1
|
Pagni BA, Walsh MJ, Ofori E, Chen K, Sullivan G, Alvar J, Monahan L, Guerithault N, Delaney S, Braden BB. Effects of age on the hippocampus and verbal memory in adults with autism spectrum disorder: Longitudinal versus cross-sectional findings. Autism Res 2022; 15:1810-1823. [PMID: 36053945 PMCID: PMC9561078 DOI: 10.1002/aur.2797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
Research studying aging in adults with autism spectrum disorder (ASD) is growing, but longitudinal work is needed. Autistic adults have increased risk of dementia, altered hippocampal volumes and fornix integrity, and verbal memory difficulties compared with neurotypical (NT) adults. This study examined longitudinal aging in middle-age adults with ASD versus a matched NT group, and compared findings with cross-sectional age effects across a broad adult age range. Participants were 194 adults with (n = 106; 74 male) and without (n = 88; 52 male) ASD, ages 18-71. Participants (n = 45; 40-70 age range) with two visits (2-3 years apart) were included in a longitudinal analysis. Hippocampal volume, fornix fractional anisotropy (FA), and verbal memory were measured via T1-weighted MRI, diffusion tensor imaging, and the Rey Auditory Verbal Learning Test, respectively. Longitudinal mixed models were used for hippocampal system variables and reliable change index categories were used for Auditory Verbal Learning Test analyses. Multivariate regression was used for cross-sectional analyses. Middle-age adults with ASD had greater longitudinal hippocampal volume loss and were more likely to show clinically meaningful decline in short-term memory, compared with NT. In contrast, cross-sectional associations between increasing age and worsening short-term memory were identified in NT, but not autistic adults. Reduced fornix FA and long-term memory in ASD were found across the broad cross-sectional age range. These preliminary longitudinal findings suggest accelerated hippocampal volume loss in ASD and slightly higher rates of clinically-meaningful decline in verbal short-term memory. Contradictory cross-sectional and longitudinal results underscore the importance of longitudinal aging research in autistic adults. LAY SUMMARY: Autistic adults have increased risk of dementia, differences in brain memory structures, and difficulty with memory compared with neurotypical (NT) adults. However, there are no publications that follow the same middle-age autistic adults over time to see how their brain and memory change. Our preliminary findings in a small middle-age autism sample suggest a key memory brain structure, the hippocampus, may shrink faster over 2-3 years compared with NT, and short-term memory may become more challenging for some. Across a broad adult range, autistic adults also had reduced integrity of connections to the hippocampus and greater challenges with long-term memory. In our larger sample across a broad age range, the results did not hint at this aforementioned pattern of accelerated aging. This underscores the importance of more aging research in autism, and especially research where people are followed over time.
Collapse
Affiliation(s)
- Broc A. Pagni
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| | - Melissa J.M. Walsh
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| | - Edward Ofori
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| | - Kewei Chen
- Banner Alzheimer’s Institute, 901 E. Willetta St, Phoenix, AZ
| | - Georgia Sullivan
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| | - Jocelyn Alvar
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| | - Leanna Monahan
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| | - Nicolas Guerithault
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| | - Shanna Delaney
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| | - B. Blair Braden
- Arizona State University, College of Health Solutions, Lattie F. Coor Hall, Room 3407, 976 S Forest Mall, Tempe, AZ, 85281
| |
Collapse
|
2
|
Pietschnig J, Gerdesmann D, Zeiler M, Voracek M. Of differing methods, disputed estimates and discordant interpretations: the meta-analytical multiverse of brain volume and IQ associations. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211621. [PMID: 35573038 PMCID: PMC9096623 DOI: 10.1098/rsos.211621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Brain size and IQ are positively correlated. However, multiple meta-analyses have led to considerable differences in summary effect estimations, thus failing to provide a plausible effect estimate. Here we aim at resolving this issue by providing the largest meta-analysis and systematic review so far of the brain volume and IQ association (86 studies; 454 effect sizes from k = 194 independent samples; N = 26 000+) in three cognitive ability domains (full-scale, verbal, performance IQ). By means of competing meta-analytical approaches as well as combinatorial and specification curve analyses, we show that most reasonable estimates for the brain size and IQ link yield r-values in the mid-0.20s, with the most extreme specifications yielding rs of 0.10 and 0.37. Summary effects appeared to be somewhat inflated due to selective reporting, and cross-temporally decreasing effect sizes indicated a confounding decline effect, with three quarters of the summary effect estimations according to any reasonable specification not exceeding r = 0.26, thus contrasting effect sizes were observed in some prior related, but individual, meta-analytical specifications. Brain size and IQ associations yielded r = 0.24, with the strongest effects observed for more g-loaded tests and in healthy samples that generalize across participant sex and age bands.
Collapse
Affiliation(s)
- Jakob Pietschnig
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
| | - Daniel Gerdesmann
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
- Department of Physics Education, Faculty of Mathematics, Natural Sciences and Technology, University of Education Freiburg, Germany
| | - Michael Zeiler
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Martin Voracek
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria
| |
Collapse
|
3
|
Weerasekera A, Ion-Mărgineanu A, Nolan G, Mody M. Subcortical Brain Morphometry Differences between Adults with Autism Spectrum Disorder and Schizophrenia. Brain Sci 2022; 12:brainsci12040439. [PMID: 35447970 PMCID: PMC9031550 DOI: 10.3390/brainsci12040439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Subcortical structures play a significant role in cognitive and social-emotional behaviors and their abnormalities are associated with neuropsychiatric conditions. This exploratory study utilized ABIDE II/COBRE MRI and corresponding phenotypic datasets to compare subcortical volumes of adults with ASD (n = 29), SZ (n = 51) and age and gender matched neurotypicals (NT). We examined the association between subcortical volumes and select behavioral measures to determine whether core symptomatology of disorders could be explained by subcortical association patterns. We observed volume differences in ASD (viz., left pallidum, left thalamus, left accumbens, right amygdala) but not in SZ compared to their respective NT controls, reflecting morphometric changes specific to one of the disorder groups. However, left hippocampus and amygdala volumes were implicated in both disorders. A disorder-specific negative correlation (r = −0.39, p = 0.038) was found between left-amygdala and scores on the Social Responsiveness Scale (SRS) Social-Cognition in ASD, and a positive association (r = 0.29, p = 0.039) between full scale IQ (FIQ) and right caudate in SZ. Significant correlations between behavior measures and subcortical volumes were observed in NT groups (ASD-NT range; r = −0.53 to −0.52, p = 0.002 to 0.004, SZ-NT range; r = −0.41 to −0.32, p = 0.007 to 0.021) that were non-significant in the disorder groups. The overlap of subcortical volumes implicated in ASD and SZ may reflect common neurological mechanisms. Furthermore, the difference in correlation patterns between disorder and NT groups may suggest dysfunctional connectivity with cascading effects unique to each disorder and a potential role for IQ in mediating behavior and brain circuits.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-781-8204501
| | - Adrian Ion-Mărgineanu
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, 3001 Leuven, Belgium;
| | - Garry Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Maria Mody
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
4
|
Tang S, Liu X, Ran Q, Nie L, Wu L, Pan Z, He L. Application of Three-Dimensional Pseudocontinuous Arterial Spin Labeling Perfusion Imaging in the Brains of Children With Autism. Front Neurol 2022; 13:851430. [PMID: 35280268 PMCID: PMC8905523 DOI: 10.3389/fneur.2022.851430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To explore the application of three-dimensional pseudocontinuous arterial spin labeling (3D-PCASL) perfusion imaging in the brains of children with autism and to understand the characteristics of cerebral blood perfusion in children with autism. Methods A total of 320 children with autism (160 men and 160 women) aged between 2 and 18 years and 320 age- and sex-matched healthy children participated in the study. All children were scanned by 3.0 T magnetic resonance axial T1 fluid-attenuated inversion recovery (FLAIR), T2 FLAIR, 3D-T1, and 3D-PCASL sequences. After postprocessing, cerebral blood flow (CBF) values in each brain region of children with autism and healthy children at the same age were compared and analyzed. Furthermore, CBF characteristics in each brain region of autistic children at various ages were determined. Results The CBF values of the frontal lobe, hippocampus, temporal lobe, and caudate nucleus of children with autism are lower than those of healthy children (P < 0.05). Additionally, as the ages of children with autism increase, the number of brain regions with decreased CBF values gradually increases. A receiver operating characteristic (ROC) analysis results show that the CBF values of the frontal lobe, hippocampus, temporal lobe, and caudate nucleus can distinguish children with autism [area under the ROC curve (AUC) > 0.05, P < 0.05]. Conclusion The 3D-PCASL shows lower brain CBF values in children with autism. Clinical Trial Registration www.ClinicalTrials.gov, identifier: ChiCTR2000034356.
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xianfan Liu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiying Ran
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Lan Wu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhengxia Pan
- Department of Cardiovascular and Thoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling He
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
Mo K, Sadoway T, Bonato S, Ameis SH, Anagnostou E, Lerch JP, Taylor MJ, Lai MC. Sex/gender differences in the human autistic brains: A systematic review of 20 years of neuroimaging research. Neuroimage Clin 2021; 32:102811. [PMID: 34509922 PMCID: PMC8436080 DOI: 10.1016/j.nicl.2021.102811] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/25/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Our current understanding of autism is largely based on clinical experiences and research involving male individuals given the male-predominance in prevalence and the under-inclusion of female individuals due to small samples, co-occurring conditions, or simply being missed for diagnosis. There is a significantly biased 'male lens' in this field with autistic females insufficiently understood. We therefore conducted a systematic review to examine how sex and gender modulate brain structure and function in autistic individuals. Findings from the past 20 years are yet to converge on specific brain regions/networks with consistent sex/gender-modulating effects. Despite at least three well-powered studies identifying specific patterns of significant sex/gender-modulation of autism-control differences, many other studies are likely underpowered, suggesting a critical need for future investigation into sex/gender-based heterogeneity with better-powered designs. Future research should also formally investigate the effects of gender, beyond biological sex, which is mostly absent in the current literature. Understanding the roles of sex and gender in the development of autism is an imperative step to extend beyond the 'male lens' in this field.
Collapse
Affiliation(s)
- Kelly Mo
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Tara Sadoway
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sarah Bonato
- Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Stephanie H Ameis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada; Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Meng-Chuan Lai
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Williams CM, Peyre H, Toro R, Ramus F. Neuroanatomical norms in the UK Biobank: The impact of allometric scaling, sex, and age. Hum Brain Mapp 2021; 42:4623-4642. [PMID: 34268815 PMCID: PMC8410561 DOI: 10.1002/hbm.25572] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Few neuroimaging studies are sufficiently large to adequately describe population‐wide variations. This study's primary aim was to generate neuroanatomical norms and individual markers that consider age, sex, and brain size, from 629 cerebral measures in the UK Biobank (N = 40,028). The secondary aim was to examine the effects and interactions of sex, age, and brain allometry—the nonlinear scaling relationship between a region and brain size (e.g., total brain volume)—across cerebral measures. Allometry was a common property of brain volumes, thicknesses, and surface areas (83%) and was largely stable across age and sex. Sex differences occurred in 67% of cerebral measures (median |β| = .13): 37% of regions were larger in males and 30% in females. Brain measures (49%) generally decreased with age, although aging effects varied across regions and sexes. While models with an allometric or linear covariate adjustment for brain size yielded similar significant effects, omitting brain allometry influenced reported sex differences in variance. Finally, we contribute to the reproducibility of research on sex differences in the brain by replicating previous studies examining cerebral sex differences. This large‐scale study advances our understanding of age, sex, and brain allometry's impact on brain structure and provides data for future UK Biobank studies to identify the cerebral regions that covary with specific phenotypes, independently of sex, age, and brain size.
Collapse
Affiliation(s)
- Camille Michèle Williams
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| | - Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France.,INSERM UMR 1141, Paris Diderot University, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Paris, France.,Center for Research and Interdisciplinarity (CRI), INSERM U1284, Paris, France.,Université de Paris, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|
7
|
Williams CM, Peyre H, Toro R, Beggiato A, Ramus F. Adjusting for allometric scaling in ABIDE I challenges subcortical volume differences in autism spectrum disorder. Hum Brain Mapp 2020; 41:4610-4629. [PMID: 32729664 PMCID: PMC7555078 DOI: 10.1002/hbm.25145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Inconsistencies across studies investigating subcortical correlates of autism spectrum disorder (ASD) may stem from small sample size, sample heterogeneity, and omitting or linearly adjusting for total brain volume (TBV). To properly adjust for TBV, brain allometry—the nonlinear scaling relationship between regional volumes and TBV—was considered when examining subcortical volumetric differences between typically developing (TD) and ASD individuals. Autism Brain Imaging Data Exchange I (ABIDE I; N = 654) data was analyzed with two methodological approaches: univariate linear mixed effects models and multivariate multiple group confirmatory factor analyses. Analyses were conducted on the entire sample and in subsamples based on age, sex, and full scale intelligence quotient (FSIQ). A similar ABIDE I study was replicated and the impact of different TBV adjustments on neuroanatomical group differences was investigated. No robust subcortical allometric or volumetric group differences were observed in the entire sample across methods. Exploratory analyses suggested that allometric scaling and volume group differences may exist in certain subgroups defined by age, sex, and/or FSIQ. The type of TBV adjustment influenced some reported volumetric and scaling group differences. This study supports the absence of robust volumetric differences between ASD and TD individuals in the investigated volumes when adjusting for brain allometry, expands the literature by finding no group difference in allometric scaling, and further suggests that differing TBV adjustments contribute to the variability of reported neuroanatomical differences in ASD.
Collapse
Affiliation(s)
- Camille Michèle Williams
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| | - Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France.,INSERM UMR 1141, Paris Diderot University, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- U1284, Center for Research and Interdisciplinarity (CRI), INSERM, Paris, France.,Unité Mixte de Recherche 3571, Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Anita Beggiato
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Unité Mixte de Recherche 3571, Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|