1
|
Prabhu NM, Lehmann N, Kaminski E, Müller N, Taubert M. Online stimulation of the prefrontal cortex during practice increases motor variability and modulates later cognitive transfer: a randomized, double-blinded and sham-controlled tDCS study. Sci Rep 2024; 14:20162. [PMID: 39215020 PMCID: PMC11364672 DOI: 10.1038/s41598-024-70857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The benefits of learning a motor skill extend to improved task-specific cognitive abilities. The mechanistic underpinnings of this motor-cognition relationship potentially rely on overlapping neural resources involved in both processes, an assumption lacking causal evidence. We hypothesize that interfering with prefrontal networks would inhibit concurrent motor skill performance, long-term learning and associated cognitive functions dependent on similar networks (transfer). We conducted a randomised, double-blinded, sham-controlled brain stimulation study using transcranial direct current stimulation (tDCS) in young adults spanning over three weeks to assess the role of the prefrontal regions in learning a complex balance task and long-term cognitive performance. Balance training combined with active tDCS led to higher performance variability in the trained task as compared to the sham group, impacting the process of learning a complex task without affecting the learning rate. Furthermore, active tDCS also positively influenced performance in untrained motor and cognitive tasks. The findings of this study help ascertaining the networks directly involved in learning a complex motor task and its implications on cognitive function. Hence, opening up the possibility of harnessing the observed frontal networks involved in resource mobilization in instances of aging, brain lesion/injury or dysfunction.
Collapse
Affiliation(s)
- Nisha Maria Prabhu
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Nico Lehmann
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
| | - Notger Müller
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Am Mühlenberg 9, 14476, Potsdam, Germany
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
2
|
Taubert M, Ziegler G, Lehmann N. Higher surface folding of the human premotor cortex is associated with better long-term learning capability. Commun Biol 2024; 7:635. [PMID: 38796622 PMCID: PMC11127997 DOI: 10.1038/s42003-024-06309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The capacity to learn enabled the human species to adapt to various challenging environmental conditions and pass important achievements on to the next generation. A growing body of research suggests links between neocortical folding properties and numerous aspects of human behavior, but their impact on enhanced human learning capacity remains unexplored. Here we leverage three training cohorts to demonstrate that higher levels of premotor cortical folding reliably predict individual long-term learning gains in a challenging new motor task, above and beyond initial performance differences. Individual folding-related predisposition to motor learning was found to be independent of cortical thickness and intracortical microstructure, but dependent on larger cortical surface area in premotor regions. We further show that learning-relevant features of cortical folding occurred in close spatial proximity to practice-induced structural brain plasticity. Our results suggest a link between neocortical surface folding and human behavioral adaptability.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Gabriel Ziegler
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Nico Lehmann
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Martins M, Reis AM, Gaser C, Castro SL. Individual differences in rhythm perception modulate music-related motor learning: a neurobehavioral training study with children. Sci Rep 2023; 13:21552. [PMID: 38057419 PMCID: PMC10700636 DOI: 10.1038/s41598-023-48132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Rhythm and motor function are intrinsically linked to each other and to music, but the rhythm-motor interplay during music training, and the corresponding brain mechanisms, are underexplored. In a longitudinal training study with children, we examined the role of rhythm predisposition in the fine motor improvements arising from music training, and which brain regions would be implicated. Fifty-seven 8-year-olds were assigned to either a 6-month music training (n = 21), sports training (n = 18), or a control group (n = 18). They performed rhythm and motor tasks, and structural brain scans before and after training were collected. Better ability to perceive rhythm before training was related to less gray matter volume in regions of the cerebellum, fusiform gyrus, supramarginal gyrus, ventral diencephalon, amygdala, and inferior/middle temporal gyri. Music training improved motor performance, and greater improvements correlated with better pre-training rhythm discrimination. Music training also induced a loss of gray matter volume in the left cerebellum and fusiform gyrus, and volume loss correlated with higher motor gains. No such effects were found in the sports and control groups. In summary, children with finer-tuned rhythm perception abilities were prone to finer motor improvements through music training, and this rhythm-motor link was to some extent subserved by the left cerebellum and fusiform gyrus. These findings have implications for models on music-related plasticity and rhythm cognition, and for programs targeting motor function.
Collapse
Affiliation(s)
- Marta Martins
- University Institute of Lisbon (ISCTE-IUL), 1649-026, Lisboa, Portugal
- Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, 4200-319, Porto, Portugal
| | | | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743, Jena, Germany
- Department of Neurology, Jena University Hospital, 07743, Jena, Germany
| | - São Luís Castro
- Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, 4200-319, Porto, Portugal.
| |
Collapse
|
4
|
Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 2023; 13:2877. [PMID: 36807588 PMCID: PMC9938911 DOI: 10.1038/s41598-023-29994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Stone-tool making is an ancient human skill thought to have played a key role in the bio-cultural co-evolutionary feedback that produced modern brains, culture, and cognition. To test the proposed evolutionary mechanisms underpinning this hypothesis we studied stone-tool making skill learning in modern participants and examined interactions between individual neurostructural differences, plastic accommodation, and culturally transmitted behavior. We found that prior experience with other culturally transmitted craft skills increased both initial stone tool-making performance and subsequent neuroplastic training effects in a frontoparietal white matter pathway associated with action control. These effects were mediated by the effect of experience on pre-training variation in a frontotemporal pathway supporting action semantic representation. Our results show that the acquisition of one technical skill can produce structural brain changes conducive to the discovery and acquisition of additional skills, providing empirical evidence for bio-cultural feedback loops long hypothesized to link learning and adaptive change.
Collapse
|
5
|
Ueta K, Mizuguchi N, Sugiyama T, Isaka T, Otomo S. The Motor Engram of Functional Connectivity Generated by Acute Whole-Body Dynamic Balance Training. Med Sci Sports Exerc 2022; 54:598-608. [PMID: 34772904 PMCID: PMC8920009 DOI: 10.1249/mss.0000000000002829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE Whole-body dynamic balance is necessary for both athletic activities and activities of daily living. This study aimed to investigate the effect of acute dynamic balance training on neural networks. METHODS We evaluated resting-state functional connectivity (rs-FC), white matter fiber density, fiber-bundle cross-section, and gray matter volume in 28 healthy young adults (14 women) before and after 30 min of slackline training using a randomized, counterbalanced crossover design. RESULTS The rs-FC between the left lateral prefrontal cortex (PFC) and the foot area of the primary sensorimotor (SM1) cortex increased significantly after slackline training compared with that after a control condition involving ergometer-based aerobic exercise. In addition, changes in rs-FC between the left lateral PFC and the primary sensorimotor were correlated with performance changes after training (i.e., offline process) rather than online learning. We also observed a main effect of time between the hippocampus and the cingulate cortex, including the anterior areas, and between the bilateral lateral PFC. Although we observed no structural changes, fiber density in the commissural fiber pathway before the first balance assessment was correlated with initial balance capability. CONCLUSIONS Our findings demonstrate that acute whole-body dynamic balance training alters specific rs-FC, and that this change is associated with performance changes after training. In addition, rs-FC changes in cognitive regions were modulated by both acute dynamic balance training and aerobic exercise. These findings have the potential to influence various fields (e.g., sports neuroscience, neurorehabilitation) and may aid in the development of methods that can improve motor and cognitive performance.
Collapse
Affiliation(s)
- Kenji Ueta
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Takashi Sugiyama
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Tadao Isaka
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Satoshi Otomo
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| |
Collapse
|
6
|
Lehmann N, Kuhn YA, Keller M, Aye N, Herold F, Draganski B, Taube W, Taubert M. Brain Activation During Active Balancing and Its Behavioral Relevance in Younger and Older Adults: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Front Aging Neurosci 2022; 14:828474. [PMID: 35418854 PMCID: PMC8997341 DOI: 10.3389/fnagi.2022.828474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Age-related deterioration of balance control is widely regarded as an important phenomenon influencing quality of life and longevity, such that a more comprehensive understanding of the neural mechanisms underlying this process is warranted. Specifically, previous studies have reported that older adults typically show higher neural activity during balancing as compared to younger counterparts, but the implications of this finding on balance performance remain largely unclear. Using functional near-infrared spectroscopy (fNIRS), differences in the cortical control of balance between healthy younger (n = 27) and older (n = 35) adults were explored. More specifically, the association between cortical functional activity and balance performance across and within age groups was investigated. To this end, we measured hemodynamic responses (i.e., changes in oxygenated and deoxygenated hemoglobin) while participants balanced on an unstable device. As criterion variables for brain-behavior-correlations, we also assessed postural sway while standing on a free-swinging platform and while balancing on wobble boards with different levels of difficulty. We found that older compared to younger participants had higher activity in prefrontal and lower activity in postcentral regions. Subsequent robust regression analyses revealed that lower prefrontal brain activity was related to improved balance performance across age groups, indicating that higher activity of the prefrontal cortex during balancing reflects neural inefficiency. We also present evidence supporting that age serves as a moderator in the relationship between brain activity and balance, i.e., cortical hemodynamics generally appears to be a more important predictor of balance performance in the older than in the younger. Strikingly, we found that age differences in balance performance are mediated by balancing-induced activation of the superior frontal gyrus, thus suggesting that differential activation of this region reflects a mechanism involved in the aging process of the neural control of balance. Our study suggests that differences in functional brain activity between age groups are not a mere by-product of aging, but instead of direct behavioral relevance for balance performance. Potential implications of these findings in terms of early detection of fall-prone individuals and intervention strategies targeting balance and healthy aging are discussed.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- *Correspondence: Nico Lehmann,
| | - Yves-Alain Kuhn
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Martin Keller
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Norman Aye
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
| | - Fabian Herold
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Bogdan Draganski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Science, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
Lehmann N, Villringer A, Taubert M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci Rep 2022; 12:1107. [PMID: 35064175 PMCID: PMC8783021 DOI: 10.1038/s41598-022-05145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, mounting evidence from animal models and studies in humans has accumulated for the role of cardiovascular exercise (CE) in improving motor performance and learning. Both CE and motor learning may induce highly dynamic structural and functional brain changes, but how both processes interact to boost learning is presently unclear. Here, we hypothesized that subjects receiving CE would show a different pattern of learning-related brain plasticity compared to non-CE controls, which in turn associates with improved motor learning. To address this issue, we paired CE and motor learning sequentially in a randomized controlled trial with healthy human participants. Specifically, we compared the effects of a 2-week CE intervention against a non-CE control group on subsequent learning of a challenging dynamic balancing task (DBT) over 6 consecutive weeks. Structural and functional MRI measurements were conducted at regular 2-week time intervals to investigate dynamic brain changes during the experiment. The trajectory of learning-related changes in white matter microstructure beneath parieto-occipital and primary sensorimotor areas of the right hemisphere differed between the CE vs. non-CE groups, and these changes correlated with improved learning of the CE group. While group differences in sensorimotor white matter were already present immediately after CE and persisted during DBT learning, parieto-occipital effects gradually emerged during motor learning. Finally, we found that spontaneous neural activity at rest in gray matter spatially adjacent to white matter findings was also altered, therefore indicating a meaningful link between structural and functional plasticity. Collectively, these findings may lead to a better understanding of the neural mechanisms mediating the CE-learning link within the brain.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany. .,Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,Mind and Brain Institute, Charité and Humboldt University, Luisenstraße 56, 10117, Berlin, Germany
| | - Marco Taubert
- Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.,Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
8
|
Kimura I, Oishi H, Hayashi MJ, Amano K. Microstructural Properties of Human Brain Revealed by Fractional Anisotropy Can Predict the After-Effect of Intermittent Theta Burst Stimulation. Cereb Cortex Commun 2021; 3:tgab065. [PMID: 35083435 PMCID: PMC8784864 DOI: 10.1093/texcom/tgab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Intermittent theta burst stimulation (iTBS) delivered by transcranial magnetic stimulation (TMS) produces a long-term potentiation-like after-effect useful for investigations of cortical function and of potential therapeutic value. However, the iTBS after-effect over the primary motor cortex (M1) as measured by changes in motor evoked potential (MEP) amplitude exhibits a largely unexplained variability across individuals. Here, we present evidence that individual differences in white matter (WM) and gray matter (GM) microstructural properties revealed by fractional anisotropy (FA) predict the magnitude of the iTBS-induced after-effect over M1. The MEP amplitude change in the early phase (5–10 min post-iTBS) was associated with FA values in WM tracts such as right superior longitudinal fasciculus and corpus callosum. By contrast, the MEP amplitude change in the late phase (15–30 min post-iTBS) was associated with FA in GM, primarily in right frontal cortex. These results suggest that the microstructural properties of regions connected directly or indirectly to the target region (M1) are crucial determinants of the iTBS after-effect. FA values indicative of these microstructural differences can predict the potential effectiveness of repetitive TMS for both investigational use and clinical application.
Collapse
Affiliation(s)
- Ikko Kimura
- Address correspondence to Ikko Kimura, 1-4 Yamadaoka, Suita 565-0871, Japan. ; Kaoru Amano, 7-3-1 Hongo, Bunkyo-ku 113-8656, Japan.
| | | | | | | |
Collapse
|
9
|
Kowalczyk‐Grębska N, Skorko M, Dobrowolski P, Kossowski B, Myśliwiec M, Hryniewicz N, Gaca M, Marchewka A, Kossut M, Brzezicka A. Lenticular nucleus volume predicts performance in real-time strategy game: cross-sectional and training approach using voxel-based morphometry. Ann N Y Acad Sci 2021; 1492:42-57. [PMID: 33372699 PMCID: PMC8246877 DOI: 10.1111/nyas.14548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft® II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.
Collapse
Affiliation(s)
| | - Maciek Skorko
- Institute of Psychology, Polish Academy of SciencesWarsawPoland
| | | | - Bartosz Kossowski
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Monika Myśliwiec
- Faculty of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
| | - Nikodem Hryniewicz
- CNS Lab, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsawPoland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Małgorzata Kossut
- Laboratory of Neuroplasticity, Department of Molecular and Cellular NeurobiologyNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Aneta Brzezicka
- Faculty of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCalifornia
| |
Collapse
|
10
|
Shi Y, Cai K, Zhu H, Dong X, Xiong X, Zhu L, Sun Z, Chen A. Football Juggling Learning Alters the Working Memory and White Matter Integrity in Early Adulthood: A Randomized Controlled Study. APPLIED SCIENCES 2021; 11:3843. [DOI: 10.3390/app11093843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
Cross-sectional studies suggest that motor skill learning is associated with working memory (WM) and white matter integrity (WMI). However, it has not been established whether motor skill learning improves WM performance, and information on its neural mechanisms have not been clearly elucidated. Therefore, this study compared WM and WMI across time points prior to and following football juggling learning, in early adulthood (18–20 years old), relative to a control group. Study participants in the experimental group were subjected to football juggling for 10 weeks while participants in the control category went on with their routine life activities for the same period of time and were not involved in the learning-related activities. Data on cognitive measurements and that from diffusion tensor imaging (DTI) were collected before and after learning. There was a significant improvement in WM performance of the experimental group after motor learning, although no improvement was observed in the control group. Additionally, after learning, DTI data revealed a significant increase in functional anisotropy (FA) in the genu of corpus callosum (GOCC) and the right anterior corona radiata (R.ACR) in the experimental group. Moreover, the better WM associated with football juggling learning was correlated to a higher FA. Mediation analysis suggested that FA in the GOCC acts as a mediation variable between football juggling learning and WM. These findings show that motor skill learning improves the WM and remodels WMI in early adulthood. With a particular emphasis on the importance of WMI in motor skill learning and WM, this study also revealed the possible neural mechanisms mediated by WMI.
Collapse
Affiliation(s)
- Yifan Shi
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Hao Zhu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xuan Xiong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Lina Zhu
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100000, China
| | - Zhiyuan Sun
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
- Chinese–Polish Laboratory of Sport and Brain Science, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
11
|
Matyi MA, Spielberg JM. Differential spatial patterns of structural connectivity of amygdala nuclei with orbitofrontal cortex. Hum Brain Mapp 2020; 42:1391-1405. [PMID: 33270320 PMCID: PMC7927308 DOI: 10.1002/hbm.25300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
The orbitofrontal cortex (OFC)‐amygdala circuit is critical to goal‐directed behavior, learning, and valuation. However, our understanding of the OFC‐amygdala connections that support these emergent processes is hampered by our reliance on the primate literature and insufficient knowledge regarding the connectivity patterns between regions of OFC and amygdala nuclei, each of which is differentially involved in these processes in humans. Thus, we examined structural connectivity between different OFC regions and four amygdala nuclei in healthy adults (n = 1,053) using diffusion‐based anatomical networks and probabilistic tractography in four conceptually distinct ways. First, we identified the OFC regions that connect with each nucleus. Second, we identified the OFC regions that were more likely to connect with a given nucleus than the others. Finally, we developed probabilistic and rank‐order maps of OFC (one for each nucleus) based upon the likelihood of each OFC voxel exhibiting preferential connectivity with each nucleus and the relative density of connectivity between each OFC voxel and each nucleus, respectively. The first analyses revealed that the connections of each nucleus spanned all of OFC, reflecting widespread overall amygdala linkage with OFC. Analysis of preferential connectivity and probabilistic and rank‐order maps of OFC converged to reveal differential patterns of connectivity between OFC and each nucleus. Present findings illustrate the importance of accounting for spatial specificity when examining links between OFC and amygdala. This fine‐grained examination of OFC‐amygdala connectivity can be applied to understand how such connectivity patterns support a range of emergent functions including affective and motivational processes.
Collapse
Affiliation(s)
- Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
12
|
Parma JO, Profeta VLDS, Andrade AGPD, Lage GM, Apolinário-Souza T. TDCS of the Primary Motor Cortex: Learning the Absolute Dimension of a Complex Motor Task. J Mot Behav 2020; 53:431-444. [PMID: 32654612 DOI: 10.1080/00222895.2020.1792823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The primary motor cortex (M1) is one of the main cortical areas involved in motor learning. However, little is known about its differential role in the learning of the relative and absolute dimensions of motor skills. We investigated the role of M1 in the learning of the dimensions of a complex motor skill. Forty-eight participants practiced golf putting and were stimulated for 20 minutes with real or sham bihemispheric tDCS before acquisition. tDCS improved global performance from pre- to post-test. Only those with worse initial performance who were stimulated by tDCS showed a significant improvement in the skill's absolute dimension. No effects of tDCS were found for the relative dimension. Our results suggest that M1 has a distinct participation in the learning of the absolute dimension of complex motor skills, and tDCS effects are influenced by the learner's level of initial performance.
Collapse
Affiliation(s)
- Juliana Otoni Parma
- School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vitor Leandro da Silva Profeta
- School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - André Gustavo Pereira de Andrade
- School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Menezes Lage
- School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tércio Apolinário-Souza
- School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
13
|
Lehmann N, Villringer A, Taubert M. Colocalized White Matter Plasticity and Increased Cerebral Blood Flow Mediate the Beneficial Effect of Cardiovascular Exercise on Long-Term Motor Learning. J Neurosci 2020; 40:2416-2429. [PMID: 32041897 PMCID: PMC7083530 DOI: 10.1523/jneurosci.2310-19.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular exercise (CE) is a promising intervention strategy to facilitate cognition and motor learning in healthy and diseased populations of all ages. CE elevates humoral parameters, such as growth factors, and stimulates brain changes potentially relevant for learning and behavioral adaptations. However, the causal relationship between CE-induced brain changes and human's ability to learn remains unclear. We tested the hypothesis that CE elicits a positive effect on learning via alterations in brain structure (morphological changes of gray and white matter) and function (functional connectivity and cerebral blood flow in resting state). We conducted a randomized controlled trial with healthy male and female human participants to compare the effects of a 2 week CE intervention against a non-CE control group on subsequent learning of a challenging new motor task (dynamic balancing; DBT) over 6 consecutive weeks. We used multimodal neuroimaging [T1-weighted magnetic resonance imaging (MRI), diffusion-weighted MRI, perfusion-weighted MRI, and resting state functional MRI] to investigate the neural mechanisms mediating between CE and learning. As expected, subjects receiving CE subsequently learned the DBT at a higher rate. Using a modified nonparametric combination approach along with multiple mediator analysis, we show that this learning boost was conveyed by CE-induced increases in cerebral blood flow in frontal brain regions and changes in white matter microstructure in frontotemporal fiber tracts. Our study revealed neural mechanisms for the CE-learning link within the brain, probably allowing for a higher flexibility to adapt to highly novel environmental stimuli, such as learning a complex task.SIGNIFICANCE STATEMENT It is established that cardiovascular exercise (CE) is an effective approach to promote learning and memory, yet little is known about the underlying neural transfer mechanisms through which CE acts on learning. We provide evidence that CE facilitates learning in human participants via plasticity in prefrontal white matter tracts and a colocalized increase in cerebral blood flow. Our findings are among the first to demonstrate a transfer potential of experience-induced brain plasticity. In addition to practical implications for health professionals and coaches, our work paves the way for future studies investigating effects of CE in patients suffering from prefrontal hypoperfusion or white matter diseases.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany,
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, 39104 Magdeburg, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Mind and Brain Institute, Charité and Humboldt University, 10117 Berlin, Germany, and
| | - Marco Taubert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, 39104 Magdeburg, Germany
- Center for Behavioral and Brain Science, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
14
|
Lehmann N, Tolentino‐Castro JW, Kaminski E, Ragert P, Villringer A, Taubert M. Interindividual differences in gray and white matter properties are associated with early complex motor skill acquisition. Hum Brain Mapp 2019; 40:4316-4330. [PMID: 31264300 PMCID: PMC6865641 DOI: 10.1002/hbm.24704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023] Open
Abstract
Brain circuits mediate but also constrain experience-induced plasticity and corresponding behavioral changes. Here we tested whether interindividual behavioral differences in learning a challenging new motor skill correlate with variations in brain anatomy. Young, healthy participants were scanned using structural magnetic resonance imaging (T1-weighted MPRAGE, n = 75 and/or diffusion-weighted MRI, n = 59) and practiced a complex whole-body balancing task on a seesaw-like platform. Using conjunction tests based on the nonparametric combination (NPC) methodology, we found that gray matter volume (GMV) in the right orbitrofrontal cortex was positively related to the subjects' initial level of proficiency and their ability to improve performance during practice. Similarly, we obtained a strong trend toward a positive correlation between baseline fractional anisotropy (FA) in commissural prefrontal fiber pathways and later motor learning. FA results were influenced more strongly by radial than axial diffusivity. However, we did not find unique anatomical correlates of initial performance and learning to rate. Our findings reveal structural predispositions for successful motor skill performance and acquisition in frontal brain structures and underlying frontal white matter tracts. Together with previous results, these findings support the view that structural constraints imposed by the brain determine subsequent behavioral success and underline the importance of structural brain network constitution before learning starts.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Movement and Sport Sciences, Department of MedicineUniversity of FribourgFribourgSwitzerland
- Faculty of Human Sciences, Institute III, Department of Sport ScienceOtto von Guericke UniversityMagdeburgGermany
| | - J. Walter Tolentino‐Castro
- Department of Movement ScienceUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Elisabeth Kaminski
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Applied GeropsychologyChemnitz University of TechnologyChemnitzGermany
| | - Patrick Ragert
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Faculty of Sport ScienceInstitute for General Kinesiology and Exercise Science, Leipzig UniversityLeipzigGermany
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Mind and Brain InstituteCharité and Humboldt UniversityBerlinGermany
| | - Marco Taubert
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Faculty of Human Sciences, Institute III, Department of Sport ScienceOtto von Guericke UniversityMagdeburgGermany
- Center for Behavioral and Brain Science (CBBS)Otto von Guericke UniversityMagdeburgGermany
| |
Collapse
|