1
|
Yoo S, Jang Y, Hong SJ, Park H, Valk SL, Bernhardt BC, Park BY. Whole-brain structural connectome asymmetry in autism. Neuroimage 2024; 288:120534. [PMID: 38340881 DOI: 10.1016/j.neuroimage.2024.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings.
Collapse
Affiliation(s)
- Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Artificial Intelligence Convergence Research Center, Inha University, Incheon, Republic of Korea
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sofie L Valk
- Forschungszentrum Julich, Germany; Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Data Science, Inha University, Incheon, Republic of Korea; Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Song L, Wang P, Li H, Weiss PH, Fink GR, Zhou X, Chen Q. Increased functional connectivity between the auditory cortex and the frontoparietal network compensates for impaired visuomotor transformation after early auditory deprivation. Cereb Cortex 2023; 33:11126-11145. [PMID: 37814363 DOI: 10.1093/cercor/bhad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
Early auditory deprivation leads to a reorganization of large-scale brain networks involving and extending beyond the auditory system. It has been documented that visuomotor transformation is impaired after early deafness, associated with a hyper-crosstalk between the task-critical frontoparietal network and the default-mode network. However, it remains unknown whether and how the reorganized large-scale brain networks involving the auditory cortex contribute to impaired visuomotor transformation after early deafness. Here, we asked deaf and early hard of hearing participants and normal hearing controls to judge the spatial location of a visual target. Compared with normal hearing controls, the superior temporal gyrus showed significantly increased functional connectivity with the frontoparietal network and the default-mode network in deaf and early hard of hearing participants, specifically during egocentric judgments. However, increased superior temporal gyrus-frontoparietal network and superior temporal gyrus-default-mode network coupling showed antagonistic effects on egocentric judgments. In deaf and early hard of hearing participants, increased superior temporal gyrus-frontoparietal network connectivity was associated with improved egocentric judgments, whereas increased superior temporal gyrus-default-mode network connectivity was associated with deteriorated performance in the egocentric task. Therefore, the data suggest that the auditory cortex exhibits compensatory neuroplasticity (i.e. increased functional connectivity with the task-critical frontoparietal network) to mitigate impaired visuomotor transformation after early auditory deprivation.
Collapse
Affiliation(s)
- Li Song
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Pengfei Wang
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne 509737, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne 509737, Germany
| | - Xiaolin Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
| |
Collapse
|
3
|
Dimitriadis SI, Perry G, Lancaster TM, Tansey KE, Singh KD, Holmans P, Pocklington A, Davey Smith G, Zammit S, Hall J, O’Donovan MC, Owen MJ, Jones DK, Linden DE. Genetic risk for schizophrenia is associated with increased proportion of indirect connections in brain networks revealed by a semi-metric analysis: evidence from population sample stratified for polygenic risk. Cereb Cortex 2023; 33:2997-3011. [PMID: 35830871 PMCID: PMC10016061 DOI: 10.1093/cercor/bhac256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Research studies based on tractography have revealed a prominent reduction of asymmetry in some key white-matter tracts in schizophrenia (SCZ). However, we know little about the influence of common genetic risk factors for SCZ on the efficiency of routing on structural brain networks (SBNs). Here, we use a novel recall-by-genotype approach, where we sample young adults from a population-based cohort (ALSPAC:N genotyped = 8,365) based on their burden of common SCZ risk alleles as defined by polygenic risk score (PRS). We compared 181 individuals at extremes of low (N = 91) or high (N = 90) SCZ-PRS under a robust diffusion MRI-based graph theoretical SBN framework. We applied a semi-metric analysis revealing higher SMR values for the high SCZ-PRS group compared with the low SCZ-PRS group in the left hemisphere. Furthermore, a hemispheric asymmetry index showed a higher leftward preponderance of indirect connections for the high SCZ-PRS group compared with the low SCZ-PRS group (PFDR < 0.05). These findings might indicate less efficient structural connectivity in the higher genetic risk group. This is the first study in a population-based sample that reveals differences in the efficiency of SBNs associated with common genetic risk variants for SCZ.
Collapse
Affiliation(s)
- S I Dimitriadis
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Neuroinformatics Group, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - T M Lancaster
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Department of Psychology, Bath University, Claverton Down BA2 7AY, Bath, Wales, UK
| | - K E Tansey
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
| | - K D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - P Holmans
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - A Pocklington
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - S Zammit
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - J Hall
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M C O’Donovan
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M J Owen
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D E Linden
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40 UNS40 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
4
|
Xu F, Zhao J, Liu M, Yu X, Wang C, Lou Y, Shi W, Liu Y, Gao L, Yang Q, Zhang B, Lu S, Tang J, Leng J. Exploration of sleep function connection and classification strategies based on sub-period sleep stages. Front Neurosci 2023; 16:1088116. [PMID: 36760796 PMCID: PMC9906994 DOI: 10.3389/fnins.2022.1088116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Background As a medium for developing brain-computer interface systems, EEG signals are complex and difficult to identify due to their complexity, weakness, and differences between subjects. At present, most of the current research on sleep EEG signals are single-channel and dual-channel, ignoring the research on the relationship between different brain regions. Brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. Methods Phase-locked value (PLV) is used to construct a functional connection network. The connection network is used to analyze the connection mechanism and brain interaction in different sleep stages. Firstly, the entire EEG signal is divided into multiple sub-periods. Secondly, Phase-locked value is used for feature extraction on the sub-periods. Thirdly, the PLV of multiple sub-periods is used for feature fusion. Fourthly, the classification performance optimization strategy is used to discuss the impact of different frequency bands on sleep stage classification performance and to find the optimal frequency band. Finally, the brain function network is constructed by using the average value of the fusion features to analyze the interaction of brain regions in different frequency bands during sleep stages. Results The experimental results have shown that when the number of sub-periods is 30, the α (8-13 Hz) frequency band has the best classification effect, The classification result after 10-fold cross-validation reaches 92.59%. Conclusion The proposed algorithm has good sleep staging performance, which can effectively promote the development and application of an EEG sleep staging system.
Collapse
Affiliation(s)
- Fangzhou Xu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,*Correspondence: Fangzhou Xu,
| | - Jinzhao Zhao
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ming Liu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Yu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chongfeng Wang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yitai Lou
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Weiyou Shi
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanbing Liu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Licai Gao
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qingbo Yang
- School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Baokun Zhang
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shanshan Lu
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Neurology, Cheeloo College of Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong, China,Shanshan Lu,
| | - Jiyou Tang
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China,Department of Neurology, Cheeloo College of Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong, China,Jiyou Tang,
| | - Jiancai Leng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,Jiancai Leng,
| |
Collapse
|
5
|
Fang S, Weng S, Li L, Guo Y, Zhang Z, Fan X, Jiang T, Wang Y. Decreasing distance from tumor to the language network causes language deficit. Hum Brain Mapp 2022; 44:679-690. [PMID: 36169039 PMCID: PMC9842885 DOI: 10.1002/hbm.26092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/25/2023] Open
Abstract
Preoperative language deficits are associated with alterations in the language networks of patients with gliomas. This study investigated how gliomas affect language performance by altering the language network. Ninety patients with lower-grade gliomas were included, and their preoperative language performance was evaluated using the Western Aphasia Battery. We also calculated the topological properties based on resting state functional magnetic resonance imaging. All patients were classified according to aphasia quotient (AQ) into the aphasia (AQ < 93.8), mild anomia (AQ > 93.8 and naming section <9.8), and normal groups (AQ > 93.8). The shortest distance from the tumor to the language network (SDTN) was evaluated to identify the effect on language performance induced by the tumor. One-way analysis of variance and post hoc analysis with Sidak correction were used to analyze the differences in topological properties among the three groups. Causal mediation analysis was used to identify indirectly affected mediators. Compared with the mild anomia group, longer shortest path length (p = .0016), lower vulnerability (p = .0331), and weaker nodal efficiencies of three nodes (right caudal Brodmann area [BA] 45, right caudal BA 22, and left BA 41/42, all p < .05) were observed in the aphasia group. The SDTN mediated nodal degree centrality and nodal vulnerability (left rostroventral BA 39), which negatively affected the AQs. Conventional language eloquent and mirrored areas participated in the language network alterations induced by gliomas. The SDTN was a mediator that affected the preoperative language status in patients with gliomas.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Shimeng Weng
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Lianwang Li
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yuhao Guo
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Zhong Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xing Fan
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain TumorsChinese Academy of Medical SciencesBeijingChina
| | - Yinyan Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Hu H, Jiang Y, Xia M, Tang Y, Zhang T, Cui H, Wang J, Xu L, Curtin A, Sheng J, Cao X, Guo Q, Jia Y, Li C, Wang Z, Luo C, Wang J. Functional reconfiguration of cerebellum-cerebral neural loop in schizophrenia following electroconvulsive therapy. Psychiatry Res Neuroimaging 2022; 320:111441. [PMID: 35085957 DOI: 10.1016/j.pscychresns.2022.111441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Abstract
Recent evidence highlights the role of the cerebellum-cerebral loop in the pathophysiology of schizophrenia (SZ). Electroconvulsive therapy (ECT) is clinically applied to augment the effect of antipsychotic drugs. The study aims to address whether the cerebellum-cerebral loop is involved in the mechanisms of ECT's augmentation effect. Forty-two SZ patients and 23 healthy controls (HC) were recruited and scanned using resting-state functional MRI (rs-fMRI). Twenty-one patients received modified ECT plus antipsychotics (MSZ group), and 21 patients took antipsychotics only (DSZ group). All patients were re-scanned four weeks later. Brain functional network was constructed according to the graph theory. The sub-network exhibited longitudinal changes after ECT or medications were constructed. For the MSZ group, a sub-network involving default-mode network and cerebellum showed significant longitudinal changes. For the DSZ group, a different sub-network involving the thalamus, frontal and occipital cortex was found to be altered in the follow-up scan. In addition, the changing FC of the left cerebellar crus2 region was correlated with the changing scores of the psychotic symptoms only in the MSZ group but not in the DSZ group. In conclusion, the cerebral-cerebellum loop is possibly involved in the antipsychotic mechanisms of ECT for schizophrenia.
Collapse
Affiliation(s)
- Hao Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mengqing Xia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Junjie Wang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Adrian Curtin
- School of Biomedical Engineering & Health Sciences, Drexel University, Philadelphia, PA 19104, United States; Med-X Institute, Shanghai Jiao Tong University, Shanghai 200300, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Yuping Jia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao tong University School of Medicine, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Zhang B, Hu X, Li Y, Ni Y, Xue L. Identification of methylation markers for diagnosis of autism spectrum disorder. Metab Brain Dis 2022; 37:219-228. [PMID: 34427843 DOI: 10.1007/s11011-021-00805-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Autism spectrum disorder (ASD) is a hereditary heterogeneous neurodevelopmental disorder characterized by social and speech dysplasia. We collected the expression profiles of ASD in GSE26415, GSE42133 and GSE123302 from the gene expression omnibus (GEO) database, as well as methylation data of GSE109905. Differentially expressed genes (DEGs) between ASD and controls were obtained by differential expression analysis. Enrichment analysis identified the biological functions and signaling pathways involved by common genes in three groups of DEGs. Protein-protein interaction (PPI) networks were used to identify genes with the highest connectivity as key genes. In addition, we identified methylation markers by associating differentially methylated positions. Key methylation markers were identified using the least absolute shrink and selection operator (LASSO) model. Receiver operating characteristic curves and nomograms were used to identify the diagnostic role of key methylation markers for ASD. A total of 57 common genes were identified in the three groups of DEGs. These genes were mainly enriched in Sphingolipid metabolism and PPAR signaling pathway. In the PPI network, we identified seven key genes with higher connectivity, and used qRT-PCR experiments to verify the expressions. In addition, we identified 31 methylation markers and screened 3 key methylation markers (RUNX2, IMMP2L and MDM2) by LASSO model. Their methylation levels were closely related to the diagnostic effects of ASD. Our analysis identified RUNX2, IMMP2L and MDM2 as possible diagnostic markers for ASD. Identifying different biomarkers and risk genes will contribute to the diagnosis of ASD and the development of new clinical and drug treatments.
Collapse
Affiliation(s)
- Bei Zhang
- Department of quality management, The Fourth People's Hospital of Urumqi, Jianquan street, Urumqi, Xinjiang, 830002, China
| | - Xiaoyuan Hu
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Jianquan street, Tianshan District, Urumqi, Xinjiang, 830001, China
| | - Yuefei Li
- School of Public Health, Xinjiang Medical University, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830000, China
| | - Yongkang Ni
- School of Public Health, Xinjiang Medical University, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830000, China
| | - Lin Xue
- Department of quality management, The Fourth People's Hospital of Urumqi, Jianquan street, Urumqi, Xinjiang, 830002, China.
| |
Collapse
|
8
|
Mo K, Sadoway T, Bonato S, Ameis SH, Anagnostou E, Lerch JP, Taylor MJ, Lai MC. Sex/gender differences in the human autistic brains: A systematic review of 20 years of neuroimaging research. Neuroimage Clin 2021; 32:102811. [PMID: 34509922 PMCID: PMC8436080 DOI: 10.1016/j.nicl.2021.102811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/25/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Our current understanding of autism is largely based on clinical experiences and research involving male individuals given the male-predominance in prevalence and the under-inclusion of female individuals due to small samples, co-occurring conditions, or simply being missed for diagnosis. There is a significantly biased 'male lens' in this field with autistic females insufficiently understood. We therefore conducted a systematic review to examine how sex and gender modulate brain structure and function in autistic individuals. Findings from the past 20 years are yet to converge on specific brain regions/networks with consistent sex/gender-modulating effects. Despite at least three well-powered studies identifying specific patterns of significant sex/gender-modulation of autism-control differences, many other studies are likely underpowered, suggesting a critical need for future investigation into sex/gender-based heterogeneity with better-powered designs. Future research should also formally investigate the effects of gender, beyond biological sex, which is mostly absent in the current literature. Understanding the roles of sex and gender in the development of autism is an imperative step to extend beyond the 'male lens' in this field.
Collapse
Affiliation(s)
- Kelly Mo
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Tara Sadoway
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sarah Bonato
- Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Stephanie H Ameis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada; Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Meng-Chuan Lai
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
9
|
Walsh MJM, Wallace GL, Gallegos SM, Braden BB. Brain-based sex differences in autism spectrum disorder across the lifespan: A systematic review of structural MRI, fMRI, and DTI findings. Neuroimage Clin 2021; 31:102719. [PMID: 34153690 PMCID: PMC8233229 DOI: 10.1016/j.nicl.2021.102719] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Females with autism spectrum disorder (ASD) have been long overlooked in neuroscience research, but emerging evidence suggests they show distinct phenotypic trajectories and age-related brain differences. Sex-related biological factors (e.g., hormones, genes) may play a role in ASD etiology and have been shown to influence neurodevelopmental trajectories. Thus, a lifespan approach is warranted to understand brain-based sex differences in ASD. This systematic review on MRI-based sex differences in ASD was conducted to elucidate variations across the lifespan and inform biomarker discovery of ASD in females We identified articles through two database searches. Fifty studies met criteria and underwent integrative review. We found that regions expressing replicable sex-by-diagnosis differences across studies overlapped with regions showing sex differences in neurotypical cohorts. Furthermore, studies investigating age-related brain differences across a broad age-span suggest distinct neurodevelopmental patterns in females with ASD. Qualitative comparison across youth and adult studies also supported this hypothesis. However, many studies collapsed across age, which may mask differences. Furthermore, accumulating evidence supports the female protective effect in ASD, although only one study examined brain circuits implicated in "protection." When synthesized with the broader literature, brain-based sex differences in ASD may come from various sources, including genetic and endocrine processes involved in brain "masculinization" and "feminization" across early development, puberty, and other lifespan windows of hormonal transition. Furthermore, sex-related biology may interact with peripheral processes, in particular the stress axis and brain arousal system, to produce distinct neurodevelopmental patterns in males and females with ASD. Future research on neuroimaging-based sex differences in ASD would benefit from a lifespan approach in well-controlled and multivariate studies. Possible relationships between behavior, sex hormones, and brain development in ASD remain largely unexamined.
Collapse
Affiliation(s)
- Melissa J M Walsh
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA
| | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, 2115 G St. NW, Washington, DC 20052, USA.
| | - Stephen M Gallegos
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA
| | - B Blair Braden
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA.
| |
Collapse
|
10
|
Simos NJ, Dimitriadis SI, Kavroulakis E, Manikis GC, Bertsias G, Simos P, Maris TG, Papadaki E. Quantitative Identification of Functional Connectivity Disturbances in Neuropsychiatric Lupus Based on Resting-State fMRI: A Robust Machine Learning Approach. Brain Sci 2020; 10:brainsci10110777. [PMID: 33113768 PMCID: PMC7692139 DOI: 10.3390/brainsci10110777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is an autoimmune entity comprised of heterogenous syndromes affecting both the peripheral and central nervous system. Research on the pathophysiological substrate of NPSLE manifestations, including functional neuroimaging studies, is extremely limited. The present study examined person-specific patterns of whole-brain functional connectivity in NPSLE patients (n = 44) and age-matched healthy control participants (n = 39). Static functional connectivity graphs were calculated comprised of connection strengths between 90 brain regions. These connections were subsequently filtered through rigorous surrogate analysis, a technique borrowed from physics, novel to neuroimaging. Next, global as well as nodal network metrics were estimated for each individual functional brain network and were input to a robust machine learning algorithm consisting of a random forest feature selection and nested cross-validation strategy. The proposed pipeline is data-driven in its entirety, and several tests were performed in order to ensure model robustness. The best-fitting model utilizing nodal graph metrics for 11 brain regions was associated with 73.5% accuracy (74.5% sensitivity and 73% specificity) in discriminating NPSLE from healthy individuals with adequate statistical power. Closer inspection of graph metric values suggested an increased role within the functional brain network in NSPLE (indicated by higher nodal degree, local efficiency, betweenness centrality, or eigenvalue efficiency) as compared to healthy controls for seven brain regions and a reduced role for four areas. These findings corroborate earlier work regarding hemodynamic disturbances in these brain regions in NPSLE. The validity of the results is further supported by significant associations of certain selected graph metrics with accumulated organ damage incurred by lupus, with visuomotor performance and mental flexibility scores obtained independently from NPSLE patients.
Collapse
Affiliation(s)
- Nicholas John Simos
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
- Department of Electrical and Computer Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Stavros I. Dimitriadis
- Integrative Neuroimaging Lab, 55133 Thessaloniki, Greece;
- 1st Department of Neurology, G.H. “AHEPA”, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences, Neuroscience and Mental Health Research Institute School of Medicine, & MRC Centre for Neuropsychiatric Genetics and Genomics, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
| | - Eleftherios Kavroulakis
- Department of Radiology, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece;
| | - Georgios C. Manikis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology and Allergy, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
- Department of Psychiatry, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece
- Correspondence: or
| | - Thomas G. Maris
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
- Department of Radiology, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece;
| | - Efrosini Papadaki
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece; (N.J.S.); (G.C.M.); (T.G.M.); (E.P.)
- Department of Radiology, Medical School, University of Crete, University Hospital of Heraklion, 71003 Heraklion, Greece;
| |
Collapse
|
11
|
Fan YS, Yang S, Li Z, Li J, Guo X, Han S, Guo J, Duan X, Cui Q, Du L, Liao W, Chen H. A temporal chronnectomic framework: Cigarette smoking preserved the prefrontal dysfunction in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109860. [PMID: 31927054 DOI: 10.1016/j.pnpbp.2020.109860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
The widespread cigarette smoking behavior in schizophrenia is generally attributed to its alleviation of patients' symptomatology by the self-medication hypothesis. The prefrontal cortex (PFC), which predominantly supports orchestrating thoughts and actions, might underlie the biological underpinnings of smoking behavior in schizophrenia. However, few studies have focused on the impact of smoking on the prefrontal function in schizophrenia. This study assumed that smoking-related alterations on the prefrontal dynamics of information integration (chronnectome) were different between healthy control (HC) and schizophrenia patient (SP). We recruited SP smokers (N = 22)/nonsmokers (N = 27) and HC smokers (N = 22)/nonsmokers (N = 21) who underwent resting-state functional magnetic resonance imaging (rsfMRI) with a total of 240 volumes (lasting for 480 s). We employed a chronnectomic density analysis on the rsfMRI signal by using a sliding-window method. We examined the interaction effect between smoking status and diagnosis utilizing two-way analysis of covariance under permutation test. Whereas disease-related reduced effects were found on the bilateral dorsolateral PFC chronnectomic density, no smoking effect was observed. As regards interaction effect, a smoking-related reduced effect was found on the right dorsolateral PFC chronnectomic density in HC, while a smoking-related increased effect was observed in SP. Nevertheless, post-hoc analysis revealed significant group difference between SP smokers and HC nonsmokers. Therefore, these results indicated a smoking-related preservation effect on disrupted prefrontal dynamics in schizophrenia that cannot restore it to normal levels. The novel findings yield a prefrontal-based chronnectome framework to elaborate upon the self-medication hypothesis in schizophrenia.
Collapse
Affiliation(s)
- Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zehan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Lian Du
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China..
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China..
| |
Collapse
|
12
|
Guo X, Simas T, Lai M, Lombardo MV, Chakrabarti B, Ruigrok ANV, Bullmore ET, Baron‐Cohen S, Chen H, Suckling J. Enhancement of indirect functional connections with shortest path length in the adult autistic brain. Hum Brain Mapp 2019; 40:5354-5369. [PMID: 31464062 PMCID: PMC6864892 DOI: 10.1002/hbm.24777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/23/2019] [Accepted: 08/18/2019] [Indexed: 12/30/2022] Open
Abstract
Autism is a neurodevelopmental condition characterized by atypical brain functional organization. Here we investigated the intrinsic indirect (semi-metric) connectivity of the functional connectome associated with autism. Resting-state functional magnetic resonance imaging scans were acquired from 65 neurotypical adults (33 males/32 females) and 61 autistic adults (30 males/31 females). From functional connectivity networks, semi-metric percentages (SMPs) were calculated to assess the proportion of indirect shortest functional pathways at global, hemisphere, network, and node levels. Group comparisons were then conducted to ascertain differences between autism and neurotypical control groups. Finally, the strength and length of edges were examined to explore the patterns of semi-metric connections associated with autism. Compared with neurotypical controls, autistic adults displayed significantly higher SMP at all spatial scales, similar to prior observations in adolescents. Differences were primarily in weaker, longer-distance edges in the majority between networks. However, no significant diagnosis-by-sex interaction effects were observed on global SMP. These findings suggest increased indirect functional connectivity in the autistic brain is persistent from adolescence to adulthood and is indicative of reduced functional network integration.
Collapse
Affiliation(s)
- Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Tiago Simas
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Meng‐Chuan Lai
- Centre for Addiction and Mental Health and the Hospital for Sick Children, Department of PsychiatryUniversity of TorontoTorontoCanada
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Department of PsychiatryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Michael V. Lombardo
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Italian Institute of TechnologyRoveretoItaly
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - Amber N. V. Ruigrok
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | - Simon Baron‐Cohen
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - John Suckling
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | | |
Collapse
|