deterioration. METHODS Thirty consecutive CSVD cases and 18 healthy controls (HC) were included in this study. All the participants underwent a 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence to obtain structural T1-weighted images. Simultaneous multislice imaging 5(SMS5) was used for resting-state functional MRI (rs-fMRI), and Data Processing and Analysis of Brain Imaging software helped determine static ALFF (sALFF). The dynamic ALFF (dALFF) was calculated using the sliding window method of DynamicBC software. Analysis of Covariance (ANCOVA) and two-sample t-test were used to evaluate the sALFF and temporal variability of dALFF among the three groups. The subjects were rated on a broad standard neuropsychological scale. Partial correlation analysis was used to evaluate the correlation between sALFF and dALFF variability and cognition (Bonferroni correction, statistical threshold set at p < .05). RESULTS Compared with HCs, the CSVD-M group indicated decreased sALFF values in the bilateral cerebellum posterior lobe (CPL) and the left inferior Parietal Lobule (IPL), with increased sALFF values in the right SFG. For dALFF analysis, the CSVD-W group had significant dALFF variability in the right fusiform gyrus compared with HC. Moreover, the postcentral gyrus (PoCG) was significantly high in the CSVD-W group. While in the CSVD-M group, the bilateral paracentral lobules (PL) revealed significantly elevated dALFF variability and low dALFF variability in the left CPL and right IPL compared with HCs. The CSVD-M group had high dALFF variability in the bilateral PL but low dALFF variability in the left middle temporal gyrus (MTG) and right PoCG compared with the CSVD-W group. The partial correlation analysis indicated that dALFF variability in the left MTG was positively associated with EM (r = 0.713, p = .002) in CSVD-W and CSVD-M groups. In the groups with CSVD-M and HC, altered dALFF variability in the bilateral PL was negatively correlated with EM (r = -0.560, p = .002). CONCLUSION There were significant changes in sALFF and dALFF variability in CSVD patients. Abnormal spontaneous static and dynamic ALFFs may provide new insights into cognitive dysfunction in CSVD with MCI and may be valuable biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Xulian Zhang
- Department of RadiologyNantong Haimen District People's HospitalNantongChina
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhigang Wang
- Department of RadiologyNantong Haimen District People's HospitalNantongChina
| | - Darui Zheng
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xuan Cao
- Division of Statistics and Data Science, Department of Mathematical SciencesUniversity of CincinnatiCincinnatiOhio
| | - Wenzhang Qi
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Qianqian Yuan
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Da Zhang
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xuhong Liang
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yiming Ruan
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Shaojun Zhang
- Department of StatisticsUniversity of FloridaGainesvilleFlorida
| | | | - Qingling Huang
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Chen Xue
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Colato E, Prados F, Stutters J, Bianchi A, Narayanan S, Arnold DL, Wheeler-Kingshott C, Barkhof F, Ciccarelli O, Chard DT, Eshaghi A. Networks of microstructural damage predict disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:992-1003. [PMID: 37468305 DOI: 10.1136/jnnp-2022-330203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Network-based measures are emerging MRI markers in multiple sclerosis (MS). We aimed to identify networks of white (WM) and grey matter (GM) damage that predict disability progression and cognitive worsening using data-driven methods. METHODS We analysed data from 1836 participants with different MS phenotypes (843 in a discovery cohort and 842 in a replication cohort). We calculated standardised T1-weighted/T2-weighted (sT1w/T2w) ratio maps in brain GM and WM, and applied spatial independent component analysis to identify networks of covarying microstructural damage. Clinical outcomes were Expanded Disability Status Scale worsening confirmed at 24 weeks (24-week confirmed disability progression (CDP)) and time to cognitive worsening assessed by the Symbol Digit Modalities Test (SDMT). We used Cox proportional hazard models to calculate predictive value of network measures. RESULTS We identified 8 WM and 7 GM sT1w/T2w networks (of regional covariation in sT1w/T2w measures) in both cohorts. Network loading represents the degree of covariation in regional T1/T2 ratio within a given network. The loading factor in the anterior corona radiata and temporo-parieto-frontal components were associated with higher risks of developing CDP both in the discovery (HR=0.85, p<0.05 and HR=0.83, p<0.05, respectively) and replication cohorts (HR=0.84, p<0.05 and HR=0.80, p<0.005, respectively). The decreasing or increasing loading factor in the arcuate fasciculus, corpus callosum, deep GM, cortico-cerebellar patterns and lesion load were associated with a higher risk of developing SDMT worsening both in the discovery (HR=0.82, p<0.01; HR=0.87, p<0.05; HR=0.75, p<0.001; HR=0.86, p<0.05 and HR=1.27, p<0.0001) and replication cohorts (HR=0.82, p<0.005; HR=0.73, p<0.0001; HR=0.80, p<0.005; HR=0.85, p<0.01 and HR=1.26, p<0.0001). CONCLUSIONS GM and WM networks of microstructural changes predict disability and cognitive worsening in MS. Our approach may be used to identify patients at greater risk of disability worsening and stratify cohorts in treatment trials.
Collapse
Affiliation(s)
- Elisa Colato
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Jonathan Stutters
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alessia Bianchi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Claudia Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Brain Connectivity Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Vrije Universiteit, Amsterdam, Netherlands
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Declan T Chard
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Arman Eshaghi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
11
|
Ahmed M, Chen J, Arani A, Senjem ML, Cogswell PM, Jack CR, Liu C. The diamagnetic component map from quantitative susceptibility mapping (QSM) source separation reveals pathological alteration in Alzheimer's disease-driven neurodegeneration. Neuroimage 2023; 280:120357. [PMID: 37661080 DOI: 10.1016/j.neuroimage.2023.120357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
A sensitive and accurate imaging technique capable of tracking the disease progression of Alzheimer's Disease (AD) driven amnestic dementia would be beneficial. A currently available method for pathology detection in AD with high accuracy is Positron Emission Tomography (PET) imaging, despite certain limitations such as low spatial resolution, off-targeting error, and radiation exposure. Non-invasive MRI scanning with quantitative magnetic susceptibility measurements can be used as a complementary tool. To date, quantitative susceptibility mapping (QSM) has widely been used in tracking deep gray matter iron accumulation in AD. The present work proposes that by compartmentalizing quantitative susceptibility into paramagnetic and diamagnetic components, more holistic information about AD pathogenesis can be acquired. Particularly, diamagnetic component susceptibility (DCS) can be a powerful indicator for tracking protein accumulation in the gray matter (GM), demyelination in the white matter (WM), and relevant changes in the cerebrospinal fluid (CSF). In the current work, voxel-wise group analysis of the WM and the CSF regions show significantly lower |DCS| (the absolute value of DCS) value for amnestic dementia patients compared to healthy controls. Additionally, |DCS| and τ PET standardized uptake value ratio (SUVr) were found to be associated in several GM regions typically affected by τ deposition in AD. Therefore, we propose that the separated diamagnetic susceptibility can be used to track pathological neurodegeneration in different tissue types and regions of the brain. With the initial evidence, we believe the usage of compartmentalized susceptibility demonstrates substantive potential as an MRI-based technique for tracking AD-driven neurodegeneration.
Collapse
Affiliation(s)
- Maruf Ahmed
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Jingjia Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Arvin Arani
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Rocca MA, Margoni M, Battaglini M, Eshaghi A, Iliff J, Pagani E, Preziosa P, Storelli L, Taoka T, Valsasina P, Filippi M. Emerging Perspectives on MRI Application in Multiple Sclerosis: Moving from Pathophysiology to Clinical Practice. Radiology 2023; 307:e221512. [PMID: 37278626 PMCID: PMC10315528 DOI: 10.1148/radiol.221512] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 06/07/2023]
Abstract
MRI plays a central role in the diagnosis of multiple sclerosis (MS) and in the monitoring of disease course and treatment response. Advanced MRI techniques have shed light on MS biology and facilitated the search for neuroimaging markers that may be applicable in clinical practice. MRI has led to improvements in the accuracy of MS diagnosis and a deeper understanding of disease progression. This has also resulted in a plethora of potential MRI markers, the importance and validity of which remain to be proven. Here, five recent emerging perspectives arising from the use of MRI in MS, from pathophysiology to clinical application, will be discussed. These are the feasibility of noninvasive MRI-based approaches to measure glymphatic function and its impairment; T1-weighted to T2-weighted intensity ratio to quantify myelin content; classification of MS phenotypes based on their MRI features rather than on their clinical features; clinical relevance of gray matter atrophy versus white matter atrophy; and time-varying versus static resting-state functional connectivity in evaluating brain functional organization. These topics are critically discussed, which may guide future applications in the field.
Collapse
Affiliation(s)
- Maria Assunta Rocca
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Monica Margoni
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Marco Battaglini
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Arman Eshaghi
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Jeffrey Iliff
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Paolo Preziosa
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Loredana Storelli
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Toshiaki Taoka
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Paola Valsasina
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Division of Neuroscience
(M.A.R., M.M., E.P., P.P., L.S., P.V., M.F.), Neurology Unit (M.A.R., M.M.,
P.P., M.F.), Neurorehabilitation Unit (M.F.), and Neurophysiology Service
(M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan,
Italy; Vita-Salute San Raffaele University, Milan, Italy (M.A.R., P.P., M.F.);
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena,
Italy (M.B.); Queen Square Multiple Sclerosis Centre, Department of
Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain
Sciences, University College London, London, UK (A.E.); Centre for Medical Image
Computing, Department of Computer Science, University College London, London, UK
(A.E.); VISN20 NW Mental Illness Research, Education, and Clinical Center, VA
Puget Sound Healthcare System, Seattle, Wash (J.I.); Department of Psychiatry
and Behavioral Sciences and Department of Neurology, University of Washington
School of Medicine, Seattle, Wash (J.I.); and Department of Innovative
Biomedical Visualization (iBMV), Department of Radiology, Nagoya University
Graduate School of Medicine, Aichi, Japan (T.T.)
| |
Collapse
|
13
|
Guo Y, Dong D, Wu H, Xue Z, Zhou F, Zhao L, Li Z, Feng T. The intracortical myelin content of impulsive choices: results from T1- and T2-weighted MRI myelin mapping. Cereb Cortex 2023; 33:7163-7174. [PMID: 36748995 PMCID: PMC10422924 DOI: 10.1093/cercor/bhad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyuan Xue
- School of Humanities and Management, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Schmitz-Koep B, Menegaux A, Gaser C, Brandes E, Schinz D, Thalhammer M, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered Gray Matter Cortical and Subcortical T1-Weighted/T2-Weighted Ratio in Premature-Born Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:495-504. [PMID: 35276405 DOI: 10.1016/j.bpsc.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Departments of Psychiatry, University Hospital Jena, Jena, Germany; Departments of Neurology, University Hospital Jena, Jena, Germany
| | - Elin Brandes
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Berlin, Germany; UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
15
|
Fernandez-Alvarez M, Atienza M, Cantero JL. Cortical amyloid-beta burden is associated with changes in intracortical myelin in cognitively normal older adults. Transl Psychiatry 2023; 13:115. [PMID: 37024484 PMCID: PMC10079650 DOI: 10.1038/s41398-023-02420-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Amyloid-beta (Aβ) aggregates and myelin breakdown are among the earliest detrimental effects of Alzheimer's disease (AD), likely inducing abnormal patterns of neuronal communication within cortical networks. However, human in vivo evidence linking Aβ burden, intracortical myelin, and cortical synchronization is lacking in cognitively normal older individuals. Here, we addressed this question combining 18F-Florbetaben-PET imaging, cortical T1-weigthed/T2-weighted (T1w/T2w) ratio maps, and resting-state functional connectivity (rs-FC) in cognitively unimpaired older adults. Results showed that global Aβ burden was both positively and negatively associated with the T1w/T2w ratio in different cortical territories. Affected cortical regions were further associated with abnormal patterns of rs-FC and with subclinical cognitive deficits. Finally, causal mediation analysis revealed that the negative impact of T1w/T2w ratio in left posterior cingulate cortex on processing speed was driven by Aβ burden. Collectively, these findings provide novel insights into the relationship between initial Aβ plaques and intracortical myelin before the onset of cognitive decline, which may contribute to monitor the efficacy of novel disease-modifying strategies in normal elderly individuals at risk for cognitive impairment.
Collapse
Affiliation(s)
- Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain.
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
16
|
Boa Sorte Silva NC, Dao E, Liang Hsu C, Tam RC, Lam K, Alkeridy W, Laule C, Vavasour IM, Stein RG, Liu-Ambrose T. Myelin and Physical Activity in Older Adults With Cerebral Small Vessel Disease and Mild Cognitive Impairment. J Gerontol A Biol Sci Med Sci 2023; 78:545-553. [PMID: 35876839 DOI: 10.1093/gerona/glac149] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myelin loss is a feature of cerebral small vessel disease (cSVD). Although physical activity levels may exert protective effects over cSVD pathology, its specific relationship with myelin content in people living with the cSVD is unknown. Thus, we investigated whether physical activity levels are associated with myelin in community-dwelling older adults with cSVD and mild cognitive impairment. METHODS Cross-sectional data from 102 individuals with cSVD and mild cognitive impairment were analyzed (mean age [SD] = 74.7 years [5.5], 63.7% female). Myelin was measured using a magnetic resonance gradient and spin echo sequence. Physical activity was estimated using the Physical Activity Scale for the Elderly. Hierarchical regression models adjusting for total intracranial volume, age, sex, body mass index, and education were conducted to determine the associations between myelin content and physical activity. Significant models were further adjusted for white matter hyperintensity volume. RESULTS In adjusted models, greater physical activity was linked to higher myelin content in the whole-brain white matter (R2change = .04, p = .048). Greater physical activity was also associated with myelin content in the sagittal stratum (R2change = .08, p = .004), anterior corona radiata (R2change = .04, p = .049), and genu of the corpus callosum (R2change = .05, p = .018). Adjusting for white matter hyperintensity volume did not change any of these associations. CONCLUSIONS Physical activity may be a strategy to maintain myelin in older adults with cSVD and mild cognitive impairment. Future randomized controlled trials of exercise are needed to determine whether exercise increases myelin content.
Collapse
Affiliation(s)
- Nárlon C Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Elizabeth Dao
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Liang Hsu
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Roger C Tam
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Lam
- Department of Medicine, Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Walid Alkeridy
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, King Saud University, College of Medicine, Riyadh, Saudi Arabia.,Department of Medicine, Division of Geriatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelia Laule
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Irene M Vavasour
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan G Stein
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Fernandez-Alvarez M, Atienza M, Cantero JL. Effects of non-modifiable risk factors of Alzheimer's disease on intracortical myelin content. Alzheimers Res Ther 2022; 14:202. [PMID: 36587227 PMCID: PMC9805254 DOI: 10.1186/s13195-022-01152-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Non-modifiable risk factors of Alzheimer's disease (AD) have lifelong effects on cortical integrity that could be mitigated if identified at early stages. However, it remains unknown whether cortical microstructure is affected in older individuals with non-modifiable AD risk factors and whether altered cortical tissue integrity produces abnormalities in brain functional networks in this AD-risk population. METHODS Using relative T1w/T2w (rT1w/T2w) ratio maps, we have compared tissue integrity of normal-appearing cortical GM between controls and cognitively normal older adults with either APOE4 (N = 50), with a first-degree family history (FH) of AD (N = 52), or with the co-occurrence of both AD risk factors (APOE4+FH) (N = 35). Additionally, individuals with only one risk factor (APOE4 or FH) were combined into one group (N = 102) and compared with controls. The same number of controls matched in age, sex, and years of education was employed for each of these comparisons. Group differences in resting state functional connectivity (rs-FC) patterns were also investigated, using as FC seeds those cortical regions showing significant changes in rT1w/T2w ratios. RESULTS Overall, individuals with non-modifiable AD risk factors exhibited significant variations in rT1w/T2w ratios compared to controls, being APOE4 and APOE4+FH at opposite ends of a continuum. The co-occurrence of APOE4 and FH was further accompanied by altered patterns of rs-FC. CONCLUSIONS These findings may have practical implications for early detection of cortical abnormalities in older populations with APOE4 and/or FH of AD and open new avenues to monitor changes in cortical tissue integrity associated with non-modifiable AD risk factors.
Collapse
Affiliation(s)
- Marina Fernandez-Alvarez
- grid.15449.3d0000 0001 2200 2355Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain ,grid.418264.d0000 0004 1762 4012CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- grid.15449.3d0000 0001 2200 2355Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain ,grid.418264.d0000 0004 1762 4012CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jose L. Cantero
- grid.15449.3d0000 0001 2200 2355Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain ,grid.418264.d0000 0004 1762 4012CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
18
|
Strain JF, Cooley SA, Tomov D, Boerwinkle A, Ances BM. Abnormal Magnetic Resonance Image Signature in Virologically Stable HIV Individuals. J Infect Dis 2022; 226:2161-2169. [PMID: 36281565 DOI: 10.1093/infdis/jiac418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND With implementation of combination antiretroviral therapy (cART), changes to brain integrity in people with HIV (PWH) are subtle compared to those observed in the pre-cART era. T1-weighted/T2-weighted (T1w/T2w) ratio has been proposed as a measure of cortical myelin. This study examines T1w/T2w values between virologically controlled PWH and persons without HIV (PWoH). METHODS Virologically well-controlled PWH (n = 164) and PWoH (n = 120) were compared on global and regional T1w/T2w values. T1w/T2w values were associated with HIV disease variables (nadir and current CD4 T-cell count, and CNS penetration effectiveness of cART regimen) in PWH, and as a function of age for both PWoH and PWH. RESULTS PWH had reduced global and regional T1w/T2w values compared to PWoH in the posterior cingulate cortex, caudal anterior cingulate cortex, and insula. T1w/T2w values did not correlate with HIV variables except for a negative relationship with CNS penetration effectiveness. Greater cardiovascular disease risk and older age were associated with lower T1w/T2w values only for PWH. CONCLUSIONS T1w/T2w values obtained from commonly acquired MRI protocols differentiates virologically well-controlled PWH from PWoH. Changes in T1w/T2w ratio do not correlate with typical HIV measures. Future studies are needed to determine the biological mechanisms underlying this measure.
Collapse
Affiliation(s)
- Jeremy F Strain
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Sarah A Cooley
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Dimitre Tomov
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Anna Boerwinkle
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
19
|
Sui YV, Masurkar AV, Rusinek H, Reisberg B, Lazar M. Cortical myelin profile variations in healthy aging brain: A T1w/T2w ratio study. Neuroimage 2022; 264:119743. [PMID: 36368498 PMCID: PMC9904172 DOI: 10.1016/j.neuroimage.2022.119743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Demyelination is observed in both healthy aging and age-related neurodegenerative disorders. While the significance of myelin within the cortex is well acknowledged, studies focused on intracortical demyelination and depth-specific structural alterations in normal aging are lacking. Using the recently available Human Connectome Project Aging dataset, we investigated intracortical myelin in a normal aging population using the T1w/T2w ratio. To capture the fine changes across cortical depths, we employed a surface-based approach by constructing cortical profiles traveling perpendicularly through the cortical ribbon and sampling T1w/T2w values. The curvatures of T1w/T2w cortical profiles may be influenced by differences in local myeloarchitecture and other tissue properties, which are known to vary across cortical regions. To quantify the shape of these profiles, we parametrized the level of curvature using a nonlinearity index (NLI) that measures the deviation of the profile from a straight line. We showed that NLI exhibited a steep decline in aging that was independent of local cortical thinning. Further examination of the profiles revealed that lower T1w/T2w near the gray-white matter boundary and superficial cortical depths were major contributors to the apparent NLI variations with age. These findings suggest that demyelination and changes in other T1w/T2w related tissue properties in normal aging may be depth-specific and highlight the potential of NLI as a unique marker of microstructural alterations within the cerebral cortex.
Collapse
Affiliation(s)
- Yu Veronica Sui
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA,Corresponding author. (Y.V. Sui)
| | - Arjun V. Masurkar
- Department of Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA,Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA,Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA,Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Barry Reisberg
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mariana Lazar
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA
| |
Collapse
|
20
|
Ponticorvo S, Manara R, Russillo MC, Andreozzi V, Forino L, Erro R, Picillo M, Amboni M, Cuoco S, Di Salle G, Di Salle F, Barone P, Esposito F, Pellecchia MT. Combined regional T1w/T2w ratio and voxel-based morphometry in multiple system atrophy: A follow-up study. Front Neurol 2022; 13:1017311. [PMID: 36341112 PMCID: PMC9626981 DOI: 10.3389/fneur.2022.1017311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Several MRI techniques have become available to support the early diagnosis of multiple system atrophy (MSA), but few longitudinal studies on both MSA variants have been performed, and there are no established MRI markers of disease progression. We aimed to characterize longitudinal brain changes in 26 patients with MSA (14 MSA-P and 12 MSA-C) over a 1-year follow-up period in terms of local tissue density and T1w/T2w ratio in a-priori regions, namely, bilateral putamen, cerebellar gray matter (GM), white matter (WM), and substantia nigra (SN). A significant GM density decrease was found in cerebellum and left putamen in the entire group (10.7 and 33.1% variation, respectively) and both MSA subtypes (MSA-C: 15.4 and 33.0% variation; MSA-P: 7.7 and 33.2%) and in right putamen in the entire group (19.8% variation) and patients with MSA-C (20.9% variation). A WM density decrease was found in the entire group (9.3% variation) and both subtypes in cerebellum-brainstem (MSA-C: 18.0% variation; MSA-P: 5% variation). The T1w/T2w ratio increase was found in the cerebellar and left putamen GM (6.6 and 24.9% variation), while a significant T1w/T2w ratio decrease was detected in SN in the entire MSA group (31% variation). We found a more progressive atrophy of the cerebellum in MSA-C with a similar progression of putaminal atrophy in the two variants. T1w/T2w ratio can be further studied as a potential marker of disease progression, possibly reflecting decreased neuronal density or iron accumulation.
Collapse
Affiliation(s)
- Sara Ponticorvo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
- *Correspondence: Sara Ponticorvo ;
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - Maria Claudia Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Valentina Andreozzi
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Lorenzo Forino
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Roberto Erro
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Marina Picillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Marianna Amboni
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Sofia Cuoco
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | | | - Francesco Di Salle
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Paolo Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Teresa Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| |
Collapse
|
21
|
Wang X, Wang D, Li X, Wang W, Gao P, Lou B, Pfeuffer J, Zhang X, Zhu J, Li C, Chen M. A diagnostic index based on pseudo-continuous arterial spin labeling and T1-mapping improves efficacy in discriminating Alzheimer’s disease from normal cognition. Front Neurosci 2022; 16:974651. [PMID: 35992919 PMCID: PMC9389211 DOI: 10.3389/fnins.2022.974651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pseudo-continuous arterial spin labeling (pCASL) is widely used to quantify cerebral blood flow (CBF) abnormalities in patients with Alzheimer’s disease (AD). T1-mapping techniques assess microstructural characteristics in various pathologic changes, but their application in AD remains in the exploratory stage. We hypothesized that combining quantitative CBF and T1 values would generate diagnostic results with higher accuracy than using either method alone in discriminating AD patients from cognitively normal control (NC) subjects. Materials and methods A total of 45 patients diagnosed with AD and 33 NC subjects were enrolled, and cognitive assessment was performed for each participant according to the Chinese version of the Mini-Mental State Examination (MMSE). T1-weighted magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) and pCASL sequence were scanned on a 3T MR scanner. A brain morphometric analysis was integrated into prototype sequence, providing tissue classification and morphometric segmentation results. Quantitative CBF and T1 values of each brain region were automatically generated inline after data acquisition. Independent samples t-test was used to compare regional CBF and T1 values controlled by false discovery rate correction (corrected p < 0.01). The model with combined CBF and T1 values was compared with the individual index by performing receiver operating characteristic curves analysis. The associations between the MMSE score and CBF and T1 values of the brain were investigated using partial correlations. Results Cerebral blood flow of the right caudate nucleus (RCc) and left hippocampus (LHc) was significantly lower in the AD group compared with the NC group, while the T1 values of the right caudate nucleus (RCt) and left hippocampus (LHt) increased in the AD group. Prediction accuracies of 73.1, 77.2, 75.9, and 81.3% were achieved for each of the above parameters, respectively. In distinguishing patients from controls using the corresponding optimized cut-off values, most combinations of parameters were elevated (area under curve = 0.775–0.894). The highest area under curve value was 0.944, by combining RCc, LHc, RCt, and LHt. Conclusion In this preliminary study, the combined model based on pCASL and T1-mapping improved the diagnostic performance of discriminating AD and NC groups. T1-mapping may become a competitive technique for quantitatively measuring pathologic changes in the brain.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Wang
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyang Li
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenqi Wang
- Department of Radiology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Gao
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Baohui Lou
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Josef Pfeuffer
- MR Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Jinxia Zhu
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Chunmei Li
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Chunmei Li,
| | - Min Chen
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Min Chen,
| |
Collapse
|
22
|
Margoni M, Pagani E, Meani A, Storelli L, Mesaros S, Drulovic J, Barkhof F, Vrenken H, Strijbis E, Gallo A, Bisecco A, Pareto D, Sastre-Garriga J, Ciccarelli O, Yiannakas M, Palace J, Preziosa P, Rocca MA, Filippi M. Exploring in vivo multiple sclerosis brain microstructural damage through T1w/T2w ratio: a multicentre study. J Neurol Neurosurg Psychiatry 2022; 93:741-752. [PMID: 35580993 DOI: 10.1136/jnnp-2022-328908] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate white matter and grey matter T1-weighted (w)/T2w ratio (T1w/T2w ratio) in healthy controls and patients with multiple sclerosis, and its association with clinical disability. METHODS In this cross-sectional study, 270 healthy controls and 434 patients with multiple sclerosis were retrospectively selected from 7 European sites. T1w/T2w ratio was obtained from brain T2w and T1w scans after intensity calibration using eyes and temporal muscle. RESULTS In healthy controls, T1w/T2w ratio increased until 50-60 years both in white and grey matter. Compared with healthy controls, T1w/T2w ratio was significantly lower in white matter lesions of all multiple sclerosis phenotypes, and in normal-appearing white matter and cortex of patients with relapsing-remitting and secondary progressive multiple sclerosis (p≤0.026), but it was significantly higher in the striatum and pallidum of patients with relapsing-remitting, secondary progressive and primary progressive multiple sclerosis (p≤0.042). In relapse-onset multiple sclerosis, T1w/T2w ratio was significantly lower in white matter lesions and normal-appearing white matter already at Expanded Disability Status Scale (EDSS) <3.0 and in the cortex only for EDSS ≥3.0 (p≤0.023). Conversely, T1w/T2w ratio was significantly higher in the striatum and pallidum for EDSS ≥4.0 (p≤0.005). In primary progressive multiple sclerosis, striatum and pallidum showed significantly higher T1w/T2w ratio beyond EDSS=6.0 (p≤0.001). In multiple sclerosis, longer disease duration, higher EDSS, higher brain lesional volume and lower normalised brain volume were associated with lower lesional and cortical T1w/T2w ratio and a higher T1w/T2w ratio in the striatum and pallidum (β from -1.168 to 0.286, p≤0.040). CONCLUSIONS T1w/T2w ratio may represent a clinically relevant marker sensitive to demyelination, neurodegeneration and iron accumulation occurring at the different multiple sclerosis phases.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarlota Mesaros
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Jelena Drulovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Frederik Barkhof
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Hugo Vrenken
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva Strijbis
- MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Marios Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
23
|
Mahoney SO, Chowdhury NF, Ngo V, Imms P, Irimia A. Mild Traumatic Brain Injury Results in Significant and Lasting Cortical Demyelination. Front Neurol 2022; 13:854396. [PMID: 35812106 PMCID: PMC9262516 DOI: 10.3389/fneur.2022.854396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Despite contributing to neurocognitive deficits, intracortical demyelination after traumatic brain injury (TBI) is understudied. This study uses magnetic resonance imaging (MRI) to map intracortical myelin and its change in healthy controls and after mild TBI (mTBI). Acute mTBI involves reductions in relative myelin content primarily in lateral occipital regions. Demyelination mapped ~6 months post-injury is significantly more severe than that observed in typical aging (p < 0.05), with temporal, cingulate, and insular regions losing more myelin (30%, 20%, and 16%, respectively) than most other areas, although occipital regions experience 22% less demyelination. Thus, occipital regions may be more susceptible to primary injury, whereas temporal, cingulate and insular regions may be more susceptible to later manifestations of injury sequelae. The spatial profiles of aging- and mTBI-related chronic demyelination overlap substantially; exceptions include primary motor and somatosensory cortices, where myelin is relatively spared post-mTBI. These features resemble those of white matter demyelination and cortical thinning during Alzheimer's disease, whose risk increases after mTBI.
Collapse
Affiliation(s)
- Sean O. Mahoney
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Nahian F. Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Andrew and Edna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Andrei Irimia
| |
Collapse
|
24
|
Boaventura M, Sastre-Garriga J, Garcia-Vidal A, Vidal-Jordana A, Quartana D, Carvajal R, Auger C, Alberich M, Tintoré M, Rovira À, Montalban X, Pareto D. T1/T2-weighted ratio in multiple sclerosis: A longitudinal study with clinical associations. Neuroimage Clin 2022; 34:102967. [PMID: 35202997 PMCID: PMC8866895 DOI: 10.1016/j.nicl.2022.102967] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Alterations in T1-w/T2-w ratio precede lesion formation in CIS patients. Longitudinal decreases in T1-w/T2-w were associated with disease activity in CIS. Lower T1-w/T2-w was associated with longer disease duration and higher EDSS in MS.
Background T1w/T2-w ratio has been proposed as a clinically feasible MRI biomarker to assess tissue integrity in multiple sclerosis. However, no data is available in the earliest stages of the disease and longitudinal studies analysing clinical associations are scarce. Objective To describe longitudinal changes in T1-w/T2-w in patients with clinically isolated syndrome (CIS) and multiple sclerosis, and to investigate their clinical associations. Methods T1-w/T2-w images were generated and the mean value obtained in the corresponding lesion, normal-appearing grey (NAGM) and white matter (NAWM) masks. By co-registering baseline to follow-up MRI, evolved lesions were assessed; and by placing the mask of new lesions to the baseline study, the pre-lesional tissue integrity was measured. Results We included 171 CIS patients and 22 established multiple sclerosis patients. In CIS, evolved lesions showed significant T1-w/T2-w increases compared to baseline (+7.6%, P < 0.001). T1-w/T2-w values in new lesions were lower than in pre-lesional tissue (-28.2%, P < 0.001), and pre-lesional tissue was already lower than baseline NAWM (-7.8%, P < 0.001). In CIS at baseline, higher NAGM T1-w/T2-w was associated with multiple sclerosis diagnosis, and longitudinal decreases in NAGM and NAWM T1-w/T2-w were associated with disease activity. In established multiple sclerosis, T1-w/T2-w was inversely correlated with clinical disability and disease duration. Conclusion A decrease in T1-w/T2-w ratio precedes lesion formation. In CIS, higher T1-w/T2-w was associated with multiple sclerosis diagnosis. In established multiple sclerosis, lower T1-w/T2-w values were associated with clinical disability. The possible differential impact of chronic inflammation, iron deposition and demyelination should be considered to interpret these findings.
Collapse
Affiliation(s)
- Mateus Boaventura
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Aran Garcia-Vidal
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Angela Vidal-Jordana
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Davide Quartana
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - René Carvajal
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Manel Alberich
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mar Tintoré
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
25
|
Langensee L, Rumetshofer T, Behjat H, Novén M, Li P, Mårtensson J. T1w/T2w Ratio and Cognition in 9-to-11-Year-Old Children. Brain Sci 2022; 12:599. [PMID: 35624986 PMCID: PMC9139105 DOI: 10.3390/brainsci12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Childhood is a period of extensive cortical and neural development. Among other things, axons in the brain gradually become more myelinated, promoting the propagation of electrical signals between different parts of the brain, which in turn may facilitate skill development. Myelin is difficult to assess in vivo, and measurement techniques are only just beginning to make their way into standard imaging protocols in human cognitive neuroscience. An approach that has been proposed as an indirect measure of cortical myelin is the T1w/T2w ratio, a contrast that is based on the intensities of two standard structural magnetic resonance images. Although not initially intended as such, researchers have recently started to use the T1w/T2w contrast for between-subject comparisons of cortical data with various behavioral and cognitive indices. As a complement to these earlier findings, we computed individual cortical T1w/T2w maps using data from the Adolescent Brain Cognitive Development study (N = 960; 449 females; aged 8.9 to 11.0 years) and related the T1w/T2w maps to indices of cognitive ability; in contrast to previous work, we did not find significant relationships between T1w/T2w values and cognitive performance after correcting for multiple testing. These findings reinforce existent skepticism about the applicability of T1w/T2w ratio for inter-individual comparisons.
Collapse
Affiliation(s)
- Lara Langensee
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| | - Theodor Rumetshofer
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| | - Hamid Behjat
- Faculty of Engineering, Department of Biomedical Engineering, Lund University, 22100 Lund, Sweden;
| | - Mikael Novén
- Faculty of Science, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ping Li
- Faculty of Humanities, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
| | - Johan Mårtensson
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| |
Collapse
|
26
|
Nerland S, Jørgensen KN, Nordhøy W, Maximov II, Bugge RAB, Westlye LT, Andreassen OA, Geier OM, Agartz I. Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods. Neuroimage 2021; 245:118709. [PMID: 34848300 DOI: 10.1016/j.neuroimage.2021.118709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites. METHODS We assessed a variety of processing methods for computing cortical T1w/T2w-ratio maps, including correction methods for nonlinear field inhomogeneities, local outliers, and partial volume effects as well as intensity normalisation. These were implemented in 33 processing pipelines which were applied to four test-retest datasets, with a total of 170 pairs of T1w and T2w images acquired on four different MRI scanners. We assessed processing pipelines across datasets in terms of their reproducibility of expected regional distributions of cortical myelin, lateral intensity biases, and test-retest reliability regionally and across the cortex. Regional distributions were compared both qualitatively with histology and quantitatively with two reference datasets, YA-BC and YA-B1+, from the Human Connectome Project. RESULTS Reproducibility of raw T1w/T2w-ratio distributions was overall high with the exception of one dataset. For this dataset, Spearman rank correlations increased from 0.27 to 0.70 after N3 bias correction relative to the YA-BC reference and from -0.04 to 0.66 after N4ITK bias correction relative to the YA-B1+ reference. Partial volume and outlier corrections had only marginal effects on the reproducibility of T1w/T2w-ratio maps and test-retest reliability. Before intensity normalisation, we found large coefficients of variation (CVs) and low intraclass correlation coefficients (ICCs), with total whole-cortex CV of 10.13% and whole-cortex ICC of 0.58 for the raw T1w/T2w-ratio. Intensity normalisation with WhiteStripe, RAVEL, and Z-Score improved total whole-cortex CVs to 5.91%, 5.68%, and 5.19% respectively, whereas Z-Score and Least Squares improved whole-cortex ICCs to 0.96 and 0.97 respectively. CONCLUSIONS In the presence of large intensity nonuniformities, bias field correction is necessary to achieve acceptable correspondence with known distributions of cortical myelin, but it can be detrimental in datasets with less intensity inhomogeneity. Intensity normalisation can improve test-retest reliability and inter-subject comparability. However, both bias field correction and intensity normalisation methods vary greatly in their efficacy and may affect the interpretation of results. The choice of T1w/T2w-ratio processing method must therefore be informed by both scanner and acquisition protocol as well as the given study objective. Our results highlight limitations of the T1w/T2w-ratio, but also suggest concrete ways to enhance its usefulness in future studies.
Collapse
Affiliation(s)
- Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wibeke Nordhøy
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Robin A B Bugge
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oliver M Geier
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Hannoun S, Kocevar G, Codjia P, Barile B, Cotton F, Durand-Dubief F, Sappey-Marinier D. T1/T2 ratio: A quantitative sensitive marker of brain tissue integrity in multiple sclerosis. J Neuroimaging 2021; 32:328-336. [PMID: 34752685 DOI: 10.1111/jon.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study is to determine whether cerebral white matter (WM) microstructural damage, defined by decreased fractional anisotropy (FA) and increased axial (AD) and radial (RD) diffusivities, could be detected as accurately by measuring the T1/T2 ratio, in relapsing-remitting multiple sclerosis (RRMS) patients compared to healthy control (HC) subjects. METHODS Twenty-eight RRMS patients and 24 HC subjects were included in this study. Region-based analysis based on the ICBM-81 diffusion tensor imaging (DTI) atlas WM labels was performed to compare T1/T2 ratio to DTI values in normal-appearing WM (NAWM) regions of interest. Lesions segmentation was also performed and compared to the HC global WM. RESULTS A significant 19.65% decrease of T1/T2 ratio values was observed in NAWM regions of RRMS patients compared to HC. A significant 6.30% decrease of FA, as well as significant 4.76% and 10.27% increases of AD and RD, respectively, were observed in RRMS compared to the HC group in various NAWM regions. Compared to the global WM HC mask, lesions have significantly decreased T1/T2 ratio and FA and increased AD and RD (p < . 001). CONCLUSIONS Results showed significant differences between RRMS and HC in both DTI and T1/T2 ratio measurements. T1/T2 ratio even demonstrated extensive WM abnormalities when compared to DTI, thereby highlighting the ratio's sensitivity to subtle differences in cerebral WM structural integrity using only conventional MRI sequences.
Collapse
Affiliation(s)
- Salem Hannoun
- Medical Imaging Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Gabriel Kocevar
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Seenovate, Datascience pole, Lyon, France
| | - Pekes Codjia
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Berardino Barile
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France
| | - Francois Cotton
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Francoise Durand-Dubief
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Service de Neurologie A, Hôpital Neurologique Pierre Wertheimer, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Dominique Sappey-Marinier
- CREATIS, UMR 5220 CNRS & U1294 INSERM, Université Claude Bernard - Lyon1, Université de Lyon, Villeurbanne, France.,Département IRM, CERMEP-Imagerie du Vivant, Université de Lyon, Bron, France
| |
Collapse
|
28
|
Ponticorvo S, Manara R, Russillo MC, Erro R, Picillo M, Di Salle G, Di Salle F, Barone P, Esposito F, Pellecchia MT. Magnetic resonance T1w/T2w ratio and voxel-based morphometry in multiple system atrophy. Sci Rep 2021; 11:21683. [PMID: 34737396 PMCID: PMC8569168 DOI: 10.1038/s41598-021-01222-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
Diagnosis of multiple system atrophy (MSA) may be improved by using multimodal imaging approaches. We investigated the use of T1-weighted/T2-weighted (T1w/T2w) images ratio combined with voxel-based morphometry to evaluate brain tissue integrity in MSA compared to Parkinson’s disease (PD) and healthy controls (HC). Twenty-six patients with MSA, 43 patients with PD and 56 HC were enrolled. Whole brain voxel-based and local regional analyses were performed to evaluate gray and white matter (GM and WM) tissue integrity and mean regional values were used for patients classification using logistic regression. Increased mean regional values of T1w/T2w in bilateral putamen were detected in MSA-P compared to PD and HC. The combined use of regional GM and T1w/T2w values in the right and left putamen showed the highest accuracy in discriminating MSA-P from PD and good accuracy in discriminating MSA from PD and HC. A good accuracy was also found in discriminating MSA from PD and HC by either combining regional GM and T1w/T2w values in the cerebellum or regional WM and T1w/T2w in the cerebellum and brainstem. The T1w/T2w image ratio alone or combined with validated MRI parameters can be further considered as a potential candidate biomarker for differential diagnosis of MSA.
Collapse
Affiliation(s)
- S Ponticorvo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - R Manara
- Neuroradiology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - M C Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - R Erro
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - M Picillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - G Di Salle
- Classe di Scienze Sperimentali, Scuola Superiore di Studi Universitari e Perfezionamento Sant'Anna, Pisa, Italy
| | - F Di Salle
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - P Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - F Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - M T Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy.
| |
Collapse
|
29
|
Sugiyama A, Cooper G, Hirano S, Yokota H, Mori M, Shimizu K, Yakiyama M, Finke C, Brandt AU, Paul F, Kuwabara S. Cognitive Impairment in Multiple System Atrophy Is Related to White Matter Damage Detected by the T1-Weighted/T2-Weighted Ratio. Eur Neurol 2021; 84:435-443. [PMID: 34284398 DOI: 10.1159/000517360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aimed to use a novel MRI contrast, the standardized T1-weighted/T2-weighted (sT1w/T2w) ratio, to assess damage of the white matter and gray matter in multiple system atrophy (MSA). Furthermore, this study investigated whether the sT1w/T2w ratio was associated with cognitive impairment in MSA. METHODS The white matter and gray matter sT1w/T2w ratio of 37 MSA patients and 19 healthy controls were measured. Correlation analyses were used to evaluate the relationship between sT1w/T2w ratio values and clinical variables, and a multivariate analysis was used to identify independent factors associated with cognitive impairment in MSA. RESULTS MSA patients showed a higher white matter sT1w/T2w ratio value than controls (p < 0.001), and the white matter sT1w/T2w ratio value was significantly correlated with the International Cooperative Ataxia Rating Scale score (r = 0.377, p = 0.021) and the Addenbrooke's cognitive examination III score (r = -0.438, p = 0.007). Cognitively impaired MSA patients had a significantly higher white matter sT1w/T2w ratio value than cognitively preserved MSA patients (p = 0.010), and the multiple logistic regression analysis revealed that the median white matter sT1w/T2w ratio value was independently associated with cognitive impairment in MSA. CONCLUSION The sT1w/T2w ratio is sensitive to degenerative changes in the white matter that is associated with cognitive ability in MSA patients.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Graham Cooper
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany.,Department of Experimental Neurology and Center for Stroke Research, Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Center for Dementia, Chiba University Hospital, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Shimizu
- Medical Center for Dementia, Chiba University Hospital, Chiba, Japan
| | | | - Carsten Finke
- Einstein Center for Neurosciences, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, California, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Center for Dementia, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
30
|
Kim JP, Kim J, Jang H, Kim J, Kang SH, Kim JS, Lee J, Na DL, Kim HJ, Seo SW, Park H. Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach. Sci Rep 2021; 11:6954. [PMID: 33772041 PMCID: PMC7997887 DOI: 10.1038/s41598-021-86114-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
Predicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71-0.74, AUC for validation = 0.68-0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.
Collapse
Affiliation(s)
- Jun Pyo Kim
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jonghoon Kim
- grid.264381.a0000 0001 2181 989XDepartment of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hyemin Jang
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jaeho Kim
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea ,grid.256753.00000 0004 0470 5964Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sung Hoon Kang
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ji Sun Kim
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jongmin Lee
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Duk L. Na
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea ,grid.414964.a0000 0001 0640 5613Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, Korea ,grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea ,grid.414964.a0000 0001 0640 5613Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon-si, Korea
| | - Hyunjin Park
- grid.410720.00000 0004 1784 4496Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea ,grid.264381.a0000 0001 2181 989XSchool of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si, Republic of Korea
| |
Collapse
|
31
|
Rokicki J, Wolfers T, Nordhøy W, Tesli N, Quintana DS, Alnaes D, Richard G, de Lange AMG, Lund MJ, Norbom L, Agartz I, Melle I, Naerland T, Selbaek G, Persson K, Nordvik JE, Schwarz E, Andreassen OA, Kaufmann T, Westlye LT. Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Hum Brain Mapp 2020; 42:1714-1726. [PMID: 33340180 PMCID: PMC7978139 DOI: 10.1002/hbm.25323] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The deviation between chronological age and age predicted using brain MRI is a putative marker of overall brain health. Age prediction based on structural MRI data shows high accuracy in common brain disorders. However, brain aging is complex and heterogenous, both in terms of individual differences and the underlying biological processes. Here, we implemented a multimodal model to estimate brain age using different combinations of cortical area, thickness and sub‐cortical volumes, cortical and subcortical T1/T2‐weighted ratios, and cerebral blood flow (CBF) based on arterial spin labeling. For each of the 11 models we assessed the age prediction accuracy in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs) between age‐matched subsets of HC and patients with Alzheimer's disease (AD, n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizophrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest age prediction accuracy in HC when integrating all modalities. Furthermore, two‐group case–control classifications revealed highest accuracy for AD using global T1‐weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF‐based BAGs. Combining multiple MRI modalities improves brain age prediction and reveals distinct deviations in patients with psychiatric and neurological disorders. The multimodal BAG was most accurate in predicting age in HC, while group differences between patients and HC were often larger for BAGs based on single modalities. These findings indicate that multidimensional neuroimaging of patients may provide a brain‐based mapping of overlapping and distinct pathophysiology in common disorders.
Collapse
Affiliation(s)
- Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Thomas Wolfers
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Wibeke Nordhøy
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Natalia Tesli
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dag Alnaes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Genevieve Richard
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Department of Psychiatry, University of Oxford, Oxford, UK
| | - Martina J Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Linn Norbom
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Terje Naerland
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Geir Selbaek
- Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karin Persson
- Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | | | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Lee S, Kim KW. Associations between texture of T1-weighted magnetic resonance imaging and radiographic pathologies in Alzheimer's disease. Eur J Neurol 2020; 28:735-744. [PMID: 33098172 DOI: 10.1111/ene.14609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Texture analysis of magnetic resonance imaging (MRI) brain scans have been proposed as a promising tool in the early diagnosis of Alzheimer's disease (AD), but its biological correlates remain unknown. In this study, we examined the relationship between MRI texture features and AD pathology. METHODS The study included 150 participants who had a 3.0T T1-weighted image, amyloid-β positron emission tomography (PET), and tau PET within 3 months of each other. In each of six brain regions (hippocampus, precuneus, and entorhinal, middle temporal, posterior cingulate and superior frontal cortices), linear regression analyses adjusting for age and sex was performed to examine the effects of regional amyloid-β and tau burden on regional texture features. We also compared neuroimaging measures based on pathological severity using ANOVA. RESULTS In all regions, tau burden (p < 0.05), but not amyloid-β burden, were associated with a certain texture feature that varied with the region's cytoarchitecture. Specifically, autocorrelation and cluster shade were associated with tau burden in allocortical and periallocortical regions, whereas entropy and contrast were associated with tau burden in neocortical regions. Mean signal intensity of each region did not show any associations with AD pathology. The values of the region-specific textures also varied across groups of varying pathological severity. CONCLUSIONS Our results suggest that textures of T1-weighted MRI reflect changes in the brain that are associated with regional tau burden and the local cytoarchitecture. This study provides insight into how MRI texture can be used for detection of microstructural changes in AD.
Collapse
Affiliation(s)
- Subin Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.,Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
33
|
Sugiyama A, Cooper G, Hirano S, Yokota H, Mori M, Shimizu K, Yakiyama M, Finke C, Brandt AU, Paul F, Kuwabara S. WITHDRAWN: Cognitive impairment in multiple system atrophy is related to white matter damage detected by the T1w/T2w ratio. Parkinsonism Relat Disord 2020. [DOI: 10.1016/j.parkreldis.2020.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Operto G, Molinuevo JL, Cacciaglia R, Falcon C, Brugulat-Serrat A, Suárez-Calvet M, Grau-Rivera O, Bargalló N, Morán S, Esteller M, Gispert JD. Interactive effect of age and APOE-ε4 allele load on white matter myelin content in cognitively normal middle-aged subjects. Neuroimage Clin 2019; 24:101983. [PMID: 31520917 PMCID: PMC6742967 DOI: 10.1016/j.nicl.2019.101983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023]
Abstract
The apolipoprotein E gene (APOE) ε4 allele has a strong and manifold impact on cognition and neuroimaging phenotypes in cognitively normal subjects, including alterations in the white matter (WM) microstructure. Such alterations have often been regarded as a reflection of potential thinning of the myelin sheath along axons, rather than pure axonal degeneration. Considering the main role of APOE in brain lipid transport, characterizing the impact of APOE on the myelin coating is therefore of crucial interest, especially in healthy APOE-ε4 homozygous individuals, who are exposed to a twelve-fold higher risk of developing Alzheimer's disease (AD), compared to the rest of the population. We examined T1w/T2w ratio maps in 515 cognitively healthy middle-aged participants from the ALFA study (ALzheimer and FAmilies) cohort, a single-site population-based study enriched for AD risk (68 APOE-ε4 homozygotes, 197 heterozygotes, and 250 non-carriers). Using tract-based spatial statistics, we assessed the impact of age and APOE genotype on this ratio taken as an indirect descriptor of myelin content. Healthy APOE-ε4 carriers display decreased T1w/T2w ratios in extensive regions in a dose-dependent manner. These differences were found to interact with age, suggesting faster changes in individuals with more ε4 alleles. These results obtained with T1w/T2w ratios, confirm the increased vulnerability of WM tracts in APOE-ε4 healthy carriers. Early alterations of myelin content could be the result of the impaired function of the ε4 isoform of the APOE protein in cholesterol transport. These findings help to clarify the possible interactions between the APOE-dependent non-pathological burden and age-related changes potentially at the source of the AD pathological cascade.
Collapse
Affiliation(s)
- Grégory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Nuria Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centre Mèdic Diagnòstic Alomar, Barcelona, Spain
| | - Sebastián Morán
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain; Departament de Ciències Fisiològiques II, Escola de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
35
|
Pelkmans W, Dicks E, Barkhof F, Vrenken H, Scheltens P, van der Flier WM, Tijms BM. Gray matter T1-w/T2-w ratios are higher in Alzheimer's disease. Hum Brain Mapp 2019; 40:3900-3909. [PMID: 31157938 PMCID: PMC6771703 DOI: 10.1002/hbm.24638] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/18/2023] Open
Abstract
Myelin determines the conduction of neuronal signals along axonal connections in networks of the brain. Loss of myelin integrity in neuronal circuits might result in cognitive decline in Alzheimer's disease (AD). Recently, the ratio of T1-weighted by T2-weighted MRI has been used as a proxy for myelin content in gray matter of the cortex. With this approach, we investigated whether AD dementia patients show lower cortical myelin content (i.e., a lower T1-w/T2-w ratio value). We selected structural T1-w and T2-w MR images of 293 AD patients and 172 participants with normal cognition (NC). T1-w/T2-w ratios were computed for the whole brain and within 90 automated anatomical labeling atlas regions using SPM12, compared between groups and correlated with the neuronal injury marker tau in cerebrospinal fluid (CSF) and Mini Mental State Examination (MMSE). In contrast to our hypothesis, AD patients showed higher whole brain T1-w/T2-w ratios than NC, and regionally in 31 anatomical areas (p < .0005; d = 0.21 to 0.48), predominantly in the inferior parietal lobule, angular gyrus, anterior cingulate, and precuneus. Regional higher T1-w/T2-w values were associated with higher CSF tau concentrations (p < .0005; r = .16 to .22) and worse MMSE scores (p < .0005; r = -.16 to -.21). These higher T1-w/T2-w values in AD seem to contradict previous pathological findings of demyelination and disconnectivity in AD. Future research should further investigate the biological processes reflected by increases in T1-w/T2-w values.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ellen Dicks
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Hugo Vrenken
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|