1
|
Viher PV, Seitz-Holland J, Schulz MS, Kensinger EA, Karmacharya S, Swisher T, Lyall AE, Makris N, Bouix S, Shenton ME, Kubicki M, Waldinger RJ. More organized white matter is associated with positivity bias in older adults. Brain Imaging Behav 2024; 18:555-565. [PMID: 38270836 PMCID: PMC11222031 DOI: 10.1007/s11682-024-00850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
On average, healthy older adults prefer positive over neutral or negative stimuli. This positivity bias is related to memory and attention processes and is linked to the function and structure of several interconnected brain areas. However, the relationship between the positivity bias and white matter integrity remains elusive. The present study examines how white matter organization relates to the degree of the positivity bias among older adults. We collected imaging and behavioral data from 25 individuals (12 females, 13 males, and a mean age of 77.32). Based on a functional memory task, we calculated a Pos-Neg score, reflecting the memory for positively valenced information over negative information, and a Pos-Neu score, reflecting the memory for positively valenced information over neutral information. Diffusion-weighted magnetic resonance imaging data were processed using Tract-Based Spatial Statistics. We performed two non-parametric permutation tests to correlate whole brain white matter integrity and the Pos-Neg and Pos-Neu scores while controlling for age, sex, and years of education. We observed a statistically significant positive association between the Pos-Neu score and white matter integrity in multiple brain connections, mostly frontal. The results did not remain significant when including verbal episodic memory as an additional covariate. Our study indicates that the positivity bias in memory in older adults is associated with more organized white matter in the connections of the frontal brain. While these frontal areas are critical for memory and executive processes and have been related to pathological aging, more extensive studies are needed to fully understand their role in the positivity bias and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Petra V Viher
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marc S Schulz
- Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, USA
| | | | - Sarina Karmacharya
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Talis Swisher
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Robert J Waldinger
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
2
|
Matyi MA, Spielberg JM. Negative emotion differentiation and white matter microstructure. J Affect Disord 2023; 332:238-246. [PMID: 37059190 DOI: 10.1016/j.jad.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Deficits in the differentiation of negative emotions - the ability to specifically identify one's negative emotions - are associated with poorer mental health outcomes. However, the processes that lead to individual differences in negative emotion differentiation are not well understood, hampering our understanding of why this process is related to poor mental health outcomes. Given that disruptions in some affective processes are associated with white matter microstructure, identifying the circuitry associated with different affective processes can inform our understanding of how disturbances in these networks may lead to psychopathology. Thus, examination of how white matter microstructure relates to individual differences in negative emotion differentiation (NED) may provide insights into (i) its component processes and (ii) its relationship to brain structure. METHOD The relationship between white matter microstructure and NED was examined. RESULTS NED was related to white matter microstructure in right anterior thalamic radiation and inferior fronto-occipital fasciculus and left peri-genual cingulum. LIMITATIONS Although participants self-reported psychiatric diagnoses and previous psychological treatment, psychopathology was not directly targeted, and thus, the extent to which microstructure related to NED could be examined in relation to maladaptive outcomes is limited. CONCLUSIONS Results indicate that NED is related to white matter microstructure and suggest that pathways subserving processes that facilitate memory, semantics, and affective experience are important for NED. Our findings provide insights into the mechanisms by which individual differences in NED arise, suggesting intervention targets that may disrupt the relationship between poor differentiation and psychopathology.
Collapse
Affiliation(s)
- Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Abstract
Noncardiac surgery conveys a substantial risk of secondary organ dysfunction and injury. Neurocognitive dysfunction and covert stroke are emerging as major forms of perioperative organ dysfunction, but a better understanding of perioperative neurobiology is required to identify effective treatment strategies. The likelihood and severity of perioperative brain injury may be increased by intraoperative hemodynamic dysfunction, tissue hypoperfusion, and a failure to recognize complications early in their development. Advances in neuroimaging and monitoring techniques, including optical, sonographic, and magnetic resonance, have progressed beyond structural imaging and now enable noninvasive assessment of cerebral perfusion, vascular reserve, metabolism, and neurologic function at the bedside. Translation of these imaging methods into the perioperative setting has highlighted several potential avenues to optimize tissue perfusion and deliver neuroprotection. This review introduces the methods, metrics, and evidence underlying emerging optical and magnetic resonance neuroimaging methods and discusses their potential experimental and clinical utility in the setting of noncardiac surgery.
Collapse
|
4
|
Welton T, Tan YJ, Saffari SE, Ng SYE, Chia NSY, Yong ACW, Choi X, Heng DL, Shih YC, Hartono S, Lee W, Xu Z, Tay KY, Au WL, Tan EK, Chan LL, Ng ASL, Tan LCS. Plasma Neurofilament Light Concentration Is Associated with Diffusion-Tensor MRI-Based Measures of Neurodegeneration in Early Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2135-2146. [PMID: 36057833 DOI: 10.3233/jpd-223414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Neurofilament light is a marker of axonal degeneration, whose measurement from peripheral blood was recently made possible by new assays. OBJECTIVE We aimed to determine whether plasma neurofilament light chain (NfL) concentration reflects brain white matter integrity in patients with early Parkinson's disease (PD). METHODS 137 early PD patients and 51 healthy controls were included. Plasma NfL levels were measured using ultrasensitive single molecule array. 3T MRI including diffusion tensor imaging was acquired for voxelwise analysis of association between NfL and both fractional anisotropy (FA) and mean diffusivity (MD) in white matter tracts and subcortical nuclei. RESULTS A pattern of brain microstructural changes consistent with neurodegeneration was associated with increased plasma NfL in most of the frontal lobe and right internal capsule, with decreased FA and increased MD. The same clusters were also associated with poorer global cognition. A significant cluster in the left putamen was associated with increased NfL, with a significantly greater effect in PD than controls. CONCLUSION Plasma NfL may be associated with brain microstructure, as measured using diffusion tensor imaging, in patients with early PD. Higher plasma NfL was associated with a frontal pattern of neurodegeneration that also correlates with cognitive performance in our cohort. This may support a future role for plasma NfL as an accessible biomarker for neurodegeneration and cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Thomas Welton
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Seyed Ehsan Saffari
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Samuel Y E Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Nicole S Y Chia
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Alisa C W Yong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Xinyi Choi
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Dede Liana Heng
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Yao-Chia Shih
- Radiological Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Septian Hartono
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Weiling Lee
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Kay Yaw Tay
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Wing Lok Au
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Ling Ling Chan
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Radiological Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
- Parkinson Disease and Movement Disorders Centre, Parkinson Foundation Center of Excellence, National Neuroscience Institute, Singapore, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
5
|
Abstract
Essential tremor (ET) is one of the most common movement disorders, with a reported >60 million affected individuals worldwide. The definition and underlying pathophysiology of ET are contentious. Patients present primarily with motor features such as postural and action tremors, but may also have other non-motor features, including cognitive impairment and neuropsychiatric symptoms. Genetics account for most of the ET risk but environmental factors may also be involved. However, the variable penetrance and challenges in validating data make gene-environment analysis difficult. Structural changes in cerebellar Purkinje cells and neighbouring neuronal populations have been observed in post-mortem studies, and other studies have found GABAergic dysfunction and dysregulation of the cerebellar-thalamic-cortical circuitry. Commonly prescribed medications include propranolol and primidone. Deep brain stimulation and ultrasound thalamotomy are surgical options in patients with medically intractable ET. Further research in post-mortem studies, and animal and cell-based models may help identify new pathophysiological clues and therapeutic targets and, together with advances in omics and machine learning, may facilitate the development of precision medicine for patients with ET.
Collapse
|
6
|
Baranger DAA, Halchenko YO, Satz S, Ragozzino R, Iyengar S, Swartz HA, Manelis A. Aberrant levels of cortical myelin distinguish individuals with depressive disorders from healthy controls. NEUROIMAGE: CLINICAL 2021; 32:102790. [PMID: 34455188 PMCID: PMC8406024 DOI: 10.1016/j.nicl.2021.102790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2021] [Revised: 07/05/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
The association between depressive disorders and measures reflecting myelin content is underexplored, despite growing evidence of associations with white matter tract integrity. We characterized the T1w/T2w ratio using the Glasser atlas in 39 UD and 47 HC participants (ages = 19-44, 75% female). A logistic elastic net regularized regression with nested cross-validation and a subsequent linear discriminant analysis conducted on held-out samples were used to select brain regions and classify patients vs. healthy controls (HC). True-label model performance was compared against permuted-label model performance. The T1w/T2w ratio distinguished patients from HC with 68% accuracy (p < 0.001; sensitivity = 63.8%, specificity = 71.5%). Brain regions contributing to this classification performance were located in the orbitofrontal cortex, anterior cingulate, extended visual, and auditory cortices, and showed statistically significant differences in the T1w/T2w ratio for patients vs. HC. As the T1w/T2w ratio is thought to characterize cortical myelin, patterns of cortical myelin in these regions may be a biomarker distinguishing individuals with depressive disorders from HC.
Collapse
Affiliation(s)
- David A A Baranger
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Skye Satz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel Ragozzino
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Holly A Swartz
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Welton T, Indja BE, Maller JJ, Fanning JP, Vallely MP, Grieve SM. Replicable brain signatures of emotional bias and memory based on diffusion kurtosis imaging of white matter tracts. Hum Brain Mapp 2019; 41:1274-1285. [PMID: 31773802 PMCID: PMC7268065 DOI: 10.1002/hbm.24874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Diffusion MRI (dMRI) is sensitive to anisotropic diffusion within bundles of nerve axons and can be used to make objective measurements of brain networks. Many brain disorders are now recognised as being caused by network dysfunction or are secondarily associated with changes in networks. There is therefore great potential in using dMRI measures that reflect network integrity as a future clinical tool to help manage these conditions. Here, we used dMRI to identify replicable, robust and objective markers that meaningfully reflect cognitive and emotional performance. Using diffusion kurtosis analysis and a battery of cognitive and emotional tests, we demonstrated strong relationships between white matter structure across networks of anatomically and functionally specific brain regions with both emotional bias and emotional memory performance in a large healthy cohort. When the connectivity of these regions was examined using diffusion tractography, the terminations of the identified tracts overlapped precisely with cortical loci relating to these domains, drawn from an independent spatial meta‐analysis of available functional neuroimaging literature. The association with emotional bias was then replicated using an independently acquired healthy cohort drawn from the Human Connectome Project. These results demonstrate that, even in healthy individuals, white matter dMRI structural features underpin important cognitive and emotional functions. Our robust cross‐correlation and replication supports the potential of structural brain biomarkers from diffusion kurtosis MRI to characterise early neurological changes and risk in individuals with a reduced threshold for cognitive dysfunction, with further testing required to demonstrate clinical utility.
Collapse
Affiliation(s)
- Thomas Welton
- Sydney Translational Imaging Laboratory, Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ben E Indja
- Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jerome J Maller
- Sydney Translational Imaging Laboratory, Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia.,GE Healthcare, Richmond, Victoria, Australia
| | - Jonathon P Fanning
- Faculty of Medicine, The University of Queensland, Brisbane, New South Wales, Australia.,The Critical Care Research Group, The Prince Charles Hospital, Brisbane, New South Wales, Australia
| | - Michael P Vallely
- Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Department of Cardiothoracic Surgery, The Northern Beaches Hospital, Sydney, New South Wales, Australia
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia.,Department of Radiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|